APP下载

超灵敏甲醛比色传感器的设计与应用

2017-01-13叶飞朱皓郑伟巧杨智香连璐杨盛松

漳州职业技术学院学报 2016年4期
关键词:甘氨酸比色缓冲液

叶飞, 朱皓, 郑伟巧, 杨智香, 连璐, 杨盛松



超灵敏甲醛比色传感器的设计与应用

叶飞, 朱皓, 郑伟巧, 杨智香, 连璐, 杨盛松

(福建皓尔宝新材料科技有限公司, 福建漳州 363000)

在金纳米棒(AuNRs)-Ag+-甲醛(HCHO)体系中,HCHO快速将Ag+还原为Ag,Ag包裹在AuNRs表面形成Au@AgNRs,改变了AuNRs周围的电介质环境,导致纵向最大吸收波长(LPAB)红移,同时伴随着溶液的颜色发生显著的变化。据此,发展了一种测定HCHO的快响应、简便、灵敏、选择性的AuNRs比色传感器。该比色传感器的检出限为6.3×10-11(gmL−1),比表面增强拉曼光谱法低,显示很高的灵敏度;尤其是本比色传感器用于水样品中HCHO的测定,结果与固体基质室温磷光法相吻合,展示较高的实用性。此外,探讨了测定HCHO的机理。

甲醛;AuNRs纳米棒;比色传感器;Au@Ag NRs核壳状纳米棒

HCHO对人体的影响是众所周知的:刺激眼睛和上呼吸道,头痛、恶心、嗜睡,皮肤过敏反应[1]。在动物试验实验室中因其严重的毒理学性质也是一个潜在的诱导有机体突变的物质和致癌物质[2]。世界卫生组织(世卫组织)住宅室内区域规定HCHO的浓度不得超过82 ppb (十亿分之几)[3]。特别是在环境问题中为了获得准确、及时的分析结果,快速方法适用于现场大量样品的分析[4]。因此,在环境水样品推广发展准确测定微量HCHO的快速方法是至关重要的。

已报道了测定各种样品中痕量HCHO的方法,如分光光度法[5]、荧光法[6]、毛细管色谱法[7]、流动注射催化法[8]、伏安法[9]、固体基质室温燐光法[10]、共振荧光法[11]、化学发光[12],色谱法(GC)[13],催化荧光法[14]、表面增强拉曼光谱法[15]、高效液相色谱法(HPLC)[16]和电导生物传感器[17]、气体传感器[18]、低温传感器[19]、微型室温传感器[20]等。然而,这些方法要么是昂贵,操作烦锁或耗费时间,不适合现场分析。

为了解决这些难题,人们发展了无需特殊的仪器、依据肉眼可简便、快速定量的比色法。由于金纳米粒子对现场检测的简易性、灵敏和潜在应用,在过去的20年里,注意力一直集中在基于视觉检测方法的金纳米粒子[21-23]。基于金纳米粒子长的LPAB吸收带对AuNR纵横比(长/宽)的高度敏感,比色传感器获得了更多的关注[24-25]。基此特性,我们开发了一系列的AuNPs比色传感器,用于有毒离子Hg2+[26]、Cr (VI)[27]、NO2–[28]、Pb2+[29]等检测。上述提到的传感器传感器需要表面修饰,操作较为繁琐。因此,必须开发一个简便、成本效益和环境友好的比色传感器现场检测HCHO。

本文我们描述一个基于LPAW的红移量(∆λL)与CHCHO的线性关系以及溶液明显的颜色变化的新奇的AuNRs比色传感器的开发。这些发现在制造AuNRs传感器和比色分析具有创新性。例如,表面增强拉曼光谱法(SERS)是基于4-氨基-5-肼基-3-巯基-1,2,4-苯三唑(AHMT)和HCHO衍生化反应测定HCHO[15],而本AuNRs比色传感器是基于LPAW的红移量(∆λL)与CHCHO的线性关系比色测定HCHO。在方法学上有新的突破;该AuNRs比色传感器在15分钟内肉眼观察即可实现比色检测,快速且简便,有望用于在线 分析,而表面增强拉曼光谱法操作烦锁、费时、不能用于现场检测;该传感器的灵敏度(LD: 6.3×10-11gmL−1)比文献[15]的方法(LD: 1.5 ×10-10g mL–1)灵敏度高2.4倍,且未见AuNRs比色传感器测定HCHO的文献报道;这种快速、准确、重现性与选择性好的AuNRs比色传感器用于水样中痕量HCHO的测定,显示其广阔的应用前景。

