APP下载

Aβ在两种阿尔茨海默病转基因小鼠模型脑杏仁核分布的比较研究

2014-11-14周奕邓志伟艾卫敏

关键词:杏仁核阿尔茨海默病

周奕+邓志伟+艾卫敏+等

摘要目的:比较研究Aβ在两种AD转基因小鼠模型脑杏仁核分布的差异.方法:采用18月龄雄性APP/PSl双转基因(2×TgAD) 小鼠与同龄同性别APP/PSl/tau三转基因(3×TgAD)小鼠,分别进行6E10单克隆抗体免疫组化染色等方法显示Aβ阳性神经元及斑块,观察其分布与形态等的差异,图像分析系统定量比较其量的变化.结果:在杏仁核2×TgAD组Aβ阳性产物主要位于细胞外成为细胞外Aβ(eAβ),形成大量的Aβ阳性斑,Aβ阳性神经元少;而3×TgAD组 Aβ阳性产物主要位于神经元细胞内,成为细胞内Aβ(iAβ),但Aβ阳性斑少见.结论:2×TgAD组与3×TgAD组 Aβ阳性产物在杏仁核分布的差异可能反映了两种AD小鼠模型神经病理等改变的不同.

关键词阿尔茨海默病;转基因小鼠;β淀粉样蛋白;杏仁核

中图分类号R74916文献标识码A文章编号10002537(2014)05002605

AD的病因及发病机制复杂,有多种学说,至今仍未阐明.Aβ学说是目前普遍认同的AD主要发病机制之一:Aβ在脑内异常聚集并纤维化形成SPs,其神经毒性作用可破坏钙离子平衡、诱发氧化应激、激活小胶质细胞产生炎症反应、激活凋亡相关蛋白等启动凋亡程序并导致广泛的神经元丢失,进而形成认知功能损害,出现相应的痴呆症状[68].用于AD研究的动物模型有很多种,且各具特点.其中过度表达人类家族性突变的APP基因和PS1基因的 2×TgAD 小鼠,以及过度表达APP、PS1和tau基因的 3×TgAD 小鼠均能模拟出AD的某些神经生物学特征性改变,然而针对这两种动物模型脑内重要区域Aβ分布的比较还未见报道.本研究通过Aβ单克隆抗体(6E10)免疫组化染色结合形态学分析等方法,比较18月龄 2×TgAD 与 3×TgAD 小鼠杏仁核中Aβ分布的差异,探讨两种AD小鼠模型病理形态等的不同.

3讨论

本研究观察到2×TgAD组杏仁核可见大量6E10免疫阳性斑,这与其他研究者的报道是一致的[911].说明在这类转基因AD小鼠模型中,细胞外Aβ(extracelluar βamyloid ,eAβ)的沉积是其主要的病变.eAβ在AD病理过程中的作用有较多研究报道,主要表现在以下几方面:(1)eAβ可诱发脑内免疫炎症反应.eAβ可激活小胶质细胞和补体系统,释放促炎因子,诱导炎症反应发生,从而导致神经元退行性变[12].人们在AD患者脑中发现,在SPs的核心周围可见聚集的小胶质细胞并与SPs相互交错,小胶质细胞的异常激活同AD的神经病理改变有一定的联系,据此推测eAβ可能是通过免疫炎症反应促进AD的发生.临床流行病学调查表明,长期服用抗炎药物后AD发病率减低,并对认知功能具有保护作用.(2)Nelson 等发现eAβ可使某些抗氧化酶活性降低从而导致氧自由基的浓度异常升高,其可能是诱发AD的机理之一[13].eAβ也可通过其它多种途径诱导蛋白质过氧化物、脂质过氧化物大量产生.这些产物的增加可导致神经元产能障碍,最终启动细胞的凋亡过程.(3)异常增加的eAβ的作用曾经被认为还通过多种方式尤其是诱发细胞凋亡的途径,从而引起神经元退行性变.支持该观点的依据有:与早期家族性AD相关的PS1、PS2、APP基因突变可使eAβ含量增加;Aβ降解酶基因的多态性,其中包括编码人胰岛素降解酶的基因,可能导致AD的发生;实验动物治疗研究发现抗Aβ治疗有一定疗效.因此,清除eAβ及eAβ神经毒性,曾经是AD治疗的主要研究方向.然而,Aβ免疫实验仅起到轻微延缓AD进程的作用并出现了无菌性脑炎的严重副作用而被迫中断[1416].近年来,人们通过对AD转基因小鼠及AD病人的脑组织的研究,发现存在细胞内Aβ,并对AD病理的发展起重要作用.

