APP下载

生物体液挥发性有机化合物分析研究进展

2017-08-26佟洪双王常松

中国医药导报 2017年19期
关键词:生物标志物

佟洪双 王常松

[摘要] 分析呼出气体、血液、汗液、尿液、唾液、胸腔积液、脑脊液、粪便等挥发性有机化合物是最新发展起来用于评估健康状况、疾病筛查和诊断的一种方法。近几年来,这种方法因其非侵入性、快速、操作简单方便、廉价以及患者良好的耐受性等优点,不但引起越来越多研究者的注意,而且扩展了新的研究领域。目前,肺癌呼出气、血液、尿液等代谢组学的研究表明烷烃、芳香烃、含氧有机化合物具有一定诊断价值,并在各种癌症中已经确定和某些特殊的挥发性有机化合物之间存在联系。

[关键词] 挥发性有机代谢物;生物标志物;生物体液

[中图分类号] R503 [文献标识码] A [文章编号] 1673-7210(2017)07(a)-0043-04

[Abstract] Analysis of volatile organic compounds in exhaled breath, blood, sweat, urine, saliva, pleural effusion, cerebrospinal fluid, stool is a new method that was used for the assessment of health status, disease screening and diagnosis. In recent years, this method has the advantages of non-invasive, rapid, convenient operation, cheap and patients with good tolerance. The analysis of volatile organic compounds has attracted more and more attention of researchers and expanded a new research field. At present, the metabolomics research of lung cancer in exhaled breath, blood and urine show that alkanes, aromatic hydrocarbons, oxy-compound has a certain diagnostic value. There is also a link between identified various types of cancer and some special volatile organic compounds.

[Key words] Volatile organic compounds; Biomarkers; Biological fluids

目前使用挥发性有机化合物(VOCs)分析来诊断疾病的方法已经被广泛研究。呼出气、血液和尿液VOCs分析已经应用于各种不同的领域,如毒理学、司法学、生物化学以及包括癌症的医学领域。但是VOCs分析各种不同的生物体液有很多种方法,被广泛研究的是固相微萃取(SPME)联合气相色谱-质谱分析(gas chromatography-mass spectrometry,GC-MS)方法。本综述是通过几种不同分析方法来论述不同生物体液产生特定的VOCs以及和疾病之间的关系。

1 VOCs分析的缘起及发展

早在古希腊内科医生就已发现人类呼出的气味能为疾病诊断提供线索。1971年诺贝尔奖获得者Laureate Linus和同事首次提出代谢组学挥发性物质部分的分析,命名为Volatome。他描述了正常人呼出气以及尿液中大约有250到280种挥发性物质[1]。1989年Williams和Pembroke证实了嗅探犬经过训练后能发现黑色素瘤的患者,表明恶性肿瘤中存在“特殊气味”[2]。随后其他几项研究证实了某种特殊VOC和各种癌症之间的关系,例如肺癌[3]、肝癌[4]、乳腺癌[5]和结直肠癌[6-8]。

2 人体内VOCs的产生与代谢

人体内源性VOCs是由癌细胞和组织进行新陈代谢和氧化应激产生的代谢产物,反映机体内炎症、坏死、癌症变性、微生物群以及内环境的变化,其存在与含量可以反映人体健康情况。同时也受外部因素的影响,如环境、药物等[2]。研究显示导致VOCs降解加速是肺癌患者体内细胞色素P450系统被激活,这些代谢产物在水中溶解度很低,而有些释放于血液中,经过血液循环到达肺泡或者肾小管,最终随呼出气或尿液被排出体外[2]。肠道VOCs是结肠内细菌经过非淀粉多糖发酵产生,代表小肠细胞、肠道微生物群和入侵病原体复杂的相互作用,可在糞便及尿液中被检测到[9]。这些VOCs产生后可以以气相的形式在呼出气体、血液、汗液、尿液、粪便、脑脊液以及母乳中被检测到。