1 实验部分

1.1 实验材料

紫外可见分光光度计(岛津UV–2550);pHS−3B型pH计;AE240电子分析天平。

HCHO工作液:量取0.27 mL 37%~40%甲醛溶液配制成1.00μg /mL的HCHO溶液作为工作液;AuNRs溶液按Xingchen Ye et.[30]的方法合成、0.10M/L AgNO3溶液、NaBH4、0.10 M/L L−抗坏血酸溶液;水杨酸、0.20 M/L十六烷基三甲基溴化铵(CTAB)溶液、NaOH、甘氨酸购自国药集团化学试剂有限公司(上海);水用高纯水。

1.2 实验方法

1.00 mL AuNRs,85 μL AgNO3,1.00 mL不同浓度的HCHO,0.050 M甘氨酸-NaOH缓冲液被加入10 ml容量瓶中,稀释至刻度。50℃反应10 min,冷却至室温。依次测量试剂空白的最大波长(λ1)与试液的最大波长(λ2),并求红移量∆λ(λ1−λ2)。

2 结果与讨论

2.1 测定HCHO的机理

由图.1 和表 1可见,在AuNRs-Ag+-甘氨酸-NaOH缓冲溶液中AuNRs分别于748 nm、555 nm出现LPAB和横向最大吸收波(TPAB)。在AuNRs-Ag+-甘氨酸-NaOH 缓冲溶液体系中HCHO,导致AuNRs的LPAB发生红移,可能是Ag+被HCHO还原的Ag0在AuNRs表面形成Au@Ag↓NRs[31-32](机理1)。

图1 AuNRs-Ag+-甘氨酸-NaOH 缓冲液-HCHO体系UV-Vis 吸收光谱

表1 AuNRs-Ag+-甘氨酸-NaOH 缓冲液-HCHO体系UV-Vis 吸收光谱特性

HCHO + Ag+Ag0+ HCOOH (1)

AuNRs + Ag0Au@Ag↓NRs (2)

机理1 Au@Ag↓NRs的形成(1)为HCHO与Ag+的还原反应;(2)为Ag0包裹在AuNRs表面形成Au@Ag↓NRs。

基于AuNRs (图2 a)的横向部位的表面活性剂CTAB所产生的屏蔽效应,HCHO还原Ag+的产物Ag选择性地在纵向两端形成Au@Ag↓NRs (图2b),导致AuNRs的纵横比和形态发生改变。例如,最初AuNRs长度为20-30 nm (图2a, 长方体的结构),而加入HCHO后AuNRs的长度为40-50 nm左右(图2b,哑铃的结构),AuNRs的外观形态和粒径的变化,有力地证明了HCHO加入AuNRs-Ag+-甘氨酸-NaOH缓冲液体系中确有Au@Ag↓NRs产物生成。

图2 TEM 照片 (a) AuNRs 和(b) Au@Ag↓NR

随着HCHO浓度增加,AuNRs的LPAB的∆λ与HCHO浓度成正相关,并且溶液的颜色有显著改变(图3)。据此可用AuNRs-Ag+非聚集比色传感测定HCHO。

图3 HCHO浓度与溶液颜色变化

2.2 测定HCHO最佳条件

2.2.1 反应酸度

对于8.0 ngmL−1HCHO,随着溶液酸度的降低∆λ逐渐增大,当体系pH达到9.58时,∆λ达到最大,酸度的继续降低,∆λ逐渐减小,故选择pH = 9.58为体系的最佳反应媒介。

图4 体系的pH值

2.2.2 试剂用量

探讨了AuNRs和AgNO3用量对体系∆λ的影响。实验中假设AuNRs产率为100%。随着AuNRs用量的增加体系的∆λ值逐渐降低(图5A),而随着AgNO3用量的增加体系的∆λ值逐渐增大(图5 B),当AuNRs用量为0.60 mL、AgNO3的用量为85.0 μL时,∆λ最大并且线性范围最宽。

2.2.3 反应条件

由图6 A,B见,∆λ随着反应温度和时间的增加而增大;当反应在50oC、15 min时体系的∆λ达到最大;此后,∆λ随着反应温度和时间的减小而变小。

图6 反应温度(A, 反应时间: 15 min)和时间(反应温度: 50◦C)