作者在对3×TgAD组的研究中发现,eAβ阳性斑块小且少,而神经元内有很多6E10阳性产物即细胞内Aβ(intracelluar βamyloid ,iAβ),这种现象还少见报道.近年来,神经元iAβ的存在与作用越来越受到人们的重视,其在AD中的作用也是多方面的:(1)iAβ可影响突触功能[17].Meng等通过尸体解剖发现在AD的早期即出现明显的突触可塑性的改变[18].Gimenez等发现3×TgAD转基因小鼠1到4个月时,皮质、杏仁核等部位的突触间传递丧失了近40%,而通过免疫组化等方式仅能检测到iAβ[19].提示:AD早期在无细胞外斑块形成的情况下iAβ积聚,导致突触的损害.这可以解释老年斑形成和认知障碍之间的不一致性.(2)iAβ可导致线粒体受损[20].线粒体通过氧化磷酸化作用产生能量物质ATP,同时参与维持正常的细胞内钙离子平衡.此外,线粒体在控制细胞凋亡中担当重要角色.线粒体的功能障碍会导致ROS产生过度和细胞色素C的释放,并将促使凋亡肽酶激活因子与细胞凋亡蛋白酶9前原蛋白结合,启动凋亡过程.(3)ZHANG等通过对原代培养的人类神经元细胞内显微注射Aβ可出现P53和Bax蛋白介导的选择性杀伤作用[2122].(4)iAβ多肽与细胞内载脂蛋白E的聚集密切相关,而后者与DNA断裂和细胞溶解有紧密联系.(5)iAβ还可通过减低特异的蛋白磷酸酶活性和(或)增强糖原合成酶活性诱导tau蛋白的异常磷酸化,从而损伤神经元.此外,在自然衰老的恒河猴脑中,Aβ同样被发现于神经元和非神经元细胞内,早于淀粉样斑块的形成;同时证明Aβ寡聚体可以引发神经元退行性变[23].

杏仁核(amygdale)是大脑边缘系统的重要组成部分,其具有调节内脏活动、处理情感反应及记忆等功能[2425].Horínek等通过MRI研究发现在AD的早期诊断中杏仁核与海马有着相同的诊断价值,并且认为两者在短期记忆过程中都担当着重要的角色;当AD出现轻微的精神症状时,杏仁核普遍发生了早期的损害[24].Hampel等研究表明杏仁核不仅是AD脑内重要的病变部位之一,而且其Aβ异常沉积发生的时间可能比海马、皮质等区域更早[25].上述研究表明杏仁核与AD有密切的关系.

作者比较了18月龄时2×TgAD与3×TgAD小鼠模型杏仁核Aβ分布特点.结果发现:2×TgAD组Aβ沉积主要发生在细胞外,3×TgAD组Aβ沉积主要发生在细胞内.在其他脑区也存在类似的表达差异.造成这种差异的原因目前还不清楚,有待深入研究.Aβ与AD的神经病理改变有着密切的关系,但Aβ如何引起神经元退行性变,其最初的作用位点是在细胞外还是细胞内,至今仍存在争议.由于3×TgAD小鼠过度表达的tau基因可能影响Aβ聚集的部位,并且3×TgAD小鼠早期即有明显的神经元死亡、突触丢失及学习记忆行为的改变[26],据此作者推测iAβ的神经毒性可能在神经元退行性改变并导致AD发生的过程中发挥重要作用.

参考文献:

[1]SPERLING R A, AISEN P S, BECKETT L A, et al. Toward defining the preclinical stages of Alzheimers disease: Recommendations from the National Institute on AgingAlzheimers Association workgroups on diagnosticguidelines for Alzheimers disease[J].Alzheimers Dement, 2011,7(3):23592369.

[2]TIAGO S, JOSE T, FERNANDO R. Alzheimers disease, cholesterol, and statins: the junctions of important metabolic pathways[J].Angewandte Chemie, 2013,52(4):728737.

