APP下载

果蔬品质手持式近红外光谱检测系统设计与试验

2017-05-25郭志明陈全胜王庆艳欧阳琴赵杰文

农业工程学报 2017年8期
关键词:手持式番茄红素果蔬

郭志明,陈全胜,张 彬,王庆艳,欧阳琴,赵杰文



果蔬品质手持式近红外光谱检测系统设计与试验

郭志明1,2,陈全胜1※,张 彬1,王庆艳2,欧阳琴1,赵杰文1

(1. 江苏大学食品与生物工程学院,镇江 212013;2. 国家农业智能装备工程技术研究中心,北京 100097)

为满足果蔬加工过程快速检测和质量控制的实际需求,研发近红外光谱技术的低成本、实用化、小型化的果蔬品质手持式检测系统。在分析当前近红外光谱实用化过程的瓶颈问题的基础上,提出果蔬品质的手持式检测系统设计方案,阐述了硬件系统选择和软件系统构建,介绍了检测系统的工作原理;选用近红外微机电系统的数字微镜器件作为分光元件,以单点探测器获取检测信息,从而实现光谱检测系统的微型化设计和系统成本的显著降低。以检测番茄为例,利用设计的手持式检测系统,获取番茄900~1 700 nm范围的近红外光谱,利用先选择特征波段再优选波长的建模策略,分别建立了番茄中番茄红素和可溶性固形物含量的定量检测模型;可溶性固形物含量模型的预测相关系数和预测均方根误差分别为0.899和0.133%;番茄红素模型的预测相关系数和预测均方根误差分别为0.886和2.508 mg/kg。研究表明该系统能够满足果蔬品质的快速无损检测要求,可为实用化、小型化的手持式光谱检测仪设计和开发提供参考。

无损检测;光谱分析;农产品;近红外光谱;手持式检测系统;数字微镜器件;果蔬品质

0 引 言

果蔬产业是国民经济的基础性、战略性支柱产业,在调整农业产业结构、延伸农产品产业链、增加农民收入等方面发挥了重要作用[1-2]。中国已稳居世界水果和蔬菜第一大生产国和消费国,果蔬作为民生必需品受到人民群众的极大关注和政府部门的高度重视[3]。传统的化学方法费时、费力、检测成本高且使用化学试剂,造成资源的严重浪费,无法满足果蔬生产、流通、控制等环节快速检测的需要,已成为制约果蔬业健康快速发展的瓶颈之一。为保证果蔬品质,提高国际竞争力,果蔬品质快速无损检测技术与设备亟待开发。

农产品光电检测技术具有高通量、多指标同时检测的优势[4-7]。其中近红外光谱分析技术作为一种绿色分析技术,具有快速、无损伤、可在线的优点,成为果蔬品质快速无损检测的首选技术[8-12]。目前的果蔬品质近红外无损检测仪体积大、质量大、携带不便[13-16],同时价格昂贵,如使用光谱仪一般采用线阵探测器,价格高[17-19],无法在食品、农产品加工检测行业推广应用。因此,果蔬品质小型化、低成本、实用化的检测系统具有广阔的应用前景[20-22]。另外,作为实用化的小型检测设备必须具有低功耗的特点,才能满足原位、离线等多种工况的操作使用要求。

针对果蔬物料组织结构和光传输特性,优选近红外光谱模块,进行光路结构设计和软硬件开发,研究果蔬主要品质指标快速、高精度、无损伤、智能化的检测与评价方法,研制近红外光谱技术的低成本、实用化、小型化的果蔬品质手持式检测系统,对于保障果蔬品质、实现果蔬加工增值、增强中国果蔬的国际竞争力具有重要意义。

