APP下载

本征正交分解在数据处理中的应用及展望*

2022-10-29路宽张亦弛靳玉林车子璠张昊鹏郭栋

动力学与控制学报 2022年5期
关键词:降维流场模态

路宽 张亦弛 靳玉林 车子璠 张昊鹏 郭栋

(1. 西北工业大学 振动工程研究所,力学与土木建筑学院,西安 710129)(2. 科学技术部高技术研究发展中心,北京 100044)(3. 西南交通大学 机械工程学院,成都 610031)

引言

近年来,随着计算机水平的高速发展,研究人员可以通过各种技术(如PIV技术、CFD数值模拟等)获得更加丰富的流场信息.但是对得到的复杂、高维系统进行定性分析十分困难,计算成本很高.因此对原系统进行降维处理是至关重要的,需要用简化模型来替代原始的高维复杂模型.目前,研究者们已经获得一些成熟的降维方法,如POD方法、DMD方法、中心流形法等,其中POD方法凭借适用范围广、准确性强等优势最受人们青睐.

POD方法是一种分析多维数据的数学工具.其作用是将高维的复杂系统进行低维近似描述,用较少的自由度将研究目标的主要特征表达出来,进而达到简化物理模型、节省计算时间和计算负荷的目的.POD降维技术可以在最小二乘意义下对给定数据进行最优的低维逼近,因此,POD方法可以高效地解决实际问题数值模拟过程中的降维问题.

POD方法最早于1901年由Pearson[1]提出,而后在1933年由Hotelling[2]再次提出.此外,不同领域的学者们,如Kosambi、Karhunen、Pougachev、Loeve也独自提出了该方法[3].随后,POD方法在流体力学领域得到广泛的应用.在流体力学研究中,POD方法被认为是研究湍流和挖掘潜在流动机理的强大技术手段.1967年,Lumley[4]第一次将POD方法应用于湍流研究领域中,通过对空间、速度相关函数进行正交分解来识别流场中的相干结构(可辨识的、有明确统计周期和外形的流动结构,整个流场的能量大部分蕴含在相干结构中),这种方法被称为直接POD方法.Lumley富有特色的POD湍流研究工作引起了广泛的关注和影响.但在处理实际问题中,空间相关矩阵的维数十分庞大,这严重制约了POD方法的应用.为了避免上述问题,1987年,Sirovich[5]对POD方法做出改进,提出快照(Snapshot)POD方法,用时间相关矩阵来代替空间相关矩阵,解决了由空间点数过多造成空间矩阵庞大的问题,使计算量大大减小,之前用直接POD方法无法求解的问题得到了解决.改进后的快照POD方法是一项具有里程碑意义的工作成果,从此之后,POD方法的应用更加广泛,并且逐渐被应用于流体力学之外的其他领域,如模态分析[6]、随机结构动力学[7]等.

在直接POD方法的基础上,针对具体问题,很多研究者将POD方法与其他方法相结合,对POD方法做出了改进,如自适应POD(Adaptive POD)方法[8]、Gappy POD(GPOD)方法[9]、多尺度POD(multiscale POD)方法[10]等.本文的主要目的是对POD方法在各种实际工程中的应用进行综述,并对未来POD方法的发展做出展望.

1 POD方法简介

POD方法是一种强大而有效的适用于大批量处理数据的方法,被应用于众多工程领域,如天气预报、图像识别、信号分析、数据压缩、随机过程及海洋学等[11].POD方法在各个领域有不同的名称,在奇值分析和样本识别中被称为Karhumen-Loève展开;在统计学中被称为主成分分析(Principal Component Analysis, PCA);在地球物理流体动力学和气象科学中被称为经验正交函数方法(Empirical Orthogonal Function, EOF);在心理学和经济学中被称为因子分析(factor analysis)[3].