[3]QUERFURTH H W, LAFERLA F M. Alzheimers disease[J]. New Engl J Med, 2010,362(4):329344.

[4]CHRISTIANE R. Alzheimers disease and the amyloid cascade hypothesis: a critical review[J].Int J Alzheimers Dis, 2012,10(1155):808818.

[5]MANGIALASCHE F, SOLOMON A, WINBLAD B, et al. Alzheimers disease: clinical trials and drug development [J].Lancet Neurol, 2010,9(7):702716.

[6]SIMON L. Fleshing out the amyloid cascade hypothesis:the molecular biology of Alzheimers disease[J].Basic Res, 2011,2(2):101110.

[7]DITTE Z C, SOPHIE L K, ANTONIUS F, et al. Transient intraneuronal Abrather than extracellular plaque pathology correlates with neuron loss in the frontal cortex of APP/PS1KI mice[J].Acta Neuropathol, 2008,116(6):647655.

[8]HOLCOMB I, GORDON M N, MCGOWAN E, et al. Accelerated Alzheimertype phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes [J]. Nat Med, 1998,4(1):97100.

[9]SAVONENKO A, XU G M, MELNIKOVA T, et al. Episodiclikememory deficits in the APPswe/PS1△9 mouse model of Alzheimers disease: relationships to beta amyloid deposition and neurotransmitter abnormalities [J]. Neurobiol Dis, 2005,18(3):602617.

[10]DUFF K, ECKMAN C, ZEHR C, et al. Increased amyloidbeta42(43) in brains of mice expressing mutant presenilin 1[J].Nature, 1996,383 (6602):710713.

[11]WEST M J, BACH G, SODERMAN A, et al. Synaptic contact number and size in stratum radiatum CA1 of APP/PS1DeltaE9 transgenic mice[J]. Neurobiol Aging, 2009,30(11):17561776.

[12]ANTERO S, JOHANNA O, ANUK, et al. Inflammation in Alzheimers disease: Amyloidβ oligomers trigger innate immunity defence via pattern recognition receptors[J].Prog Neurobiol, 2009,87(3):181194.

[13]NELSON T J, ALKON D L. Oxidation of cholesterol by amyloid precursor protein and βamyloid peptide[J]. J Biol Chem, 2005,280(8):73777387.

[14]RINNE J O, BROOKS D J, ROSSOR M N, et al. 11CPiB PET assessment of change in fibrillar amyloidbeta load in patients with Alzheimers disease treated with bapineuzumab: a phase 2, doubleblind, Placebocontrolled,ascendingdose study[J].Lancet Neural, 2010,9(4):363372.

[15]SIEMERS E R, FFIEDFICH S, DEAN R A, et al. Safety and changes in plasma and cercbrospinal fluid amyloid beta after a single administration of an amyloid beta monoclonal antibody in subjects with Alzheimer disease [J].Clin Neuropharmacol, 2010,33(2):6773.

[16]FOSTER J K. VERDILE G, BATES K A, et al. Immunization in Alzheimers disease:naive hope or realistic clinical potential[J].Mol Psychiatry, 2009,14(3):239251.

[17]CLAUDIO C. Intracellular and extracellular Aβ, a tale of two neuropathologies [J].Brain Pathol, 2005,15(1):6671.

[18]MENG L, LIYING C, DANIEL H S, et al. The role of intracellular amyloid β in Alzheimers disease[J].Prog Neurobiol, 2007,83(3):131139.

[19]GIMENEZLLORT L, BLAZQUEZ G, CANETEA T, et al. Modeling behavioral and neuronal symptoms of Alzheimers disease in mice: A role for intraneuronal amyloid[J]. Neurosci Biobehav Rev, 2007,31(1):125147.

[20]ALIKHANI N, GUO L, YAN S, et al. Decreased proteolytic activity of the mitochondrial amyloidbeta degrading enzyme, PreP peptidasome, in Alzheimers disease brain mitochondria[J].J Alzheimers Dis, 2011,27(1):65356546.

[21]ZHANG Y, MCLAUGHLIN R, GOODYER C, et al. Selective cytotoxicity of intracellular amyloid beta peptide142 through p53 and Bax in cultured primary human neurons [J]. J Cell Biol, 2002,156(3):519529.