1 手持式近红外光谱检测系统设计

果蔬品质手持式近红外光谱检测系统硬件主要包括微型近红外光谱仪、微型光源、控制与通讯模块、移动电源、橡胶垫圈和壳体,如图1所示。本研究设计的手持式近红外光谱检测系统主要用于球形和类球形果蔬的品质检测。果蔬质地软易损伤,检测时系统通过前置的软橡胶垫圈接触果蔬,同时将果蔬与光谱仪间的空间封闭,避免杂散光的干扰。工作时光源以特定角度照射到果蔬表面,光经果蔬内部传输后由光谱仪获取体反射光,光信号转化为电信号后由控制电路板传输到掌上电脑(personal digital assistant, PDA)进行显示和存储。检测时通过触控开关,打开光源的同时触发光谱仪采集果蔬的漫反射光谱,用于检测果蔬的品质。

1.1 微型近红外光谱模块

近红外光谱是分子振动的合频和倍频吸收,可以获得待测对象的物理结构和化学组分信息,在果蔬品质检测方面具有广阔的应用潜力[23-24]。现有光谱仪如光栅扫描式、傅里叶变换式、声光可调滤光器式,虽然检测精度较高,但仪器成本高、体积大,限制了实际生产中的应用。随着新型光谱仪微机电系统(micro electro- mechanical system, MEMS)的研发逐渐成熟,发展了基于MEMS技术的集成度高、体小结构坚固的新型便携式近红外光谱仪,MEMS技术利于大规模生产且降低仪器的成本。当前小型近红外光谱仪一般采用固定光栅结合线阵探测器的方式获取近红外信号,价格有一定程度的降低但仍无法满足低成本、实用化的实际需求,且存在信噪比低抗干扰能力弱的问题。

数字微镜器件(digital micromirror device,DMD)是集光处理与MEMS于一体的器件,因具有高分辨率、高亮度、高对比度、高可靠性、数字控制和响应时间短等优点,广泛应用于数字光处理(digital light procession,DLP)系统中[25-26]。DMD由几十万或数百万个微型数字可编程镜片组成,微镜固定在轭上,通过电极对微镜产生静电吸引,实现微镜的转动,进而控制每个微镜来产生特定模式的光信号获取。因DMD是数字可编程的,可以根据用户需要设置光谱分辨率和波长范围,调整积分时间,均衡光通量,可将信噪比提高到30 000:1以上,获得比传统光谱仪更快、更精准的结果。

在农业和食品工业中使用的近红外光谱仪一般选用硅探测器,因为均采用线阵探测器时,配置硅探测器的近红外光谱仪的价格为配置铟镓砷探测器价格的1/5左右。本文选用DMD分光器件配置单点铟镓砷探测器研发的近红外光谱仪,成本仅为配置线阵硅探测器的近红外光谱仪的1/3左右。采用DMD设计近红外光谱仪,配置单点探测器,可避免使用高昂的线性探测器阵列的同时完成高性能的光谱仪。另外,DMD近红外模块具有微型化的特点。因此,选用DMD技术研发低成本、实用化、小型化、高精度的果蔬品质手持式检测系统具有技术优势和价格优势。

短波近红外(700~1 100 nm)是分子振动光谱三级和四级或更高级倍频的吸收,光穿透能力较强,但吸收较弱;长波近红外(1 000~2 500 nm)是分子振动光谱合频、一级倍频和二级倍频的吸收谱带,吸收峰较强。另外,前期研究[27]表明,果蔬表面的颜色和果肉的颜色在短波近红外区对检测精度具有显著性影响,而对长波近红外光谱影响较小。综合性能和价格因素,本研究选择美国Texas Instruments公司的DLP2010NIR DMD模块用于系统设计。近红外光谱仪内部光路与信号传输过程如图2所示。通过果蔬样本的漫反射光,经入射狭缝进入光谱仪,首先通过准直透镜和885 nm的长波通滤光片,然后经衍射光栅反射将光分成若干波长下的光,再经聚焦透镜投射到DMD上;通过嵌入式处理器精确控制DMD中的每一个微镜,在每一瞬间仅有特定波长的光传输到探测器。选用InGaAs单点探测器获取光电信号,同时配置半导体制冷器以提高信号的精度和稳定性。另外,在狭缝前设有聚焦透镜,可有效获取2.5 mm视窗内的漫反射光;通过调整狭缝的大小可以调节光谱分辨率和信噪比。通过试验发现,所设计的系统可有效获取900~ 1 700 nm范围的近红外光谱。

