APP下载

高血压代谢组学研究进展

2021-12-24鲁婕雨石文翔孔祥清

关键词:代谢物组学靶向

鲁婕雨,石文翔,孔祥清

南京医科大学第一附属医院心血管内科,江苏 南京 210029

高血压作为心血管疾病中最为常见的疾病之一,是脑卒中、心衰、主动脉夹层、终末期肾病等多种疾病的重要危险因素[1]。根据最新数据,2015 年全球约有780 万人的死亡,合约14%的全因死亡与血压控制欠佳相关[2]。而严格的血压控制可以明显降低相关心血管事件的发生率以及高血压人群的全因病死率[3]。遗憾的是,尽管进行了很多尝试,高血压的知晓率、诊断率、治疗率、达标率仍十分不理想,仅有50%的患者可以将血压控制达标[4]。因此,进一步探索危险因素、发病机制、预测及诊断标志物,为高血压的早期干预及预防提供证据尤为重要。同时一线药物的多样化及应答不理想、适用人群不明确也是导致血压控制达标率低下的主要原因,高血压药物的作用机制、疗效安全性评估及治疗方案改良也是高血压研究的重要方向之一。

由于血压升高是代谢综合征的一个重要临床表现,越来越多的研究也开始意识到新陈代谢在原发性高血压发生发展中的重要性。代谢组学作为组学研究中一类主要分析小分子化合物(主要为50~1 500 Da)总体特征的研究,显示了基因及外界干预(包括环境、药物等)对体内代谢状态的影响,填补了组学研究在新陈代谢表型方面的空白[5]。近年来,磁共振(magnetic resonance,MR)波谱及质谱(mass spectrum,MS)技术的不断进步使得高分辨度、高灵敏度地定量或定性检测多种小分子代谢物质成为可能,在此基础上,代谢组学研究得以发展。相较于常规检测,代谢组学对于低丰度小分子物质的检测更加灵敏,可以同时获得数百至上千种代谢物质的定性定量结果,可以用于了解整体代谢特征及发现新的生物标记物,这些都是常规检测无法完成的。除了定性及定量检测,代谢通量检测也在近年迅速发展为代谢组学一个重要的研究方向。结合放射性同位素示踪技术,MS或MR可以检测单位时间内的代谢物流动改变,从而更加精确地探究代谢物水平改变究竟是来源于产量还是消耗的改变,因此可以更加清晰地展现整个代谢过程的变化[6]。现如今,代谢组学研究已经被广泛应用于心血管疾病的机制探究、生物标志物发现等方面。

1 高血压代谢组学方法学进展

代谢组学研究通过样品制备、代谢物分析和数据分析三个步骤获取代谢组学信息,从方法上主要分为靶向及非靶向两种。靶向的代谢组学研究针对某一种或某几种已知代谢物进行定性及绝对定量研究,主要使用MS技术,常用于确认某种已知物质是否与疾病相关等验证目的。由于存在待测代谢物的标准品作为对照,其结果相对于非靶向研究来说更加准确。而非靶向的代谢组学研究可通过MR或MS定性和量化样品中尽量多的化合物,主要用于新的生物标记物和代谢途径的发现[7]。MR 是一种快速有效、重复率高的非靶向代谢组学检测技术,它根据分子中的不同原子核产生的不同共振频率获取被探测分子的化学和结构信息。但其缺点在于NMR灵敏性及分辨率较低,可确定的代谢物数量十分有限。而MS则可以与液相色谱(liquid chro⁃matogram,LC)、气相色谱(gas chromatogram,GC)等相结合,根据离子和碎片离子的质量⁃电荷(m/z)比进行电离和分离获取被测物质的信息,可以同时检测数百个代谢物。但即使如此,由于代谢物的物化特性的多样性,目前的技术仍然不能实现单一技术检测完整代谢组[8]。另外,由于单纯使用质谱检测难以提供除了分子式以外的其他信息,加上目前数据库的覆盖率不足,代谢物注释也是非靶向代谢组学研究的瓶颈之一。近年,结合应用LC、串联质谱(MS/MS)及离子淌度(ion mobility,IM)分离技术可以分别提供保留时间(retention time,RT)、MS/MS光谱和碰撞截面(collision cross section,CCS)信息,为区分同分异构体提供一些线索,但在非靶向代谢组学分析中准确识别代谢物仍然并不容易[9]。

从研究对象方面来说,代谢组学可将血液、尿液、组织、培养基等多种样品作为检测样本。血液和尿液的提取由于是微创甚至无创的,因而可以进行多次采集,反映出短时间内的新陈代谢改变,较为全面地展示多系统综合的代谢变化,一般来说是最为常见的代谢组学研究样本,但它们都难以显示组织内及系统间的代谢变化,因此在某些需要高选择性代谢信息的实验中,组织样本是必需的[10]。