[22]THOMAS A B, HENNING B, KAILAI D, et al. Intraneuronalamyloid is a major risk factornovel evidencefrom the APP/PS1KI mouse model [J].Neurodegenerative Dis, 2008,5(34):140142.

[23]BILLINGS L, ODDO S, GREEN K N, et al. Intraneuronal Aβ causes the onset of early Alzheimers diseaserelated cognitive deficits in transgenic mice[J]. Neuron, 2005,45(5): 675688.

[24]HORNEK D, PETROVICKY P, HORT J, et al. Amygdalar volume and psychiatric symptoms in Alzheimers disease: an MRI analysis[J].Acta Neurol Scand, 2006,113(1):4045.

[25]HAMPEL H, TEIPEL S J, BAYER W, et al. Age transformation of combined hippocampus and amygdale volume improves diagnostic accuracy in Alzheimers disease[J].J Neurol Sci, 2002,194(1):1519.

[26]TOBIAS B, MARTIN F, STEFFEN B, et al. Multiple events lead to dendritic spine loss in triple transgenic Alzheimers disease mice[J].Plos one, 2011,5(11): 477488.

(编辑王健)

[13]NELSON T J, ALKON D L. Oxidation of cholesterol by amyloid precursor protein and βamyloid peptide[J]. J Biol Chem, 2005,280(8):73777387.

[14]RINNE J O, BROOKS D J, ROSSOR M N, et al. 11CPiB PET assessment of change in fibrillar amyloidbeta load in patients with Alzheimers disease treated with bapineuzumab: a phase 2, doubleblind, Placebocontrolled,ascendingdose study[J].Lancet Neural, 2010,9(4):363372.

[15]SIEMERS E R, FFIEDFICH S, DEAN R A, et al. Safety and changes in plasma and cercbrospinal fluid amyloid beta after a single administration of an amyloid beta monoclonal antibody in subjects with Alzheimer disease [J].Clin Neuropharmacol, 2010,33(2):6773.

[16]FOSTER J K. VERDILE G, BATES K A, et al. Immunization in Alzheimers disease:naive hope or realistic clinical potential[J].Mol Psychiatry, 2009,14(3):239251.

[17]CLAUDIO C. Intracellular and extracellular Aβ, a tale of two neuropathologies [J].Brain Pathol, 2005,15(1):6671.

[18]MENG L, LIYING C, DANIEL H S, et al. The role of intracellular amyloid β in Alzheimers disease[J].Prog Neurobiol, 2007,83(3):131139.

[19]GIMENEZLLORT L, BLAZQUEZ G, CANETEA T, et al. Modeling behavioral and neuronal symptoms of Alzheimers disease in mice: A role for intraneuronal amyloid[J]. Neurosci Biobehav Rev, 2007,31(1):125147.

[20]ALIKHANI N, GUO L, YAN S, et al. Decreased proteolytic activity of the mitochondrial amyloidbeta degrading enzyme, PreP peptidasome, in Alzheimers disease brain mitochondria[J].J Alzheimers Dis, 2011,27(1):65356546.

[21]ZHANG Y, MCLAUGHLIN R, GOODYER C, et al. Selective cytotoxicity of intracellular amyloid beta peptide142 through p53 and Bax in cultured primary human neurons [J]. J Cell Biol, 2002,156(3):519529.

[22]THOMAS A B, HENNING B, KAILAI D, et al. Intraneuronalamyloid is a major risk factornovel evidencefrom the APP/PS1KI mouse model [J].Neurodegenerative Dis, 2008,5(34):140142.

[23]BILLINGS L, ODDO S, GREEN K N, et al. Intraneuronal Aβ causes the onset of early Alzheimers diseaserelated cognitive deficits in transgenic mice[J]. Neuron, 2005,45(5): 675688.

[24]HORNEK D, PETROVICKY P, HORT J, et al. Amygdalar volume and psychiatric symptoms in Alzheimers disease: an MRI analysis[J].Acta Neurol Scand, 2006,113(1):4045.

[25]HAMPEL H, TEIPEL S J, BAYER W, et al. Age transformation of combined hippocampus and amygdale volume improves diagnostic accuracy in Alzheimers disease[J].J Neurol Sci, 2002,194(1):1519.