1. 果蔬样本 2. 光源 3. 狭缝 4. 准直透镜 5. 衍射光栅 6. 聚焦透镜 7. 数字微镜器件 8. 采集透镜 9. 单点探测器 10. 半导体制冷器 11. 信号放大器 12. 模数转换器 13. 嵌入式处理器

1.2 微型光源

近红外光谱检测系统需要提供宽波段的光源,一般选用卤钨灯。手持式检测系统设计中光源在满足基本能量和强度要求的前提下要求尺寸小、功耗低。在低功耗微型光源方面,设置前置透镜可以将光有效聚集到特定方向,在光源前部可以获得10倍于同等功耗的普通光源的光强度。光源的这种设计发散性得到收敛,具有一定的焦距和工作平面,在工作面上光分布需要优化调试,包括光强度、光照均匀性和一致性等。光源首选C-6结构的细钨丝,具有低电压高电流的特点,采用高品质玻璃封装,色温2 200 K,使用寿命25 000 h。本研究选用美国ILT公司的L1005型前置透镜微型精密光源。近红外光谱的采集设计为反射模式,2个光源对称布局,光源的主轴与入射狭缝平面呈40°夹角,光投射到果蔬表面进入内部,然后光经体反射传输到光谱仪,可以避免无效镜面反射光进入光谱仪。

1.3 控制与通讯模式

手持式近红外光谱检测系统中DMD的控制的是获取高质量光谱的关键,由DLPC 150微控制器可编程实现DLP2010NIR DMD的精确控制。单点InGaAs探测器的信号经低信噪比差分放大器,传到串行外设接口的模数转换器,最后传到嵌入式处理器,如图2所示。嵌入式处理器设有低能耗蓝牙模块和微型USB连接器,在后续软件开发过程,开发双通讯模式,满足不同用户的多功能需求。

1.4 检测软件设计

根据检测的需要,自行开发果蔬品质手持式近红外光谱检测软件。软件设计过程采取模块化结构设计,即根据功能要求将整个系统划分为不同的功能模块,便于维护和功能扩展。果蔬品质检测模型内置于检测软件中,采用多线程编程技术实现,可以一机多用,用于检测多种果蔬。根据不同用户的需要,基于Windows系统和Android平台开发专用软件,实现USB和蓝牙双通讯功能。程序初始化完成,打开开始采集即进入工作状态,操作简单。

2 果蔬品质光谱检测试验

鉴于番茄具有水果和蔬菜的双重属性,具有一定的代表性,已有研究表明,近红外光谱检测番茄的品质是可行[28-29]。本研究选择番茄为研究对象验证设计的果蔬品质手持式近红外光谱检测系统的性能。

2.1 番茄品质测定

番茄中的可溶性固形物含量(soluble solids content, SSC)是反映番茄主要营养物质含量重要指标之一,也以其作为评价番茄及其制品品质的重要指标之一。番茄SSC测定参考GB12295[30]采用折射仪法,测量仪器为WYA-2S数字阿贝折射仪。取番茄上对应光谱采集的部位,经多层纱布过滤挤汁滴在折光仪镜面,测定温度修正为20 ℃的白利度(%)。

番茄红素是成熟番茄的主要色素,也是评价番茄品质等级的关键指标。番茄红素含量(lycopene content, LC)的测定参考GB 28316-2012[31],用二氯甲烷浸提番茄红素,溶液中加入2,6-二叔丁基对甲酚用来防止番茄红素氧化。用紫外-可见光分光光度计在472 nm的最大吸收波长处测定吸光度,计算番茄红素的质量分数,单位为mg/kg。