2.1 唾液VOCs分析

唾液中VOCs可作为疾病、生理状态和从事职业的生物标志物。人类口腔中有大约700种细菌和微生物定植,这些微生物所释放的VOCs主要有挥发性硫化物(volatile sulfur compounds,VSC)、吲哚(indole)、酚(phenol)、脂肪胺(aliphatic amines)等[10-12]。外源性化合物来源于化妆品、香水、洗涤剂、烟草和大气污染物。有研究通过GC-MS分析唾液中VOC鉴别与疾病相关的标志物,如二甲基硫(dimethyl disulfide)、苯乙烯(styrene)和甲基叔丁基醚(methyl tert-butyl ether)[13-14],与肺癌有关的VOCs,如苯甲酮(benzophenone)和反式石竹烯(trans-caryophyllene)[15-16]。Kostelc等[17]分析17个受试者(3名男性和14名女性)由刺激产生的全唾液酸化合物。他们发现了超过30种化合物,主要是醇/酚类和脂肪族和芳族烃。但是其中至少11种挥发物是外源性的。其中辛醇(2-ethyl-1-hexanol)是塑化剂,而二丁基羟基甲苯(butylatedhydroxytoluene,BHT)是一种常用的抗氧化剂。而十四酸异丙酯(isopropyl tetradecanoate)和棕榈酸异丙酯(isopropyl hexadecanoate)这两种脂肪酸酯可能来源于化妆品制剂。四氯乙烯(Tetrachloroethylene)可能来源于环境中的空气或生活饮用水。烯丙基异硫氰酸酯(allylisothiocyanate)的存在可能与饮食有关,因为它主要是芥末的主要成分。壬醛(Hexanal)和己醛(nonanal)是氧化应激的标志物,口腔微生物群活动可能产生2,3-丁二酮(2,3-butanedione)、2,3-戊二酮(2,3-pentanedione)、苯酚(phenol)、吡咯(pyrrole)、吲哚(indole)和二甲基二硫醚(dimethyl disulfide)等VOCs。唾液几乎完全是水溶性物质,VOCs浓度比血液或尿液低。“新鲜”唾液中的大部分VOCs主要来源于食品及口腔卫生用品,这些外源性物质可能阻碍寻找真正疾病的生物标志物。只有几个内源性的唾液化合物可作为疾病的标志物。如今,关于使用唾液VOCs分析来诊断疾病的方法已经被质疑,除了毒理学应用领域。然而,口腔微生物定植细菌活性产物的研究可能为疾病的诊断提供更有价值的信息。

2.2 血液VOCs分析

从理论上讲,低分子量VOCs质谱分析可以通过血液的顶空萃取而鉴别。通过血培养瓶的顶空萃取等研究发现了特殊的VOCs,表明这些特殊的VOCs是由菌血症患者的血液产生[18]。2006年Allardyce等[19]采用选择性离子流质谱分析人工感染5种细菌菌株的血液培养瓶,结果表明,微生物VOCs的检测可能是一种敏感细菌检测方法,即用来鉴定和测定抗生素在传统血液培养系统中的敏感性。然而并没有研究顶空尿细菌和阳性血培养物或血清微生物细胞培养物的顶空中发现这些化合物的相关性。在目前的研究中,大部分是应用SPME与GC-MS用于肺癌的VOCs研究;顶空SPME(纤维涂层,提取温度和提取时间)和解析条件是应用于测定人体血液中的挥发物、寻找癌症生物标志物的最佳方法。Deng等[20-22]通过SPME和GC-MS法描述了肺癌患者正常样品和样品顶空中挥发性醛(aldehydes)的测定,认为人类血液中的己醛(Hexanal)和庚醛(heptanal)是肺癌的潜在生物标志物,同时通过呼出气和血液中挥发物的比较,论证了己醛和庚醛起源于血液。类似的研究发现在吸烟者血液的顶空萃取检测到乙腈(acetonitrile)水平升高[23]。