POD方法的关键目标是将大量相互依赖的变量减少到数量较少的不相关变量.具体方法是从系统已知的实验解或数值解中得到一系列基函数,这些基函数通常被称为本征正交模态(Proper Orthogonal Mode, POM),并且要保证这些基函数在最小二乘意义下是最优的正交基函数,用这些正交基的线性组合去近似初始问题,组合系数被称为本征正交分量(Proper Orthogonal Coordinates, POC).通常情况下,本征正交特征值(Proper Orthogonal Values, POV)的大小决定了模态的主导地位,特征值越大,对应模态的贡献越大.因此,可以通过舍弃较小的POV对应的高阶模态来实现对原复杂问题的降维,降维后的模型可以反映原复杂问题主要的演化趋势.它的数学原理如下[11]:

假设已有u为空间域Ω上的函数集合{uk},寻找一组最优基函数φ,并将已知函数{uk}投影到基函数φ上,使得其平方投影最大,即

(1)

其中,|·|表示模,‖·‖表示二范数,〈·〉表示平均算子,(·,·)表示内积.对于这种极值问题,采用变分法寻找满足约束条件‖φ‖=1,并使〈|(u,φ)|2〉最大的解,使用Lagrange乘子法构造变分问题

J[φ]=〈|(u,φ)|2〉-λ(‖φ‖2-1)

(2)

式(2)达到极值的必要条件是对于任意的φ+δφ,(δ∈R,为一个比例因子)满足下面表达式

(3)

由式(2)、式(3)可知

δφ,u)〉-λ(φ+δφ,φ+δφ)]δ=0=

2[〈(u,φ)(φ,u)〉-λ(φ,φ)]= 0

(4)

利用函数内积变换性,式(4)可以展开为

〈(u,φ)(φ,u)〉-λ(φ,φ)=

φ(x)dx=0

(5)

由φ(x)为任意变量,则寻找的基函数必须满足如下条件:

(6)

最优POD基函数可以从式(6)中得到,其核心是平均互相关函数R(x,x′)=〈u(x)u(x′)〉.因此,最优基函数的求解问题就可以转化为在Ω上由任意不相关函数获得核心矩阵的整数特征值问题.求解特征值,得到特征函数{φk(x)},这组基函数就能保证与已知函数{uk}在平均意义上最相似.可以用这组特征函数重构原来的函数

(7)

其中,φn(x)为模态,an为模态φn(x)对应的系数,M为样本数.所得的这组基函数与已知函数在平均意义上最相似,同时可以用得到的一系列标量系数来描述原函数,使计算量大大减小.

2 POD方法的应用及改进

2.1 POD方法在PIV技术中的应用

在过去的四十年里,随着激光、计算机和图像处理的发展,PIV技术的应用也越来越广泛.PIV技术可以对区域内多个示踪粒子进行测量,从而精确地获得整个流场的信息.但是整个流场的信息庞大,处理起来相当困难,我们只需要提取蕴含流场大部分能量的相干结构研究即可.POD方法凭借其重构效率高、适用范围广等优势,被广泛应用于对相干结构的提取、分解和重构中.PIV技术结合POD方法对各种流场进行分析的研究方法目前已广泛应用于各种工程实际问题.本小节主要介绍绕流、射流、湍流以及涡流条件下POD方法在PIV技术中的应用.

绕流是流体绕过置于无限流畅物体的流动,是自然和工程界中最常见的黏性流体运动形式.肖姚[12]利用PIV技术研究NACA 64418翼型叶片在不同工况下绕流流场的变化,得到流场的瞬时和平均速度场,并利用POD方法对流场进行降阶分解,得到了流场的低阶模态.POD方法也被应用于三棱柱绕流流场的实验研究中,邱玥、江建华等[13,14]用PIV技术对尺度比H为45°的三棱柱在不同雷诺数Re下的尾流流场进行定量测量,结合POD方法得到了尾流场的相干结构,同时利用时间空间关联法确定了不同雷诺数下涡街流向运输速率的变化情况.

射流是指流体从管口、孔口、狭缝中射出,并同周围流体掺混的一股流体流动.刘强[15]采用PIV流场显示技术对静止环境中合成双射流进行了实验研究,并对实验数据进行了POD模态分析,详细分析了各阶模态所表征的流动结构、时间系数及其频谱特征,更为深入地了解了合成双射流自身的流场特性.R. Kapulla等[16]将2D-PIV技术应用于Re≈15400的空气-氮气射流在射流轴线上的速度场,得到了射流轴线平面内下游距离为5.5d到17.4d的瞬时二维速度场,然后使用POD方法生成了秩近似为1、5、10和50的低阶近似表示.冲击射流是一种独特的流动现象.当射流入射到壁面上时,此时产生的射流叫冲击射流.用PIV技术提取到Re=4458的有缝平板流场的冲击射流上的速度场后,快照POD方法可以从中提取最具有代表性的分流的特征[17].