[26]TOBIAS B, MARTIN F, STEFFEN B, et al. Multiple events lead to dendritic spine loss in triple transgenic Alzheimers disease mice[J].Plos one, 2011,5(11): 477488.

(编辑王健)

[13]NELSON T J, ALKON D L. Oxidation of cholesterol by amyloid precursor protein and βamyloid peptide[J]. J Biol Chem, 2005,280(8):73777387.

[14]RINNE J O, BROOKS D J, ROSSOR M N, et al. 11CPiB PET assessment of change in fibrillar amyloidbeta load in patients with Alzheimers disease treated with bapineuzumab: a phase 2, doubleblind, Placebocontrolled,ascendingdose study[J].Lancet Neural, 2010,9(4):363372.

[15]SIEMERS E R, FFIEDFICH S, DEAN R A, et al. Safety and changes in plasma and cercbrospinal fluid amyloid beta after a single administration of an amyloid beta monoclonal antibody in subjects with Alzheimer disease [J].Clin Neuropharmacol, 2010,33(2):6773.

[16]FOSTER J K. VERDILE G, BATES K A, et al. Immunization in Alzheimers disease:naive hope or realistic clinical potential[J].Mol Psychiatry, 2009,14(3):239251.

[17]CLAUDIO C. Intracellular and extracellular Aβ, a tale of two neuropathologies [J].Brain Pathol, 2005,15(1):6671.

[18]MENG L, LIYING C, DANIEL H S, et al. The role of intracellular amyloid β in Alzheimers disease[J].Prog Neurobiol, 2007,83(3):131139.

[19]GIMENEZLLORT L, BLAZQUEZ G, CANETEA T, et al. Modeling behavioral and neuronal symptoms of Alzheimers disease in mice: A role for intraneuronal amyloid[J]. Neurosci Biobehav Rev, 2007,31(1):125147.

[20]ALIKHANI N, GUO L, YAN S, et al. Decreased proteolytic activity of the mitochondrial amyloidbeta degrading enzyme, PreP peptidasome, in Alzheimers disease brain mitochondria[J].J Alzheimers Dis, 2011,27(1):65356546.

[21]ZHANG Y, MCLAUGHLIN R, GOODYER C, et al. Selective cytotoxicity of intracellular amyloid beta peptide142 through p53 and Bax in cultured primary human neurons [J]. J Cell Biol, 2002,156(3):519529.

[22]THOMAS A B, HENNING B, KAILAI D, et al. Intraneuronalamyloid is a major risk factornovel evidencefrom the APP/PS1KI mouse model [J].Neurodegenerative Dis, 2008,5(34):140142.

[23]BILLINGS L, ODDO S, GREEN K N, et al. Intraneuronal Aβ causes the onset of early Alzheimers diseaserelated cognitive deficits in transgenic mice[J]. Neuron, 2005,45(5): 675688.

[24]HORNEK D, PETROVICKY P, HORT J, et al. Amygdalar volume and psychiatric symptoms in Alzheimers disease: an MRI analysis[J].Acta Neurol Scand, 2006,113(1):4045.

[25]HAMPEL H, TEIPEL S J, BAYER W, et al. Age transformation of combined hippocampus and amygdale volume improves diagnostic accuracy in Alzheimers disease[J].J Neurol Sci, 2002,194(1):1519.

[26]TOBIAS B, MARTIN F, STEFFEN B, et al. Multiple events lead to dendritic spine loss in triple transgenic Alzheimers disease mice[J].Plos one, 2011,5(11): 477488.

(编辑王健)

猜你喜欢

杏仁核阿尔茨海默病
简述杏仁核的调控作用
补肾活血针刺法对SAMP8小鼠杏仁核蛋白质组学表达的影响
杏仁核在脑梗死合并心律失常中的作用
社区综合护理干预在阿尔茨海默病中轻度患者中的应用效果
基于内容分析法对阿尔茨海默病患者居家照护概念的解析
琐琐葡萄多糖对阿尔茨海默病模型大鼠行为学和形态学的影响
HSP70敲低对AD转基因果蝇的神经保护作用
功能磁共振成像在轻度认知障碍患者中的应用研究进展
阿尔茨海默病患者甲状腺激素水平与抑郁症状及生活能力相关性分析
杏仁核参与加工认知与情绪相互作用的机制