2.3 尿液VOCs分析

迄今为止,已经从尿液中检测到超过230种不同化学类型的VOCs,包括醛类、酮类、呋喃、吡咯、萜类和含硫化合物等[24-25]。由于尿液易于收集,如今已广泛应用于代谢组学研究领域,辅助探索病理进程,例如先天性代谢疾病、糖尿病和多种癌症。目前,尿液代谢组学的研究已经应用到乳腺癌[26]、结直肠癌[27]、食管癌[28]、胰腺癌[29]和肝癌[30]等疾病。Matsumura等[31]证实,尿液挥发性化合物可以应用于肺癌的协助诊断。Zhang等[32]使用尿液代谢组学分析方法,对27例肾细胞癌患者、26例其他泌尿系统肿瘤患者和26名正常人进行了实验,分析结果得到十四种代谢产物。肾细胞癌患者尿液中含有机酸、马尿酸、色氨酸及其降解产物,其中戊酸(pentanoic acid)、丙二酸(malonic acid)、戊二酸(glutaric acid)、己二酸(adipic acid)、吲哚乙酸(indoleacetic acid)、氨基喹啉(aminoquinoline)、喹啉(quinoline)及色氨酸(tryptophan)的浓度高于正常人;戊酸(pentanoic acid)、苯丙氨酸(phenylalanine)、6-甲氧基-硝基喹啉(6-methoxy-nitroquinoline)等浓度高于其他泌尿系统肿瘤患者。经分析,这些代谢产物主要与脂肪代谢、氨基酸代谢,以及能量传递途径有关。因此需要对这些代谢产物及其参与的代谢途径进行深入的研究,以发现具有诊断肾细胞癌的特异性生物标志物。

2.4 胸腔积液VOCs分析

胸腔积液与肺部疾病关系密切。与肺部疾病相关蛋白的改变、细胞功能异常通过与控制代谢的酶或核酸相结合而引起胸腔积液中内源代谢物比例、浓度等方面发生的变化可以区分肺癌和肺部炎症。SPME结合GC/MS是一种简单、快速、灵敏和无溶剂法测定胸腔积液中的VOC。Liu等[33]通过质谱仪定量比较胸腔积液样品中挥发性代谢物(VOMs)化学类别的强度,发现肺癌患者胸腔积液样品中主要的代谢物为醇类(alcohols)、酮类(ketones)和苯系衍生物(benzene derivatives),而良性对照组胸腔积液中主要为酮类(ketones)、酯类(terpenoids)和苯系衍生物(benzene derivatives),通过筛选得到肺癌组和良性组间的差异性代谢化合物分别为环己酮(cyclohexanone)和2-乙基-1-己醇(2-ethyl-1-hexanol)。这些化合物是否适合肺癌生物标志物仍然需要进一步研究,另一方面,环己酮和2-乙基-1-己醇可能来源于内源性生化途径,这两种物质在肺癌患者尿液生物标志物中也被发现[34]。然而到目前为止,没有研究比较良性和恶性胸膜之间胸腔积液VOCs的差異。

3 VOCs分析存在的问题

从生物学的角度看,人类的VOCs显著改变可能受人类自身条件及环境影响。生理效应能影响VOC浓度,因此也是疾病的VOCs生物标志物的混杂因素。此外,来源于外源性的VOCs可以被吸收到体内,从而影响身体内的VOCs[35]。因此,在临床研究中无法避免受到这些外部因素影响,甚至可能会导致错误的结论[36]。在临床试验中,需要严格控制干预措施和规范对样本的处理。VOCs的收集和分析,采用SPME与GC-MS等其他方法均可以影响标志物的结果。

[参考文献]

[1] Pauling L,Robinson AB,Teranishi R,et al. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography [J]. Proc Natl Acad Sci USA,1971,68(10):2374-2376.

[2] Williams H,Pembroke A. Sniffer dogs in the melanoma clinic? [J]. Lancet,1989,333(8640):734.