湍流是流体在自然界中最常见的一种流动状态.当流体流速很大时,流场中有很多小漩涡,流体的分层流动被破坏,这时流体做不规则运动,有垂直于流管轴线的分速度产生,这种运动称为湍流.POD方法可以与涡检测、功率谱相结合,对PIV技术得到的磁力搅拌过程湍流流场中不同尺度的流动结构进行分离[18].徐凯池、张佳琪[19]在槽道湍流边界层中通过PIV技术,拍摄了流向-展向平面流场,并利用POD方法将流动中不同尺度的结构进行分离,提取了湍流流动中不同尺度的含能结构,分析得到了湍流流动中流体微团所受作用与流动结构变化之间的关系.激光诱导荧光(Laser-Induced Fluorescence, LIF)测量技术也是一种非常灵敏的测试技术,可以和PIV技术相结合,同时得到水平通道中湍流扩散过程的流速和荧光剂浓度的瞬时分布,并利用POD方法,实现对湍流条件下荧光剂扩散过程中浓度分布的数值重构[20].

涡流理论是流体力学中至关重要的一部分,使用PIV技术对各种涡的识别和研究也成为热门的研究课题.涡旋有时也称为旋涡,是流体团的旋转运动.涡是旋涡的一种形态,专指湍流运动中不均一、不规则的各种尺寸的旋涡.小波变换(Wavelet Transform, WT)方法是进行信号时频分析和处理的理想工具.它可以和快照POD方法结合对双振荡网格湍流中的涡结构的多尺度特性及流动间歇性进行研究.已有研究基于PIV数据库,从标度律的角度揭示流体黏弹性的存在显著影响着双振荡网格湍流中的统计特性[21].朱特[22]通过POD方法提取到了尾流中的卡门涡、肋状涡以及一种未知频率的有规则涡结构.基于PIV的POD方法和基于热线的POD方法通过前两阶模态提取到卡门涡,两者对卡门涡的提取效果一致;基于PIV的POD方法提取到整个平面上的肋状涡,但提取的肋状涡中夹带有其他涡结构,而基于热线的POD方法能够提取纯净的肋状涡.在肋状涡的频率分辨上,热线POD方法更具优势.

此外,还有一些对其他流场的研究,如自由下落环形圆盘的轨迹和流场、混流式水轮机模型运行尾水管内的流场、槽道内流场等.汪玉明等[23]采用POD方法对不同文氏管出口张角的旋流杯结构的流场不稳定性进行了分析,并用PIV实验结果验证了计算精度.赵朋龙等[24]通过PIV技术在低速循环水洞中拍摄了不同法向高度位置处流向-展向面的流场,并通过POD方法将流动中不同尺度的结构予以分离,利用Okubo-Weiss函数对近壁湍流拟序结构的变化规律进行了研究.Wei[25]使用立体视觉和PIV技术识别了自由下落环形圆盘的轨迹和流场特征,用POD方法提取了盘后尾流的相干结构,通过将流场分解为不同的POD模态,阐明了HH(Hula-Hoop)运动[26]和HM(Helical Motion)运动[27]不一样的原因.S Kumar等[28]用激光多普勒测速仪(Laser Doppler Velocimetry, LDV)和PIV技术对混流式水轮机模型运行时尾水管内流场进行了研究,利用POD方法分析了包含轴向和径向的250个粒子图像快照.刘阁、陈彬[29]利用POD方法分解了非定常流场的2D-PIV测量的瞬态速度矢量场数据,并根据各阶模态的能量比,选择能够表征流场主导结构的POD分解的前16阶模态进行了功率谱分析,得到了槽道内非定常流场的脉动特性.