近红外光谱具有多组分同时检测的特点,本研究采用手持式近红外光谱检测系统同时检测番茄中的可溶性固形物含量和番茄红素。测试番茄样本共78个,按照约2∶1的比例划分为校正集与预测集,品质指标的测定结果统计如表1所示,发现预测集样本的统计结果与校正集样本的范围、均值和标准偏差相当,样本选择具有一定的达标性。

表1 番茄品质测定结果

2.2 番茄近红外光谱采集与分析

番茄品质手持式近红外光谱检测系统经优化采集参数,设置波长范围为900~1 700 nm,光谱分辨率为4.68 nm,扫描点数400,扫描次数为3。78个番茄样本光谱采集完成获得78×400的光谱矩阵,原始近红外光谱如图3所示。

从图3可以看出,每条光谱之间都是相似的变化趋势,无法直接进行分组或分类。因番茄具有很高的含水率,在1 450 nm有很强的水分吸收峰(水分一倍频的伸缩振动),在970 nm是水分的二倍频吸收峰。在1 120~1 260 nm对应CH键的二倍频吸收谱带,在1 350~1 480 nm是CH键、OH键和NH键一倍频的复合吸收[32]。其中番茄中的番茄红素是一种不饱和烯烃化合物,由11个不饱和共轭双键和两个非共轭不饱和双键组成的长链脂肪烃[33]。获取的900~1 700 nm范围的近红外光谱包括CH键一倍频和二倍频吸收的信息,可以用来预测番茄红素的含量,同样也可预测番茄中的可溶性固形物含量。

注:A=log(1/R)为近红外光谱的吸光度,其中R为近红外光谱的反射率。

近红外光谱采集过程会夹入大量基线漂移、高频随机噪声、光散射等噪声信息,导致近红外光谱与样品内有效成分含量间关系受到干扰,直接影响模型的鲁棒性。在比较多种光谱预处理方法的基础上,发现标准正态变量变换(standard normal variate transformation, SNV)预处理方法可以提高模型的稳定性。究其原因是SNV方法可以消除物料表面光散射及光程变化对漫反射光信号的影响。

2.3 番茄品质模型的建立

考虑到近红外光谱带重叠、吸收信号弱的特点,在番茄品质模型的建立过程,首先选择特征波段,去除无信息变量和相关度不高的波段,然后再利用特征波长选择方法优选少量的特征波长,消除光谱数据内部存在的共线性关系,降低模型计算量,同时简化模型,提高模型的质量。本研究先利用联合区间偏最小二乘法(synergy internal partial least square, siPLS)选择特征波段,再利用连续投影算法(successive projections algorithm, SPA)选择特征波长[34-35],分别建立番茄可溶性固形物含量和番茄红素的定量分析模型。在模型建立过程中,以校正相关系数(correlation coefficient of calibration,R)、预测相关系数(correlation coefficient of prediction,R)、校正均方根误差(root mean square error of calibration, RMSEC)和预测均方根误差(root mean squared error of prediction, RMSEP)评价模型性能。

应用siPLS建模时,将整个光谱区域划分为20个子区间,联合4个子区间优选特征波段,然后在选择的特征波段上利用连续投影算法选择特征波长。对可溶性固形物含量,优选9个特征波长,分别是1 148.85、1 298.43、1 141.73、1 319.80、1 123.92、1 373.22、1 134.61、1 355.42和1 391.03 nm。可溶性固形物含量选择的特征谱区和优选的特征波长如图4a所示。对番茄红素,优选11个特征波长,分别是1 141.73、1 131.05、1 138.17、1 198.71、 1 159.54、1 145.29、1 120.36、1 148.85、1 319.80、1 113.24和1 348.29 nm,番茄红素模型选择的特征谱区和优选的特征波长如图4b所示。

图4 可溶性固形物含量和番茄红素的优选的光谱区间和选择的特征波长

番茄可溶性固形物含量和番茄红素模型建立结果见表2,所建立的联合区间偏最小二乘模型选用的变量,对SSC和LC,从全谱的400个变量分别减少为79个和81个。采用连续投影算法优选更少的变量而获得了与联合区间偏最小二乘法相当的预测精度。可见前向循环变量选择的连续投影算法可以从共线性的光谱变量中有效提取信息。可见采用先选择特征光谱波段再优选特征波长的策略可有效检测番茄的品质指标。

