APP下载

裂开球形氧化镍氧化铜复合氧化物的简单制备及其超级电容器性能(英文)

2014-11-14钟剑剑刘开宇苏耿

关键词:复合物

钟剑剑 刘开宇++苏耿 等

摘要通过液相共沉淀法及高温热解法制备了裂开球形氧化镍氧化铜复合物.采用了X射线衍射光谱(XRD)、扫描电子显微镜(SEM)及透射电子显微镜(TEM)表征了该材料的结构.采用恒流充放电法研究了制备的NiOCuO复合物在6 mol·L-1 KOH溶液中的电化学行为.实验结果表明:这种裂开球形复合氧化物由氧化镍、氧化铜组成.该材料在1 A·g-1 的电流密度下所得复合氧化物单电级比电容为735 F·g-1,并且在580次充放电循环后,容量保持率为98%,远远高于氧化镍(351 F·g-1)和氧化铜(262 F·g-1)的比容量.

关键词NiOCuO 复合物; 超级电容器; 开口球形; 比电容

Because of global warming issues and the consumption of fossil fuels, numerous efforts have been made to develop renewable energies, as well as electric vehicles (EVs) or hybridelectric vehicles (HEVs) with low CO2 emission. The exploitation of other energy conversion storage resources with high power and large energy is very important[12]. Among them, supercapacitors, have been extensively applied in many fields, ranging from portable consumer electronics and computer memory backup systems, to hybrid electric vehicles (HEVs) and EVs, due to their pulse power supply and long cycle life[12]. Supercapacitors, which are also known as electrochemical capacitors and are divided into electrical doublelayer capacitors and pseudocapacitors according to the chargestorage mechanism, have drawn worldwide research attention as the most promising candidate for nextgeneration highcapacitance energy storage devices[14]. EDLCs store energy based on charge separation at the electrodeelectrolyte interface, while pseudocapacitors rely on fast and reversible redox reactions occurring on the surfaces of the active materials. Supercapacitors made of metal oxides bearing pseudocapacitance attract much interest due to fast and reversible surface redox reactions (faradaic reactions). Various transition metal oxides, such as RuO2[5], Co3O4[6], Fe2O3[7], MnO2[8], MoO2[9], CuO[10] are being studied for the supercapacitor applications. Hydrous ruthenium oxides have high specific capacitance and excellent reversibility. However, the high cost and toxic nature of RuO2 limit its applications. The best alternative materials are other metal oxides such as MnO2, Fe3O4 and V2O5[11], whose main unresolved issues include poor electrical conductivity and low electrochemical cycle ability. Hence, the work of finding alternative cheap and environmentally friendly metal oxide materials attach much importance to the development of supercapacitors.

References:

[1]TOLLEFSON J. Car industry: charging up the future [J]. Nature, 2008,456(7221):436440.

[2]SIMON P , GOGOTSI Y. Materials for electrochemical capacitors [J]. Nat Mater, 2008,7(11):845854.

[3]WANG G P, ZHANG L, ZHANG J J. A review of electrode materials for electrochemical supercapacitors [J]. Chem Soc Rev, 2012,41(2):797828.

[4]LIU C, LI F, MA L P, et al. Advanced materials for energy storage [J]. Adv Mater, 2010,22(8):E28E62.

[5]HU C C, CHANG K H, LIN M C, et al. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors [J]. Nano Lett, 2006,6(12):26902695.

[6]XIONG S, YUAN C, ZHANG X, et al. Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors [J]. Chemistry, 2009,15(21):53205326.

[7]KULAL P M, DUBAL D P, LOKHANDE C D, et al. Chemical synthesis of Fe2O3 thin films for supercapacitor application [J]. J Alloys Compd, 2011,509(5):25672571.

[8]ZHANG Y, LI G Y, LV Y, et al. Electrochemical investigation of MnO2 electrode material for supercapacitors [J]. Int J Hydrogen Energy, 2011,36(18):1176011766.

[9]RAJESWARI J, KISHORE P S, VISWANATHAN B, et al. Onedimensional MoO2 nanorods for supercapacitor applications [J]. Electrochem Commun, 2009,11(3):572575.

[10]ZHANG H X, FENG J, ZHANG M L. Preparation of flowerlike CuO by a simple chemical precipitation method and their application as electrode materials for capacitor [J]. Mate Res Bull, 2008,43(12):32213226.

[4]LIU C, LI F, MA L P, et al. Advanced materials for energy storage [J]. Adv Mater, 2010,22(8):E28E62.

[5]HU C C, CHANG K H, LIN M C, et al. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors [J]. Nano Lett, 2006,6(12):26902695.

[6]XIONG S, YUAN C, ZHANG X, et al. Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors [J]. Chemistry, 2009,15(21):53205326.

[7]KULAL P M, DUBAL D P, LOKHANDE C D, et al. Chemical synthesis of Fe2O3 thin films for supercapacitor application [J]. J Alloys Compd, 2011,509(5):25672571.

[8]ZHANG Y, LI G Y, LV Y, et al. Electrochemical investigation of MnO2 electrode material for supercapacitors [J]. Int J Hydrogen Energy, 2011,36(18):1176011766.

[9]RAJESWARI J, KISHORE P S, VISWANATHAN B, et al. Onedimensional MoO2 nanorods for supercapacitor applications [J]. Electrochem Commun, 2009,11(3):572575.

[10]ZHANG H X, FENG J, ZHANG M L. Preparation of flowerlike CuO by a simple chemical precipitation method and their application as electrode materials for capacitor [J]. Mate Res Bull, 2008,43(12):32213226.

[4]LIU C, LI F, MA L P, et al. Advanced materials for energy storage [J]. Adv Mater, 2010,22(8):E28E62.

[5]HU C C, CHANG K H, LIN M C, et al. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors [J]. Nano Lett, 2006,6(12):26902695.

[6]XIONG S, YUAN C, ZHANG X, et al. Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors [J]. Chemistry, 2009,15(21):53205326.

[7]KULAL P M, DUBAL D P, LOKHANDE C D, et al. Chemical synthesis of Fe2O3 thin films for supercapacitor application [J]. J Alloys Compd, 2011,509(5):25672571.

[8]ZHANG Y, LI G Y, LV Y, et al. Electrochemical investigation of MnO2 electrode material for supercapacitors [J]. Int J Hydrogen Energy, 2011,36(18):1176011766.

[9]RAJESWARI J, KISHORE P S, VISWANATHAN B, et al. Onedimensional MoO2 nanorods for supercapacitor applications [J]. Electrochem Commun, 2009,11(3):572575.

[10]ZHANG H X, FENG J, ZHANG M L. Preparation of flowerlike CuO by a simple chemical precipitation method and their application as electrode materials for capacitor [J]. Mate Res Bull, 2008,43(12):32213226.

猜你喜欢

复合物
定位在ZIF-8表面的金纳米簇以提高其荧光强度及检测高锰酸根离子的选择性
活性维生素D3及锌、锰复合物改善水印蛋研究
负载率与改性TiO2复合物紫外屏蔽性能的关系研究
免疫系统T细胞受体复合物结构首获解析
表面活性剂调控大豆蛋白界面性质的研究
碳富勒烯水溶性复合物固体材料的制备
ZnO/大孔碳复合材料的一步合成及其光催化性能(英文)
ZnO/大孔碳复合材料的一步合成及其光催化性能(英文)
黄酮磷脂复合物的药理分析