APP下载

平面几何Menelaus和Ceva定理简介

2019-04-03刘勰佺

读天下 2019年6期

摘要:学习数学中三角形三点共线的性质,即梅涅劳斯定理。还有三角形三线共点性质,即塞瓦定理。学习这两个定理可以对初中的数学学习起到很大帮助,可以帮助我们进行几何中共线、共点、平行、比例等等相关定理的证明。

关键词:梅涅劳斯;塞瓦;共线共点

Menelaus和Ceva定理在数学中用处很大!

可以很容易地解决几何中共线,共点,平行,比例,……以及相关定理的证明等问题。

故有必要介绍一下Menelaus(梅涅劳斯)定理和Ceva(赛瓦)定理

Menelaus定理:1直线截△3边(或其延长线)所得(起点到分点线段分点到终点线段)总积=1

Ceva定理:1点与△3顶点所在直线截对边的分点,所得(起点到分点线段分点到终点线段)总积=1

这两个定理表达式惊人的雷同。所以把它们合在一起介绍。

先来介绍起点,终点,分点。

如:线段AB(从A到B)A→B,点A为起点,点B为终点。

线段BA(从B到A)A←B,点B为起点,点A为终点。

当点C在线段AB所在直线上时,把点C叫线段AB的分点。

点C可能在线段AB内(内分),也可能在线段AB外(外分)。

一般不考虑点C与A,B重合的情况。如下图:

情况1

情况2

情况3

在△ABC中,一般按照字母顺序循环排列,如图:

如A→B→C→A,

在线段AB中,点A为起点,点B为终点。

在线段BC中,点B为起点,点C为终点。

在线段CA中,点C为起点,点A为终点。

现在再来看看Menelaus(梅涅劳斯)定理中截△的直线。

该直线可能在三角形外,也可能在△上,还可能在△内。

這三种情况都是差不多的。我们先看看该直线在△内的情况。

该直线在△内可能过顶点,也可能不过顶点。

这两种情况也差不多。现在看该直线在△内不过顶点的情况。

如图:直线DEF截△ABC三边分别于D,E,F。

在线段AB中,点A为起点,点B为终点,点D为分点(内分)。

在线段BC中,点B为起点,点C为终点。点F为分点(外分)。

在线段CA中,点C为起点,点A为终点,点E为分点(内分)。

根据:(起点到分点线段分点到终点线段)的总积=1由此可得:ADDB×BFFC×CEEA=1

有了以上基础,现在再来看看Ceva(赛瓦)定理:

一点与△的三顶点所在直线截对边一分点,所得的(起点到分点线段分点到终点线段)总积=1

这点可能在△内,也可能在△上,还可能在△外。这三种情况都差不多。现在介绍该点在△外的情况。

如图:点D在△ABC外,

AD交BC于E(外分),

BD交CA于G(外分),

CD交AB于F(内分)。

在线段AB中,A为起点B,为终点,F为分点(内分)。

在线段BC中,B为起点C,为终点,E为分点(外分)。

在线段CA中,C为起点A,为终点,G为分点(外分)。

根据(起点到分点线段分点到终点线段)总积=1可以得到:AFFB×BEEC×CGGA=1

现在证明:Menelaus(梅涅劳斯)和Ceva(塞瓦)定理的正确性。

Menelaus(梅涅劳斯)定理:一直线截△3边(或其延长线)

所得(起点到分点线段分点到终点线段)总积=1

如图:直线DFE截△ABC三边分别为D,E,F,

求证:ADDB×BEEC×CFFA=1。

欲证:ADDB×BEEC×CFFA=1,连接BF,DC。由面积公式得:

①S△ADFS△BDF=ADDB②S△CDFS△ADF=CFFA③S△BDFS△CDF=0.5DF×点B到DF距离0.5DF×点C到DF距离=BEEC

由此可得:ADDB×BEEC×CFFA=S△ADFS△BDF×S△BDFS△CDF×S△CDFS△ADF=1

现在来看看Ceva(赛瓦)定理的证明。

Ceva(赛瓦)定理:

一点与△的3顶点所在直线截对边一分点。所得的(起点到分点线段分点到终点线段)的总积=1

如图:点D在△ABC外,AD交BC于E,BD交CA于F,CD交AB于G。

求证:AGGB×BEEC×CFFA=1

证明:由图可知:直线DGC截△ABE于G,C,D三点。

由Menelaus(梅涅劳斯)定理可得:AGGB×BCCE×EDDA=1

再由图可知:直线FDB截△CAE于F,D,B三点。

由Menelaus(梅涅劳斯)定理可得CFFA×ADDE×EDBC=1AGGB×BEEC×CFFA=1

上下两式相乘得:AGGB×BCCE×EDDACFFA×ADDE×EBBC=1

经过化解整理得:AGGB×BEEC×CFFA=1问题得以证明。

现在来看看Menelaus(梅涅劳斯)和Ceva(塞瓦)逆定理

Menelaus(梅涅劳斯)逆定理:在△三边上取三分点(要求1或3个外分点)。

如果所得的(起点到分点线段分点到终点线段)的总积=1那么:这三分点共线。

Ceva(塞瓦)逆定理:在△三边上取三分点(要求0或2个外分点)。

如果所得的(起点到分点线段分点到终点线段)的总积=1

那么:这三分点与所对顶点构成的三直线共点(或平行)。

现在来证明Menelaus(梅涅劳斯)和Ceva(塞瓦)逆定理

Menelaus(梅涅劳斯)逆定理:

如图:在△ABC中,D内分AB于D,E内分BC于E,F外分AC于F,且:ADDB×BEEC×CFFA=1。

求证:D,E,F三点共线。

证明:假设D,E,F三点不公线。延长FE交AB于G。(G内分AB)

由假设得:直线FEG截△ABC于G,E,F

由Menelaus(梅涅劳斯)定理可得:AGGB×BEEC×CFFA=1

比较已知ADDB×BEEC×CFFA=1可得:AGGB=ADDB→AGGB+GBGB=ADDB+DBDB→ABGB=ABDB→GB=DB,由于G,D都内分AB,故G和D重合。

由于G,E,F共线,所以D,E,F三点共线。问题得证。

现在来证明Ceva(塞瓦)逆定理

如图:E内分AB于E,F外分BC于F,G外分CA于G,且:AEEB×BFFC×CGGA=1。

求证:AF,BG,CE三线共点。(或平行)

证明:设AF和CE相交于D,连接BD交CA于H。(BDH共线)

由图可知:在△ABC中,AD交BC于F(F外分BC)

BD交CA于H(H外分CA)

CD交AB于E(E内分AB)

由:Ceva(塞瓦)定理可得:AEEB×BFFC×CHHA=1

比较已知AEEB×BFFC×CGGA=1可得:CHHA=CGGA→CH+HAHA=CG+GAGA→CAHA=CAGA→AH=AG。由于H,G都是CA的同向的外分点。

所以H与G重合,B,D,H共线,故B,D,G共线。

因为AF,CE交于D,故AF,BG,CE三线共点。

特别的:当AF和CE的交点D在无限远处(也就是AF∥CE)。

此时AF∥BG∥CE。限于篇幅证明从略。

知道了Menelaus(梅涅劳斯)和Ceva(塞瓦)定理及其逆定理。对于解决有关共线、共点的性质以及共线、共点的判断,比例线段,以及相关的几何定理的证明问题等有很大的帮助。

可以解决诸如判断△三垂线共点,判断△三角平分线共点,判断△三中线共点等诸多问题。

现在出四道关于这方面的题:

1. 已知:AM为△ABC中线,过M的直线交AB于D,交AC于E。

求证:AB×DEAD×EM=定值。

2. 已知:BE为△ABC内角平分线,AD为△ABC外角平分线,CF为△ABC外角平分线。

求证:直线AD,BE,CF共点。

3. 求证:不等边△的三条顶角的外角平分线与对边所在直线的三交点共线。

4. 求证:过圆内接△的三顶点做该圆切线与对边相交的三交点共线。

作者简介:

刘勰佺,四川省內江市,四川省内江市东兴区新庙小学。