表2 番茄品质指标不同校正模型建立结果

3 结 论

1)根据果蔬快速无损检测低成本、实用化和小型化的实际产业需求,构建了手持式近红外光谱检测系统。采用数字微镜器件结合点阵探测器的组合方式在保证精度的同时显著降低了仪器成本,同时优化设计了微型光源、控制与通讯模块,开发了双通讯模式的专用检测软件,有效获取900~1 700 nm的近红外光谱。

2)选择番茄为果蔬的代表,果蔬品质手持式近红外光谱检测系统经优化采集参数,对采集的光谱进行解析,提取1 120~1 480 nm范围的光谱可以表征番茄的可溶性固形物含量和番茄红素等品质指标。

3)研究先采用联合区间偏最小二乘法选择特征波段,再利用连续投影算法选择特征波长的模型简化策略,分别建立番茄可溶性固形物含量和番茄红素的定量分析模型。可溶性固形物含量模型的预测相关系数R和预测均方根误差RMSEP分别为0.899和0.133%;番茄红素模型的预测相关系数Rp和预测均方根误差RMSEP分别为0.886和2.508 mg/kg。

研究结果表明,研发的手持式近红外光谱检测系统可以实现果蔬主要品质指标的快速无损检测。研究为低成本、实用化、小型化近红外光谱检测系统设计提供方法参考。

[1] Zhou J, Kai L I, Liang Q. Food safety controls in different governance structures in China’s vegetable and fruit industry[J]. Journal of Integrative Agriculture, 2015, 14(11): 2189-2202.

[2] 王伟新,向云,祁春节. 中国水果产业地理集聚研究:时空特征与影响因素[J]. 经济地理,2013,33(8):97-103. Wang Weixin, Xiang Yun, Qi Chunjie. Study on geographic agglomeration of fruit industry in china: Spatial-temporal characteristics and affecting factors[J]. Economic Geography, 2013, 33(8): 97-103. (in Chinese with English abstract)

[3] Ernest Liu K, Chang H H, Chern W S. Examining changes in fresh fruit and vegetable consumption over time and across regions in urban China[J]. China Agricultural Economic Review, 2011, 3(3): 276-296.

[4] Zhao Jiewen, Chen Quansheng, Saritporn Vittayapadung, et al. Determination of apple firmness using hyperspectral imaging technique and multivariate calibrations[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(11): 226-231.

[5] Blakey R J. Evaluation of avocado fruit maturity with a portable near-infrared spectrometer[J]. Postharvest Biology and Technology, 2016, 121: 101-105.

[6] Guo W, Fang L, Liu D, et al. Determination of soluble solids content and firmness of pears during ripening by using dielectric spectroscopy[J]. Computers and Electronics in Agriculture, 2015, 117: 226-233.

[7] 傅霞萍,应义斌. 基于NIR和Raman光谱的果蔬质量检测研究进展与展望[J]. 农业机械学报,2013,44(8):148-164. Fu Xiaping, Ying Yibin. Application of NIR and Raman spectroscopy for quality and safety inspection of fruits and vegetables: a review[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(8): 148-164. (in Chinese with English abstract)

[8] Xie L, Wang A, Xu H, et al. Applications of near-infrared systems for quality evaluation of fruits: a review[J]. Transactions of the ASABE, 2016, 59(2): 399-419.

[9] 褚小立,陆婉珍. 近五年我国近红外光谱分析技术研究与应用进展[J]. 光谱学与光谱分析,2014,34(10):2595-2605. Chu Xiaoli, Lu Wanzhen. Research and application progress of near infrared spectroscopy analytical technology in China in the past five years[J]. Spectroscopy and Spectral Analysis, 2014, 34(10): 2595-2605. (in Chinese with English abstract)

[10] Fernández-Espinosa A J. Combining PLS regression with portable NIR spectroscopy to on-line monitor quality parameters in intact olives for determining optimal harvesting time[J]. Talanta, 2016, 148: 216-228.