表1 POD方法在PIV技术中的应用Table 1 Application of POD method in PIV Technology

对PIV速度场异常值的识别和校正问题的研究具有重要的意义和实用价值.在粒子图像获取的过程中,由于照明强度分布不均、光学干涉现象等因素的存在,容易造成粒子图像成像质量较低,导致速度场中出现大小或方向与周围流场差异较大的矢量,这些矢量称为异常值.2015年,Wang[30]提出了基于本征正交分解的PIV速度场异常值识别与校正方法(POD-Outlier Correction, POD-OC),通过对原始流场进行POD分解,采用低阶模态进行流场重构,然后计算原始流场与重构流场的偏差并进行统计分析,根据动态阈值判定流场异常值.之后,詹斌[31]对此方法做出了改进,采用了基于空域符号变换的协方差矩阵(Spatial Sign Covariance Matrices, SSCM)实现流场的POD分解,称为SSCM-POD方法,并用实验验证了SSCM-POD方法可有效地降低流场噪声和异常值对低阶POD模态的影响.并且针对POD-OC法在异常值的识别过程中容易出现错误识别和缺失识别的情况,提出了一种稳健的速度场异常值识别替代方法.之后,他又将此方法与SSCM-POD方法结合,提出了稳健的PIV速度场异常值识别与校正法.实验表明,该方法提高了插值精度,改善了算法的稳定性和适用性.但该方法是通过POD分解来实现对PIV速度场的识别与校正,计算中需要足够多的流场数据.因此该方法无法用于PIV数据处理中多层互相关分析,只能在计算得到全部的PIV速度场后在进行处理.今后可以对此展开研究,提高该方法的实时性.

近几十年来,PIV技术得到了不断完善和发展, 目前已经可以应用于各种复杂流场中,得到丰富的流场空间结构以及流动特性.POD方法作为一种高效的数据降维方法,可以有效地对流场中不同尺度的流动进行分离,并提取相干结构进行分析,达到简化模型的目的.

2.2 POD方法与DMD方法结合的分析方法应用

因为采用PIV技术对工程外形复杂的非定常流动进行测量时,工作量大、测量成本高、测量范围有限、相关工作展开较少[32].所以就非定常流动特征结构分析方法而言,目前普遍采用POD方法和DMD方法相结合的分析手段.

POD方法和DMD方法作为两种常用的数据处理方法,它们各有优缺点及适用范围.许多研究人员通过具体案例对两种方法的优缺点进行了对比.2017年,叶坤等[33]对雷诺数Re=100下的圆柱绕流非定常流场进行了数值模拟,分别采用DMD方法和POD方法对圆柱绕流卡门涡发展过程中的不稳定平衡阶段、过渡阶段以及稳定极限环阶段进行了稳定性分析.对比了两种方法各自的特点,结果表明:POD方法可以高效地提取流场中的主要流动结构,但是无法判断所提取模态的稳定性,而DMD方法不仅可以提取流场的主要结构,直接得到模态及其对应的频率,且可以判断其稳定性.因此,在进行复杂系统动力学稳定性分析时,DMD方法相对更有优势.之后,张扬、张来平、邓小刚等[34]再次将POD方法和DMD方法进行了对比.他们将两种分解方法应用到对现代战斗机模型复杂分离流动的脱体涡模拟(Detached Eddy Simulation, DES)中.结果表明:虽然POD算法与DMD算法风格迥异,模态配对方式不同,但DMD一些主模态的实部和虚部与POD的1阶和2阶主模态具有一定的相似性.每一POD模态中包含多种频率的运动,且POD主要模态中包含的能量更多,流场重构效率更高;而DMD方法则将流场的主要特征运动提取为一些单频模态的组合,模态的频率成分单一,能量分布相对分散,因此流场重构所需的模态数量较多,但DMD对特征运动的描述更为详细,同时能够给出模态的稳定性.

2020年,谢海润等[35]基于非定常瞬态结果,采用POD方法和DMD方法,通过分解与重构叶片附近流场的压力场,提取模态频率及其变化过程,得到了尾涡激振现象的主要流动特征.通过对比两种模态分析结果发现:POD和DMD两种模态分解方法具有各自的优缺点.相比于DMD方法,POD方法具有更好的降维特性,因为DMD方法无法对设计参数与流场分布的规律提出解析;而DMD方法的优点在于能够给出各阶模态的特征频率和稳定性,并直接通过给出的结果表征流动的演化过程. Han等[36]利用DMD和POD方法对混流泵的叶尖泄露涡的流动结构进行了分解和重构,两种方法得到了相似的结论.