2.2.4 静置时间

图7表明,在上述条件下,静置时间为5-30 min时,体系∆λ保持不变,显示传感器的稳定性好。因此,测定HCHO的最佳条件为1.00 mL AuNRs, 85.0 μL 0.01 M AgNO3,1.00 mL甘氨酸-NaOH 缓冲液,pH = 9.58, 50oC, 15min。

图7 静置时间

2.3 方法的灵敏度与精密度

本法与文献方法[15]的线性范围、工作曲线的回归方程(图8)、相关系数、相对标准偏差(RSD)%(0.20×10–9g mL −1和0.20×10–9g mL −1的HCHO进行6次平行测定)、检出限(LOD,对试剂空白进行11次的平行测定,以3Sb/k计)和量化限(LOQ,以10Sb/k)等比较于表2,表面增强拉曼光谱的操作烦锁、费时、不能用于现场检测,而AuNRs比色传感器比表面增强拉曼光谱法的灵敏度高,有望用于低含量的样品中HCHO的现场检测。

表2 分析方法比较

图8 比色传感器工作曲线

2.4 实际样品测定

根据文献[33]的方法对样品进行酸化处理。即九龙江不同河段的水样和自来水10.00 mL水样中加入5 mL 65% HNO3并且煮沸20 min,以去除共存的有机物质且使Fe2+转化为Fe3+。用NaOH-glycine buffer将溶液pH值调节为9.58,加热20 min,使溶液中Fe3+, Cr(Ⅲ)和Cu2+沉淀下来,用0.45 μM的过滤膜除去其杂质,收集滤液,水稀释至100mL,备用。取1.00 mL试液,用AuNRs-Ag+传感器测定HCHO含量。同时做加标回收实验,并与固体基质室温磷光法[10]检测结果相比较,结果列于表3。

表3 水样中甲醛含量分析

如表3 所示, 用本法和固体基质室温磷光法对比测定了水样中HCHO的含量,结果相吻合。河水大于自来水中HCHO的含量,由此预测河水可能被污染。由此可见,本方法可用于水样中HCHO含量的测定和预报HCHO污染。

3 结 语

本文开发的测定HCHO的AuNRs比色传感器具有灵敏、选择性好、无需表面修饰、操作简便,灵活、实用和等独特优点,适用于低含量的样品中HCHO的现场检测,对维护人体健康和人类良好的生存环境具有潜在的应用前景。

[1] Li Q, Oshima M, Motomizu S. Flow-injection spectrofluorometric determination of trace amounts of formaldehyde in water after derivatization with acetoacetanilide [J]. Talanta, 2007, 72(5): 1675-1680.

[2] Salthammer T, Mentese S, Marutzky R. Formaldehyde in the Indoor Environment [J]. Chem Rev., 2010, 110(4): 2536-2572.

[3] Allouch A, Guglielmino M, Bernhardt P, Serra CA, Le Calvé S. Transportable, fast and high sensitive near real-time analyzers: Formaldehyde detection [J]. Sensors Actuators B Chem., 2013, 181: 551-558.

[4] Zhang Z, Zhao C, Ma Y, Li G. Rapid analysis of trace volatile formaldehyde in aquatic products by derivatization reaction-based surface enhanced Raman spectroscopy [J]. Analyst, 2014, 139(14): 3614-3621.

[5] Wang T, Gao X, Tong J, Chen L. Determination of formaldehyde in beer based on cloud point extraction using 2, 4-dinitrophenylhydrazine as derivative reagent [J]. Food Chem., 2012, 131(4): 1577-1582.

[6] Wang L, Zhou C-L, Chen H-Q, Chen J-G, Fu J, Ling B. Determination of formaldehyde in aqueous solutions by a novel fluorescence energy transfer system [J]. Analyst, 2010, 135(8): 2139-2143.

[7] Uralets, VP, Rijks, JA, Leclercq, PA. Syn-anti-isomerisation of 2, 4 - dinitrobenzene hydrazine of volatile carbonyl compounds in capillary gas chromatographic-mass spectrometric analyses [J]. Chromatogr, 1980, 194(2): 135-138.

[8] Zhi-Qi Zhang,Hong-Tao Yan,Xuan-Feng Yue.Catalytic determination of trace formaldehyde with a flow injection system using the indicator reaction between crystal violet and bromate [J]. Microchimica Acta, 2004, 146(3-4): 259-263.