[11] 刘燕德,吴明明,孙旭东,等. 黄桃表面缺陷和可溶性固形物光谱同时在线检测[J]. 农业工程学报,2016,32(6):289-295. Liu Yande, Wu Mingming, Sun Xudong, et al. Simultaneous detection of surface deficiency and soluble solids content for Amygdalus persica by online visible near infrared transmittance spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 289-295. (in Chinese with English abstract)

[12] 郭志明,黄文倩,陈全胜,等. 苹果腐心病的透射光谱在线检测系统设计及试验[J]. 农业工程学报,2016,32(6):283-288. Guo Zhiming, Huang Wenqian, Chen Quansheng, et al. Design and test of on line detection system for apple core rot disease based on transmitted spectrum[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 283-288. (in Chinese with English abstract)

[13] Ruslan R, Ehsani R, Lee W S. Quantification of total soluble solids and titratable acidity for citrus maturity using portable vis-NIR spectroradiometer[J]. Applied Engineering in Agriculture, 2012, 28(5): 735-743.

[14] Paula J T, Faria J T V, Marcos V, et al. Physicochemical characteristics and bioactive compounds in tomato fruits harvested at different ripening stages[J]. Horticultura Brasileira, 2015, 33(4): 434-440.

[15] Yuan L, Cai J, Sun L, et al. Nondestructive measurement of soluble solids content in apples by a portable fruit analyzer[J]. Food Analytical Methods, 2016, 9(3): 785-794.

[16] Cirilli M, Bellincontro A, Urbani S, et al. On-field monitoring of fruit ripening evolution and quality parameters in olive mutants using a portable NIR-AOTF device[J]. Food chemistry, 2016, 199: 96-104.

[17] Pérez-Marín D, Paz P, Guerrero J E, et al. Miniature handheld NIR sensor for the on-site non-destructive assessment of post-harvest quality and refrigerated storage behavior in plums[J]. Journal of food engineering, 2010, 99(3): 294-302.

[18] 樊书祥,黄文倩,李江波,等. 特征变量优选在苹果可溶性固形物近红外便携式检测中的应用[J]. 光谱学与光谱分析,2014,34(10):2707-2712. Fan Shuxiang, Huang Wenqian, Li Jiangbo, et al. Application of characteristic NIR variables selection in portable detection of soluble solids content of apple by near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2014, 34(10): 2707-2712. (in Chinese with English abstract)

[19] Kafle G K, Khot L R, Jarolmasjed S, et al. Robustness of near infrared spectroscopy based spectral features for non- destructive bitter pit detection in honeycrisp apples[J]. Postharvest Biology and Technology, 2016, 120: 188-192.

[20] Yu X, Lu Q, Gao H, et al. Development of a handheld spectrometer based on a linear variable filter and a complementary metal-oxide-semiconductor detector for measuring the internal quality of fruit[J]. Journal of Near Infrared Spectroscopy, 2016, 24(1): 69-76.

[21] Civelli R, Giovenzana V, Beghi R, et al. A simplified, light emitting diode (LED) based, modular system to be used for the rapid evaluation of fruit and vegetable quality: Development and validation on dye solutions[J]. Sensors, 2015, 15(9): 22705-22723.

[22] Beghi R, Giovenzana V, Civelli R, et al. Setting-up of a simplified handheld optical device for decay detection in fresh-cut Valerianella locusta L[J]. Journal of Food Engineering, 2014, 127: 10-15.

[23] Dos Santos C A T, Lopo M, Páscoa R N M J, et al. A review on the applications of portable near-infrared spectrometers in the agro-food industry[J]. Applied spectroscopy, 2013, 67(11): 1215-1233.

[24] Sánchez M T, De la Haba M J, Pérez-Marín D. Internal and external quality assessment of mandarins on-tree and at harvest using a portable NIR spectrophotometer[J]. Computers and electronics in agriculture, 2013, 92: 66-74.