在某些实际工程的应用中,将POD方法与DMD方法结合对数据进行处理会达到更好的效果.对于缝翼周围流动问题,首先利用POD方法分析缝翼空腔中自由剪切层大尺度涡结构的能量,然后用DMD方法获取单一模态下的频率[37].也可以结合POD方法与DMD方法,研究超声速进气道喘振非定常特性.通过POD方法对复杂的时空特性耦合现象进行解耦,从非定常流场中获取占主导地位的流动结构及其时间和空间特性,随后用DMD方法基于模态特征值预测不同频率的流动结构稳定性[38].吴亚东等[39]采用POD和DMD两种流场降阶方法分析了不同叶顶间隙条件下旋转不稳定性各阶模态对应的流场成分、模态能量占比和稳定性等特性.结果表明:POD与DMD方法对空间模态的排序表现出明显的一致性,按照能量或频率对流场进行分解和排序,得到了很相近的结果.Liang[40]通过POD和DMD方法研究了液氮空化流动中空化动力学的演变,特别是涡旋动力学和相干结构,为在实际工程应用中更好地理解空化流动提供了参考.

POD方法和DMD方法作为两种常用的系统分解技术,具有一定的相似性,但是又各有优缺点.POD方法主要模态中能量较多,流场重构效率更高,但稳定性较低;而DMD方法模态成分较为单一,能量分布较散,从而使流场的重构效率相对较低,但它对特征运动的描述较为详细,同时可以给出模态的稳定性.总之,POD方法具有更好的降维特性,而DMD方法具有时空耦合建模上的优势.所以,在流场稳定脉动时可采用DMD方法,而对于其他随时间变化的流动现象时,需要结合POD方法或其他方法.

2.3 POD方法在CFD数据处理中的应用

实验和CFD是研究非定常流动的另一个主要方法.其中CFD方法具有花费低、限制少等优势,但是CFD得到的非定常流场数据非常庞大,直接对其主要流动结构分析非常困难,需要用到降阶模型方法对得到的数据进行处理,其中POD方法是模态分析中较为常用的一种方法.

目前,超高声速飞行器在国内外都处于蓬勃发展时期,对飞行器翼型的气动特性优化及设计离不开CFD数值计算.聂春生等[41]以Hermes飞行器的外形为研究对象,使用CFD数值方法获得了三维热环境数据库,利用POD方法对CFD数据库进行降阶处理,结合POD方法和RBF插值,建立了一种适宜复杂外形表面热流预测的代理模型(Surrogate Model, SM),能够快速预测出未知状态下满足精度要求的表面热环境参数.该方法在不损失预测精度的前提下,可以大幅度提高计算效率,有力弥补了工程算法的不足.孙翀等[42]对S809翼型处于20°攻角下的静态失速和动态失速进行了数值模拟,对绕翼非定常流场进行了研究,使用POD方法提取了静态失速和动态失速非定常压力场的主要流动模态,结合对应模态的POD系数对非定常流动做了分析,对风力机翼型的失速问题研究具有重要意义.裴春波[43]以B737-200型号飞机座舱为背景建立模型,对不同送风工况下飞机座舱内的流场特性展开了研究,用POD方法对瞬态流场进行了模态分析并用统计学方法分析了流场特性对污染物传播的影响.李波等[44]还提出了一种基于POD代理模型的高效自适应序贯优化方法,并对二维翼型设计优化进行了比较分析,结果发现该方法能显著提升优化效率且有较高的拟合精度,与CFD高耗时的计算相比,整个计算过程计算量也很少,为场量数据的拟合或优化提供了一个有效的解决方法.Arash Mohammadi等[45]将POD方法用到不确定性量化(Uncertainty Quantification, UQ)分析[46]中,将POD方法与压缩感知(Compressed Sensing, CS)相结合,并将此方法应用于RAE2822翼型和NASA转子周围的跨音速湍流流场CFD模拟的UQ分析中,显著降低了计算成本.

表2 POD方法与DMD方法相结合的分析方法应用Table 2 Application of analytical method combining POD method and DMD method

CFD也可对锅炉内的温度场分布进行模拟.郭芳[47]利用CFD仿真软件对四角切圆锅炉在不同工况下的温度场分布进行了研究,得到了温度数据样本库,结合POD降维算法,提取POD基,对锅炉火焰温度场的分布进行了重构.为数据降维算法在火焰温度场重建理论提供了实验支持,也为该算法在今后应用于解决工业现场的问题打下了基础.沙正道[48]通过CFD技术获得了温室内环境系统关键参数的高分辨率的变化空间信息,并运用POD方法降维.结果表明:POD方法重构的速度场、温度场和二氧化碳分布的低维空间精度与CFD技术相当,实时性相比CFD技术有很大提升.芮庆[49]以办公室房间为研究对象,通过CFD模拟的方式获取了其室内流场.之后利用POD方法建立了观测层、偏差层、模态层和模态系数层,实现了对办公室室内温度分布预测模型的创建.对预测模型的可靠性验证结果表明:POD方法能以较高的精度实现数据降维,并能较为准确地对泛化场景下的温度分布情况做出预测.