[3] Kischkel S,Miekisch W,Fuchs P,et al. Breath analysis during one-lung ventilation in cancer patients [J]. Eur Respir J,2012,40(3):706-713.

[4] Ressom HW,Xiao JF,Tuli L,et al. Utilization of metabolomics to identify serum biomarkers for hepatocellular carcinoma in patients with liver cirrhosis [J]. Analytica Chimica Acta,2012,743:90-100.

[5] Li J,Peng Y,Duan Y. Diagnosis of breast cancer based on breath analysis:An emerging method [J]. Crit Rev Oncol Hematol,2013,87(1):28-40.

[6] Peng G,Hakim M,Broza YY,et al. Detection of lung,breast,colorectal,and prostate cancers from exhaled breath using a single array of nanosensors [J]. Br J Cancer,2010,103(4):542-551.

[7] Altomare DF,Di M,Porcelli F,et al. Exhaled volatile organic compounds identify patients with colorectal cancer [J]. Br J Surg,2013,100(1):144-150.

[8] Di Lena M,Porcelli F,Altomare DF. Volatile organic compounds as new biomarkers for colorectal cancer:a review [J]. Colorectal Dis,2016,18(7):654-663.

[9] Arasaradnam RP,McFarlane MJ,Ryan-Fisher C,et al. Detection of colorectal cancer(CRC)by urinary volatile organic compound analysis [J]. PLoS One,2014,9(9):e108750.

[10] Tonzetich J,Carpenter PA. Production of volatile sulphur compounds from cysteine,cystine and methionine by human dental plague [J]. Arch Oral Biol,1971,16(6):599-607.

[11] Imamura T. Influences of amino acids on the phenol and indole production of salivary microorganisms [J]. Shigaku,1982,70(1):21-35.

[12] Claus D,Geypens B,Ghoos Y,et al. Oral malodor,assessed by closed-loop,gas chromatography,and ion-trap technology [J]. High Resol Chromatogr,1997,20(2):94-98.

[13] Sánchez MN,García EH,Pavón JL,et al. Fast analytical methodology based on mass spectrometry for the determination of volatile biomarkers in saliva [J]. Anal Chem,2012,84(1):379-385.

[14] Amann A,Mochalski P,Ruzsanyi V,et al. Assessment of the exhalation kinetics of volatile cancer biomarkers based on their physicochemical properties [J]. J Breath Res,2014,8(1):016003.

[15] Soini,HA,Klouckova I,Wiesler D,et al. Analysis of volatile organic compounds in human saliva by a static sorptive extraction method and gas chromatography-mass spectrometry [J]. Chem Ecol,2010,36(9):1035-1042.

[16] Al-Kateb H,de Lacy Costello B,Ratcliffe N. An investigation of volatile organic compounds from the saliva of healthy individuals using headspace-trap/GC-MS [J]. J Breath Res,2013,7(3):036004.

[17] Kostelc JG,Preti G,Zelson PR,et al. Volatiles of exogenous origin from the human oral cavity [J]. J Chromatogr,1981,226(2):315-323.

[18] Scotter JM,Allardyce RA,Langford VS,et al. The rapid evaluation of bacterial growth in blood cultures by selected ion flow tube-mass spectrometry(SIFT-MS)and comparison with the BacT/ALERT automated blood culture system [J]. J Microbiol Methods,2006,65(3):628-631.

[19] Allardyce RA,Hill AL,Murdoch DR. The rapid evaluation of bacterial growth and antibiotic susceptibility in blood cultures by selected ion flow tube mass spectrometry [J]. Diagn Microbiol Infect Dis,2006,55(4):255-261.

[20] Deng C,Zhang X,Li N. Investigation of volatile biomarkers in lung cancer blood using solid-phase microextraction and capillary gas chromatography-mass spectrometry [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2004, 808(2):269-277.

[21] Deng C,Li N,Zhang X. Development of headspace solid-phase microextraction with on-fiber derivatization for determination of hexanal and heptanal in human blood [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2004,813(1):47-52.