[25] Spencer A P, Spokoyny B, Ray S, et al. Mapping multidimensional electronic structure and ultrafast dynamics with single-element detection and compressive sensing[J]. Nature Communications, 2016, 7: 10434.

[26] Rueda H, Arguello H, Arce G R. DMD-based implementation of patterned optical filter arrays for compressive spectral imaging[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 2015, 32(1): 80-89.

[27] Guo Z M, Huang W Q, Peng Y K, et al Color compensation and comparison of shortwave near infrared and long wave near infrared spectroscopy for determination of soluble solids content of ‘Fuji’ apple[J]. Postharvest Biology and Technology, 2016, 115: 81-90.

[28] Ding X, Guo Y, Ni Y, et al. A novel NIR spectroscopic method for rapid analyses of lycopene, total acid, sugar, phenols and antioxidant activity in dehydrated tomato samples[J]. Vibrational Spectroscopy, 2016, 82: 1-9.

[29] Ayvaz H, Sierra-Cadavid A, Aykas D P, et al. Monitoring multicomponent quality traits in tomato juice using portable mid-infrared (MIR) spectroscopy and multivariate analysis[J]. Food Control, 2016, 66: 79-86.

[30] 水果、蔬菜制品可溶性固形物含量的测定--折射仪法,GB12295-1990[S].

[31] 食品安全国家标准食品添加剂番茄红,GB 28316-2012 [S]. 北京:中国标准出版社,2012.

[32] Zhu Q, He C, Lu R, et al. Ripeness evaluation of ‘Sun Bright’tomato using optical absorption and scattering properties[J]. Postharvest Biology and Technology, 2015, 103: 27-34.

[33] De Nardo T, Shiroma-Kian C, Halim Y, et al. Rapid and simultaneous determination of lycopene and β-carotene contents in tomato juice by infrared spectroscopy[J]. Journal of agricultural and food chemistry, 2009, 57(4): 1105-1112.

[34] Wu D, He Y, Nie P, et al. Hybrid variable selection in visible and near-infrared spectral analysis for non-invasive quality determination of grape juice[J]. Analytica Chimica Acta, 2010, 659(1): 229-237.

[35] Soares S F C, Gomes A A, Araujo M C U, et al. The successive projections algorithm[J]. TrAC Trends in Analytical Chemistry, 2013, 42: 84-98.

Design and experiment of handheld near-infrared spectrometer for determination of fruit and vegetable quality

Guo Zhiming1,2, Chen Quansheng1※, Zhang Bin1, Wang Qingyan2, Ouyang Qin1, Zhao Jiewen1

(1.212013,;2.100097,)