[9] Ming Yang,Xiao-Gang Zhang,Hu-Lin Li. Differential-pulse voltammetric determination of trace formaldehyde using magnetic microspheres and magnetic electrode [J]. Analyst, 2001, 126: 676-678.

[10] LIU Jia-Ming, YANG Tian-Long, ZHU Guo-Hui, CHEN Hai-Ling, LI Ping-Ping, LIN Xuan, HUANG Xiao-Mei[J]. Determination of trace formaldehyde by solid substrate-room temperature phosphorescence quenching method based on the rose bengal-potassium bromate-tween-80 system [J]. Spectrochimica Acta, Part A, 69 2008(69): 1004-1009.

[11] TAN Guang-Hui, LI Gui-Rong, ZHOU Jin. Determination of trace formaldehyde by resonance fluorescence spectrometry of pyronine Y. Chinese Journal of spectroscopy laboratory [J]. 2010, 27(4): 1436-1439.

[12] Han S, Wang J, Jia S. Determination of formaldehyde based on the enhancement of the chemiluminescence produced by CdTe quantum dots and hydrogen peroxide [J]. MicrochimActa, 2014, 181(1-2): 147–153.

[13] Sugaya N, Nakagawa T, Sakurai K, Morita M, Onodera S. Analysis of aldehydes in water by head space-GC/MS [J]. Health Sci. 2001, 47(1): 21-27.

[14] Guirong Li, Lijuan Han. Determination of formaldehyde in aquatic products by a sensitive catalytic fluorescence method [J]. Anal. Methods, 2014(6): 426-432.

[15] Pinyi Ma, Fanghui Liang, Di Wang, Qingqing Yang, Yaying Ding, Yong Yu, Dejiang Gao, Daqian Song, Xinghua Wang. Ultrasensitive determination of formaldehyde in environmental waters and food samples after derivatization and using silver nanoparticle assisted SERS [J]. Microchim Acta, 2015(182): 863-869.

[16] Jingchan Zhao, Gailing Wang, Ting Cao, Zhian Guo. Development of a Novel Derivate Assay for Formaldehyde Determination by HPLC in Beer Samples [J]. Food Anal. Methods, 2015, DOI 10.1007/s12161-015-0183-x.

[17] Thanh-Thuy, Nguyen-Boisse, Joëlle Saulnier, Nicole Jaffrezic-Renault, Florence Lagarde. Miniaturised enzymatic conductometric biosensor with Nafion membrane for the direct determination of formaldehyde in water samples [J]. Anal Bioanal Chem, 2014(406): 1039-1048.

[18] Na Wang, Xianfeng Wang, Yongtang Jia, Xiaoqi Li, Jianyong Yu, Bin Ding. Electrospun nanofibrous chitosan membranes modified with polyethyleneimine for formaldehyde detection [J]. Carbohydrate Polymers, 2014(108): 192-199.

[19] R. PANDEESWARI and B. G. JEYAPRAKASH. CeO2thin film as a low-temperature formaldehyde sensor in mixed vapour environment [J]. Bull. Mater. Sci., 2014, 37(6): 1293-1299.

[20] Xinghua Chang, Mi Peng, Junfeng Yang, Teng Wang, Yu liu, Jie Zheng, Xingguo Li. A miniature room temperature formaldehyde sensor with high sensitivity and selectivity using CdSO4modified ZnO nanoparticles [J]. RSC Adv., 2015(5): 75098-75104.

[21] Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V. M. Gold Nanoparticles in Chemical and Biological Sensing [J]. Chem. Rev., 2012(112): 2739-2779.

[22] Liu, D., Wang, Z., Jiang, X. Gold Nanoparticles for the Colorimetric and Fluorescent Detection of Ions and Small Organic Molecules [J]. Nanoscale, 2011(3): 1421-1433.

[23] Wang, G., Wang, Y., Chen, L., Choo, J. Nanomaterial-Assisted Aptamers for Optical Sensing[J]. Biosens Bioelectron, 2010(25): 1859-1868.

[24] M. Coronado-Puchau, L. Saa, M. Grzelczak, V. Pavlov and L. M. Liz-Marzan. Enzymatic modulation of gold nanorod growth and application to nerve gas detection [J]. Nano Today, 2013, 8(5): 461-468.

[25] J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan and P. Mulvaney. Gold nanorods: synthesis, characterization and applications [J]. Coord. Chem. Rev., 2005, 249(17): 1870-1901.