[22] Li N,Deng C,Yin X,et al. Gas chromatography-mass spectrometric analysis of hexanal and heptanal in human blood by headspace single-drop microextraction with droplet derivatization [J]. Analyt Biochem,2005,342(2):318-326.

[23] Houeto P,Hoffman JR,Got P,et al. Acetonitrile as a possible marker of current cigarette smoking [J]. Hum Exp Toxicol,1997,16(11):658-661.

[24] Mochalski P,Krapf K,Ager C,et al. Temporal profiling of human urine VOCs and its potential role under the ruins of collapsed buildings [J]. Toxicol Mech Methods,2012,22(7):502-511.

[25] Mochalski P,Al-Zoairy R,Niederwanger A,et al. Quantitative analysis of volatile organic compounds released and consumed by rat L6 skeletal muscle cells in vitro [J]. J Breath Res,2014,8(4):046003.

[26] Johnson CH,Manna SK,Krausz KW,et al. Global meta-bolomics reveals urinary biomarkers of breast cancer in a mcf-7 xenograft mouse model [J]. Metabolites,2013,3(3):658-672.

[27] Cheng Y,Xie G,Chen T,et al. Distinct urinary metabolic profile of human colorectal cancer [J]. Proteome Res,2012,11(2):1354-1363.

[28] Davis VW,Schiller DE,Eurich D,et al. Urinary metabolomic signature of esophageal cancer and Barrett's esophagus [J]. World J Surg Oncol,2012,10(1):271.

[29] Davis VW,Schiller DE,Eurich D,et al. Pancreatic ductal adenocarcinoma is associated with a distinct urinary metabolomic signature [J]. Ann Surg Oncol,2013,20(3):S415-S423.

[30] Zhang A,Sun H,Yan G,et al. Urinary metabolic profiling identifies a key role for glycocholic acid in human liver cancer by ultra-performance liquid-chromatography coupled with high-definition mass spectrometry [J]. Clin Chim Acta,2013,418:86-90.

[31] Matsumura K,Opiekun M,Oka H,et al. Urinary volatile compounds as biomarkers for lung cancer:a proof of principle study using odor signatures in mouse models of lung cancer [J]. PLoS One,2010,5(1):e8819.

[32] Zhang L,Li L,Kong H,et al. Urinary metabolomics study of renal cell carcinoma based on gas chromatography-mass spectrometry [J]. Nan Fang Yi Ke Da Xue Xue Bao,2015,35(5):763-766.

[33] Liu H,Wang H,Li C,et al. Investigation of volatile organic metabolites in lung cancer pleural effusions by solid-phase microextraction and gas chromatography/mass spectrometry [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2014,945/946:53-59.

[34] Hanai Y,Shimono K,Matsumura K,et al. Urinary volatile compounds as biomarkers for lung cancer [J]. Biosci Biotechnol Biochem,2012,76(4):679-684.

[35] de Lacy Costello B,Amann A,Al-Kateb H,et al. A review of the volatiles from the healthy human body [J]. J Breath Res,2014,8(1):014001.

[36] Filipiak W,Ruzsanyi V,Mochalski P,et al. Dependence of exhaled breath composition on exogenous factors,smoking habits and exposure to air pollutants [J]. J Breath Res,2012,6(3):036008.

(收稿日期:2017-02-28 本文編辑:张瑜杰)

猜你喜欢

生物标志物
脑缺血再灌注损伤后小胶质细胞异常活化的生物标志物研究进展
阿尔兹海默症血清多肽组生物标志物研究
MicroRNAs在胃癌中的研究进展
copeptin在心力衰竭中的临床应用价值
水环境中木质素光降解及其对有机物相关指示参数影响研究进展
基于UPLC—Q—TOF—MS技术的牛血清白蛋白诱导过敏反应的代谢组学研究
基于UPLC—Q—TOF—MS技术的牛血清白蛋白诱导过敏反应的代谢组学研究
一种基于宏基因组模拟数据的生物标志物筛选方法