2 发病机制研究

除由肾脏疾病、肾血管疾病、原生性醛固酮增多等原因引起的继发性高血压外,大多数高血压患者无法找到明确的单一发病原因,因此原发性高血压一直被认为是一个由表观遗传学、生活方式等多种因素调控的疾病表型[11]。近年代谢组学研究也为高血压发病机制提供了新的证据和思路,主要集中在脂质代谢改变、肠道微生物菌群这两个方面。

脂质代谢变化是高血压发生发展中的重要特征之一。在未服用降脂药的人群当中,多种脂质(神经酰胺、三酰基甘油、总甘油脂、油酸等)的循环水平与舒张压的纵向变化正相关,而胆固醇水平与舒张压变化呈负相关[12]。其中油酸等游离脂肪酸(free fatty acid,FFA)与高血压的关系最常被提及。Liu等[13]进行的一项基于气相色谱/飞行时间质谱技术的代谢组学研究发现,诊断高血压的患者血清中的游离脂肪酸水平较对照组人群明显升高,还有研究者认为这种相关性在女性中更加明显[14]。FFA 的血清水平过高往往与胰岛素抵抗同时出现,这可能与FFA 再酯化产物二酰基甘油激活蛋白激酶C(pro⁃tein kinase C,PKC)有关,但FFA 对于血压的影响并不局限于通过胰岛素抵抗实现[15]。过多的FFA 积聚在体内体外都被证明可以激活经典的促炎NF⁃κB通路,导致促炎细胞因子(TNF⁃α、IL⁃6等)的表达升高,并通过激活NAD(P)H氧化酶诱导活性氧(reac⁃tive oxyen speeies,ROS)的生成,减少内皮细胞NO的生成,导致氧化应激和内质网应激,从而引起内皮功能障碍[16-18]。另外,Kulkarni等[19]通过脂质组学研究发现在墨西哥裔美国人当中,血浆甘油二酯水平与血压及高血压发生率独立相关。加压素可以结合g 蛋白偶联受体并激活细胞内磷脂酶C,二酰基甘油是这个反应的最终产物,它可以调节细胞内钙离子浓度和PKC 活性,从而在高血压病理生理过程中发挥作用[19]。

另一个重要机制则与肠道菌群有关。无论在高血压还是高血压前期患者当中,不少肠道微生物的水平与正常对照组相比会有明显的区别,促炎和条件致病菌(如普雷沃菌、克雷伯菌)比例升高。另外,将高血压患者的粪菌移植入小鼠体内可以使小鼠血压显著升高,相反,将正常动物的粪菌移植入高血压动物模型中可以明显降低血压[20-22]。这些都表明了肠道菌群在高血压发生发展中的重要作用。Cheema 等[23]则发现血管紧张素Ⅱ(angiotensinⅡ,AngⅡ)介导的高血压产生的血浆及粪便代谢物完全依赖于肠道微生物。短链脂肪酸是肠道微生物产生的代表性物质,在近年的代谢组学研究发现其循环水平在高血压人群及动物模型中都有明显降低,而粪便中短链脂肪酸含量升高[24]。短链脂肪酸可以通过肾脏及血管系统的受体调节血管张力和肾素分泌[25-26],同时破坏肠道上皮屏障引起肠道炎症[27]。短链脂肪酸在循环内的减少及在肠腔内的积聚还可以通过潜在的调节交感迷走神经平衡、神经炎症等作用达到升高血压的效果[28]。除此之外,高盐饮食可以减少肠道中乳酸菌含量,减少吲哚产生,导致炎症反应[29],也可以减少肠道脆弱拟杆菌,降低花生四烯酸水平,增加肠源性皮质醇产生从而诱导高血压的发生[30]。肠道菌群还可以调节患者对高血压药物的反应[31]。

3 生物标志物筛选

除上述在机制研究方面做出贡献的结果以外,仍有许多化合物的水平在正常人群与高血压人群中有着显著的区别,可以作为生物标记为其他潜在发病机制的发现、早期诊断、风险评估提供线索。最早的代谢组学研究就曾指出在高血压患者与血压临界患者当中有一系列代谢物的改变是类似的,尤其是与极低密度胆固醇和低密度胆固醇相关的脂蛋白,这提示了在血压未上升至高血压定义之前,患者体内很有可能已经存在一些相关的代谢产物变化,可以为早期诊断提供线索[32]。目前已经有一系列针对高血压与健康人群中代谢差异的研究,如高血压人群与健康对照人群比较,油酸[12-13,33]乳酸[34-35]、蔗糖[13,36]、十六烷二酸[35]升高,甘氨酸[37-41]、苏氨酸[39-41]、丝氨酸[37,40]、蛋氨酸[41-42]、天冬氨酸[38,41]、尿嘧啶[34,42]降低。这些化合物与高血压的因果关系尚不明确,但也提示了一些潜在的可能发病机制。十六烷二酸的循环水平在3个独立人群中被发现与血压呈正相关,且经十六烷二酸处理的小鼠肠系膜动脉对去甲肾上腺素的反应性增加,但经典高血压模型高盐饮食并无法引起循环十六烷二酸水平升高,提示十六烷二酸可能通过一种新的机制影响血压[35]。与十六烷二酸水平密切相关的几个基因也被证实与高血压相关[43]。