Determination of internal quality of fruit and vegetable with a suitable technique is crucial for processing detection and quality control. While substantial progress has recently been made in the miniaturization of near-infrared (NIR) spectrometers, there remains continued interest from end-users and product developers in pushing the technology envelope toward even smaller and lower cost analyzers. The potential of these instruments to revolutionize on-site applications can be realized only if the reduction in size does not compromise performance of the spectrometer beyond the practical need of a given application. In this paper, the working principle of a novel, extremely miniaturized NIR spectrometer is presented. The ultra-compact spectrometer relies on digital micromirror device (DMD) technology for the light dispersing element. DMD is a two-dimensional array of electro-mechanical mirror elements whose surface normal angles can be controlled. Digitally programmable DMD can set the spectral resolution and wavelength range according to user needs, adjust the integration time, and adapt the luminous flux. The system design with DMD and single-pixel InGaAs detector can significantly reduce the cost, and meanwhile ensure the detect precision. The DLP (digital light procession) NIRscan module is used as spectrometer optical engine in the miniaturized system. In the specific implementation, a sample is placed against the sapphire front window of the reflectance head. During a scan, the sample absorbs a specific amount of NIR light and diffusely reflects the non-absorbed light into the system. The illuminating lamps are designated as lens-end lamps because the front end of the glass bulb is formed into a lens that directs more lights from the filament to the sample test region. The collection lens gathers collimated light from a 2.5 mm diameter region at the sample window. The handheld system supports the following modes of operation: USB (Universal Serial Bus) connection and Bluetooth for 2 communication channels. Special analyzer software was developed for quality inspection based on multithread programming technology. The advantages of this software are presented by the process of modular design, including software system initialization, information communication, information interaction, spectral data acquisition and processing, spectral curve real-time display, quality index calculation, and statistics and save of detection results. Miniaturized handheld NIR spectrometer was developed and used to acquire reflectance spectra from fruit and vegetable samples in the wavelength range of 900-1 700 nm. In order to verify the design and performance, tomato was selected as research object. A total of 78 tomato samples were randomly divided into 2 subsets. The first subset was called the calibration set with 52 samples and used for building model, while the other one was called the prediction set with 26 samples and used for testing the robustness of the model. In the process of model establishment, a simplified strategy was proposed. Firstly, characteristic spectrum bands were selected to remove the uninformative variable and the low-correlation band. And then feature wavelengths were optimized to eliminate the collinearity relationship in the spectral data. Finally, simplified model was built, which had good robustness and stability. Synergy internal partial least square (siPLS) and successive projections algorithm (SPA) were sequentially applied to calibrate models. The siPLS was applied to select an optimized spectral interval and an optimized combination of spectral regions selected from informative regions in model calibration. The subsequent application of SPA to this reduced domain could lead to an efficient and refined model. The measurement results of the final model were achieved as follows: correlation coefficient (R) was 0.899 and root mean square error of prediction (RMSEP) was 0.133% for soluble solid content in tomato, andRwas 0.886 and RMSEP was 2.508 mg/kg for lycopene content in tomato. The results will provide the method reference for rapid, non-destructive, and on-site detection technology and equipment of fruit internal quality.

nondestructive detection; spectrum analysis; agriculture products; near infrared spectroscopy; handheld detection system; digital micromirror device; fruit and vegetable quality

10.11975/j.issn.1002-6819.2017.08.033

TP274.4;O433.4

A

1002-6819(2017)-08-0245-06

2016-08-23

2016-11-06

国家自然科学基金(31501216);国家科技支撑计划(2015BAD19B03);中国博士后科学基金(2016M600379);江苏省高校自然科学研究面上项目(16KJB550002);江苏省博士后科研资助计划(1601080B);食品安全大数据技术北京市重点实验室开放课题(BKBD- 2016KF06);江苏大学高级人才基金(15JDG169)

郭志明,博士,讲师,主要从事食品品质安全的光电检测技术与装备研究。镇江 江苏大学食品与生物工程学院,212013。 Email:zhmguo@126.com

陈全胜,教授,博士生导师,主要从事农产品无损检测技术研究。镇江 江苏大学食品与生物工程学院,212013。Email:qschen@ujs.edu.cn

郭志明,陈全胜,张 彬,王庆艳,欧阳琴,赵杰文. 果蔬品质手持式近红外光谱检测系统设计与试验[J]. 农业工程学报,2017,33(8):245-250. doi:10.11975/j.issn.1002-6819.2017.08.033 http://www.tcsae.org

Guo Zhiming, Chen Quansheng, Zhang Bin, Wang Qingyan, Ouyang Qin, Zhao Jiewen. Design and experiment of handheld near-infrared spectrometer for determination of fruit and vegetable quality[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 245-250. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.08.033 http://www.tcsae.org

猜你喜欢

手持式番茄红素果蔬
5.8GHz ETC手持式收费机在高速公路中的应用
番茄红素生物活性及提取研究进展
果蔬PARTY
浓缩对千禧番茄中番茄红素分子构象的影响
手持式金属探测器设计
奇思妙想的果蔬们
番茄红素提取及其稳定性的研究
一种手持式智能解锁电子钥匙
西瓜八氢番茄红素合成酶基因全长的克隆与表达分析
康耐视 DataMan®8050系列手持式读码器