CFD 兴起于20世纪60年代,随着90年代计算机的迅猛发展,CFD也随之飞速发展.但是CFD方法求解出的离散流场维度高达数千万,因此必须对数据进行降维处理.由上述内容可知,POD方法可以在保留数据集主要特征的基础上有效降低数据的维度,从而使相关问题得到解决.

2.4 POD方法在其他领域的应用

POD方法可以有效地对非线性颤振响应进行降维处理.颤振是指弹性结构在均匀气流中受到空气动力、弹性力和惯性力的耦合作用而发生的大幅度振动.针对二维壁板颤振问题,POD方法可以和Galerkin方法结合,发展成兼具高效性和全局性的降维模型[50];对于三维复合材料曲壁板的非线性颤振响应的降阶问题,可以通过POD方法构造三维复合材料曲壁板颤振响应的POD模态,然后将系统的运动方程变换到POD模态坐标下,通过数值积分方法计算得到三维复合材料曲壁板的颤振响应[51].

表3 POD方法在CFD数据处理中的应用Table 3 Application of POD method in CFD data processing

POD方法在结构动力学方面的应用也十分广泛.21世纪初期,POD方法逐渐被应用到结构动力学系统中.邓子辰等[52]首先基于欧拉-伯努利原理,建立一柔性悬臂梁撞击系统的动力学方程,然后将POD方法成功应用于撞击系统的降阶过程.数值结果表明该方法是可行的,并具有很高的效率,为系统控制研究打下了基础.2020年,赵阳等[53]针对梁式结构动力模型,提出一种新的模型降阶方法.以减缩基向量的方式达到大幅降低自由度数量的目的.路宽等[54,55]基于惯性流形理论对传统的POD方法进行改进,完善了瞬态POD方法,并基于瞬态POD方法的物理意义提出了确定原始高维复杂系统的最优降维模型的方法.应用改进的POD方法对原始转子—轴承系统进行降维,通过降维前后相图、轴心轨迹、幅频曲线、分岔特性的对比,发现降维后的简化模型很好地保留了原始模型的动力学特性;李玉韦等[56]通过静力分析获得了网格加筋筒壳模型的节点位移场并将其组装成快照矩阵,再利用POD技术提取快照矩阵的主成分作为转换矩阵实现了模型降阶;POD方法也被用在研究悬臂板几何非线性结构的动力学降阶问题,可以提升几何大变形条件下的结构非线性动力学系统的求解效率[57];POD方法结合小波变换可以对钢架的损伤部位进行精确定位,此方法能够在可接受的精度范围内检测出弯矩连接处的损伤[58].

POD方法可以对非线性热传导问题建立降阶模型,降低复杂系统的自由度,从而提高计算效率.热传导现象是介质内部由温度梯度造成的密度差产生的自然现象.以Re=5000时冲击热流的传热为例,POD方法可以对通过大涡模拟得到的传热和流场进行分解和研究[59];朱强华等[60]提出一种基于POD方法和有限元法的瞬态非线性热传导问题的模型降阶快速分析方法,建立了导热系数随温度变化的一类瞬态非线性热传导问题有限元格式的POD降阶模型.由于在实际工程中经常会用到激光、极短时间的微波这样高频率、高热量的热源,许多导热介质中都会有非傅立叶传热现象.对于此类非傅立叶热传导问题,可以通过构造同一求解域的非线性POD基底,利用其外推性质对非线性问题进行模拟计算[61];Staf Roels等[62]分别用POD方法和适当广义分解(Proper Generalized Decomposition, PGD)方法研究了大规模砌体墙的热传递现象,结果表明POD方法能够提供更准确的结果.

随着人工智能的发展,机器学习与其他学科交叉成为新的趋势,POD方法与机器学习(Machine Learning, ML)尤其是深度学习(Deep Learning, DL)结合的分析方法在模型预测方面有较高的精度.Chinchun Ooi等[63]将几个机器学习模型与POD方法结合,得到模拟静止圆柱体绕流的经典结果;深度学习和POD/DMD方法结合建立的降阶模型在模型预测方面精度更高,该方法首先计算模拟数据(快照)的POD或DMD模态及其时间系数,然后使用长短时记忆网络(Long Short-Term Memory, LSTM)模型来预测模态的时间系数[64].实验表明,该模型对于预测Kelvin-Helmholtz不稳定性和质量扩散问题快照的时间系数具有较高的精度.