另外,十六烷二酸的水平与心源性卒中、心衰发生率也有正相关关系[44-45]。除十六烷二酸外,还有不少化合物都曾被报道与各类高血压并发症相关。l⁃色氨酸、3⁃甲氧基胺、蛋氨酸、高半胱氨酸、半胱氨酸、异亮氨酸、肉碱、精氨酸、亚油酸和鞘氨醇的血清定量浓度在后来诊断为中风的患者中明显较高[46]。循环游离脂肪酸水平与左心室射血分数呈反比,可以用于预测心衰的发生[47]。尿液中3⁃脲丙酸盐、草酰乙酸盐、苹果酸盐和胍乙酸盐水平也被证实与蛋白尿之间存在联系[48]。而以溶血卵磷脂血浆水平下调为特征的高血压个体与溶血卵磷脂水平较高的个体相比,早期血管老化的风险要高3.8倍[49]。

4 高血压干预后的代谢改变

高血压干预后的代谢改变也可以从侧面为发病机制提供线索,同时对治疗方法改进、个体化治疗方案制定、疗效及安全性评估等方面提供潜在帮助。由于高血压状态部分受生活状态影响,饮食控制及运动也是控制血压的重要方法。停止高血压的饮食方法(dietary approaches to stop hypertension,DASH)可以明显改变尿液中n ⁃甲基脯氨酸、水黄碱、色氨酸等物质含量[50]。控制钠盐摄入可以改变丝氨酸、色氨酸等物质的尿液、循环水平[51-52],运动则可以调节血浆中脂肪酸、氨基酸水平[53],这些物质参与了一氧化氮产生、氧化应激、渗透压调节等广泛的生物途径,在调节血压中发挥了作用。

除生活方式发生改善外,各类抗高血压药物也会在患者体内引起一系列代谢改变,这些改变或许与药物发挥作用或产生不良反应相关。一线药物比索洛尔、氨氯地平、氯沙坦都可以降低循环中乙酰肉碱的水平。噻嗪类利尿剂则倾向于增加尿素循环代谢产物尿素和瓜氨酸。对于服用β⁃受体阻滞剂的患者,血清中焦谷氨酰胺、同瓜氨酸、水杨酸的浓度增加,血清素、脂肪酸含量降低。而使用血管紧张素转化酶抑制剂(angiotensin converting enzyme inhibitor,ACEI)时,HWESASXX 和des⁃arg(9)⁃缓激肽水平升高,苯丙基苯丙氨酸和天冬苯丙氨酸循环水平降低[54-55],这些物质或许可以作为提示药物活性的标志物被应用于临床。其中天冬苯丙氨酸是血管紧张素转化酶引起的胆囊收缩素(CCK⁃8)裂解的产物,其循环水平与血压呈正相关,可以提示ACEI 疗效[56]。Sonn 等[57]曾报道2⁃氧戊二酸盐的升高与ACEI药物应答欠佳相关。另外,des⁃arg(9)⁃缓激肽可能与血管水肿、咳嗽等不良事件等有关[58]。Cheng 等[59]则发现血清磷脂酰胆碱、溶血磷脂酰胆碱、鞘磷脂等化合物水平可能与氨氯地平导致的肠道炎症、消化道不良反应相关。

5 小结与展望

代谢组学研究为高血压的发病机制、生物标记物、药物疗效安全性评估等方面提供了许多新的线索,甚至有研究者试图根据代谢特征将原发性高血压、代谢综合征等相关疾病重新分类[60]。但纵观现有的代谢组学研究结果,不难发现相同结果的重复率并不高。由于检测方法限制,非靶向的代谢组学研究很难完全准确地识别化合物并绝对定量,不同的检测仪器、样品处理方式、检测参数都有可能使得检测数据产生改变,而影响最终结论。但即使在同一次实验当中,不同种族[61]、性别[62]、生活方式的目标人群所展示的代谢特点也并不完全相同。因此,研究方法的规范化及实验内容的拓展及重复将成为此类研究发展的重点。今后,多变量参与的精准分析或许可以帮助临床医生理解多因素与代谢状态改变的关系,最终掌握每一个特定个体的代谢特征,从而为高血压的治疗或预防制定更加个性化的方案。

猜你喜欢

代谢物组学靶向
阿尔茨海默病血清代谢物的核磁共振氢谱技术分析
新型抗肿瘤药物:靶向药物
一株红树植物内生真菌Pseudallescheria boydii L32的代谢产物*
如何判断靶向治疗耐药
影像组学在肾上腺肿瘤中的研究进展
东莨菪碱中毒大鼠的代谢组学
携IL-6单克隆抗体靶向微泡破坏技术在兔MI/RI损伤中的应用
影像组学在核医学影像中的应用进展
蛋白质组学技术在胃癌研究中的应用
靶向超声造影剂在冠心病中的应用