[26] R. Matthew, E. H. Florencio, D. C. Andres. Pushing the limits of mercury sensors with gold nanorods [J]. Anal. Chem., 2006 (78): 445-451.

[27] F. M. Li, J. M. Liu, X. X. Wang, L. P. Lin, W. L. Cai, Y. N. Zeng, L. H. Zhang, S. Q. Lin. Non-Aggregation based Label Free Colorimetric sensor for the detection of Cr (VI) based on selective etching of gold nanorods [J]. Sens. Actuators, B. Chem. 2011(155): 817-822.

[28] N. Xiao, C. X. Yu. Rapid-response and highly sensitive noncross-linking colorimetric nitrite sensor using 4-aminothiophenol modified gold nanorods [J]. Anal. Chem. , 2010(82): 3659-3663.

[29] C.V. Durgadas, V. N. Lakshmi, C.P. Sharma, K. Sreenivasan. Sensing of lead ions using glutathione mediated end to end assembled gold nanorod chains [J]. Sens. Actuators, B. Chem., 2011(156): 791-797.

[30] X. C. Ye, L. H. Jin, H. Caglayan, J. Chen, G. Z. Xing, C. Zheng, V. Doan-Nguyen, Y. J. Kang, N. Engheta, C. R. Kagan, C. B. Murray. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives [J]. Nano., 2012(6): 2804-2817.

[31] H. Lee, S.M. Dellatore, W. M. Miller, P. B. Messersmith. Mussel-Inspired surface chemistry for multifunctional coatings [J]. Sci., 2007(318): 426-430.

[32] R. Liu, T. S. Zhong, C. X. Lei. Current development of dopamine electrochemical sensors [J]. Chem. Sens., 2011(31): 10-16.

[33] O.D. Uluozlu, M. Tuzen, D. Mendil, B. Kahveci, M. Soylak. 3-Ethyl-4-(p-chlorobenzylidenamino-4,5-dihydro

-1H-1,2,4-triazol-5-one (EPHBAT) as precipitant for carrier element free coprecipitation and speciation of chromium (III) and chromium (VI) [J]. J. Hazard. Mater., 2009(172): 395-399.

(责任编辑:马圳炜)

Design of ultra-sensitive formaldehyde colorimetric sensor and its application

YE Fei, ZHU Hao, ZHENG Wei-qiao, YANG Zhi-xiang, LIAN Lu, YANG Sheng-song

(Fujian hao er bao new material technology co., LTD, Zhangzhou 363000, China)

Formaldehyde (HCHO) could reduce Ag+to Ag on the surface of gold nanorods (AuNRs) to form Au core-Ag shell nanorods (Au@AgNRs) in AuNRs-Ag+-HCHO system, which caused dielectric function to change. Thus, a responsive, simple, sensitive and selective AuNRs colorimetric sensor for the determination of HCHO has been developed based on the linear relationship between ∆λLPABand the concentration of HCHO. The limit of detection (LOD) of this sensor is 6.3×10-10(gmL−1), which is much lower than that of resonance fluorescence spectrometry, showing its high sensitivity. What’s more, the sensor has been applied to the detection of HCHO in water samples with the results agreeing well withresonance fluorescence spectrometry, showing its great practicality. Furthermore, mechanism for the detection of HCHO was also discussed.

Formaldehyde; Gold nanorods; colorimetric sensor; Au core-Ag shell nanorods

1673-1417(2016)04-0010-07

10.13908/j.cnki.issn1673-1417.2016.04.0003

O629.8

A

2016-06-10

叶飞(1964—),男,工程师,研究方向:建筑材料研发、生产。

猜你喜欢

甘氨酸比色缓冲液
钌–生物质碳人工酶的制备及在比色检测杀虫剂毒死蜱残留中的应用
血清蛋白醋酸纤维膜电泳缓冲液的筛选
中红外光谱分析甘氨酸分子结构及热变性
基于酞菁的共价-有机聚合物的制备及在比色传感领域的研究
新型醋酸纤维素薄膜电泳缓冲液的研究
提取缓冲液对桑叶中生理生化指标测定的影响*
卵磷脂/果胶锌凝胶球在3种缓冲液中的释放行为
非必需氨基酸甘氨酸的多重有益效应(综述)(续1)
对羟基苯甘氨酸合成条件的研究
甲基甘氨酸二乙酸及其在清洗剂中的应用