除此之外,POD在其他领域也发挥着至关重要的作用.如魏芸[65]首次提出在POD方法中嵌入基因算法和伴随方法,完成了人工环境多方法集成设计,在保证计算准确性的基础上提高了逆向设计的计算效率,实现了基于CFD的人工环境高效全局优化逆向设计;基于POD方法可以建立冰形快速预测降阶模型[66],该方法可以很好地适用于单、多参数的冰形预测,对于大参数研究的应用具有参考价值,也为结冰试飞认证、容冰设计提供了一种有效可行的方法; POD方法被应用到不同工况下超声速混合层的时空演化研究中,以获得能量模态分布、模态系数的时间演化特性和频域特性以及模态空间结构[67];Carlos Quesada等[68]首次基于POD降维技术预测了微胶囊在稳定状态下流经直微流体通道时的变形.

由上述内容可以看出,对于非线性颤振响应、转子—轴承系统、非傅立叶热传导等问题,POD方法也可以有效地对高维复杂系统进行降维与简化.此外,在人工智能方面,基于深度学习的数据降维已经成为一个热门课题,POD方法与深度学习结合的具体应用将在下一节中详细介绍.

表4 POD方法在其他领域的应用Table 4 Application of POD method in other fields

2.5 对POD方法的改进

为了使POD方法更好地应用于实际工程中,研究人员将POD方法与其他方法相结合或者对POD方法做出改进.人工神经网络(Artificial Neural Network, ANN)具有很强的自组织性和容错性,将ANN与POD方法结合共同构建降阶模型,可以进一步提高POD方法的预测精度,这种方法被称为POD-ANN法[69].该方法可以被应用到洪水预测中,结果表明:该方法对于淹没区的预测比常规代理模型更安全、广泛.随后,Ahmed Rageh等[70]为了研究铆钉连接处的疲劳与腐蚀缺陷,对POD-ANN方法进行进一步改进,结合了从测量的结构响应中提取的POD模态和从数值模型中计算的正交模态,使POD-ANN方法成为一种稳健的铁路钢桥疲劳损伤识别工具.

Steffen Kastian等[8]提出了自适应POD方法(APOD),引入了选择快照子基的原则,用于构建匹配基,可以给出更精确的近似值.Li[71]提出了一种结合POD方法和离散经验插值法(Discrete Empirical Interpolation Method, DEIM)的混合降阶模型,用来加速石油工程中对多孔介质中单相可压缩气体流动的模拟,并用两个算例验证了POD-DEIM方法的重建和预测精度以及计算速度.随后,Chutipong Dechanubeksa等[72]继续对此方法优化,引入了基于GPOD(Gappy Proper Orthogonal Decomposition)[9]概念的DEIM修正方法,称为POD-GPOD方法,这种方法兼顾了POD方法的准确性和POD-DEIM方法的效率.

Davide Ninni等[10]介绍了一个名为MODULO(MODal mULtiscale pOd)的开放的软件包,可用于执行数值和实验数据的多尺度本征正交分解(multiscale Proper Orthogonal Decomposition, mPOD)方法,这种新的分解方法结合了多分辨率分析(Multi-Resolution Analysis, MRA)和标准POD方法,使分解的收敛性和模态的光谱纯度之间达到最佳平衡,此软件由于其内存节省特性,非常适合分析较大的数据集,对任何研究领域都很有意义.mPOD方法可以用于研究稳态和瞬态条件下的圆柱尾流流场,研究结果表明:mPOD方法在模态分析中允许比POD方法拥有更多的自由度,同时保持相当的收敛性[73].Daniel Butcher等[74]提出了分区本征正交分解(Zonal Proper Orthogonal Decomposition, ZPOD)方法,在计算POD模态之前将速度场分解成若干个区域,以便更好地识别每个区域相关的突出结构和特征,与POD方法相比,ZPOD方法可以获得更具代表性的矢量场.Aaron Towne等[75]提出了频谱本征正交分解(Spectral Proper Orthogonal Decomposition, SPOD)方法,结合了POD的功率和频率分析,代表了时间和空间上的连贯进化结构,这是直接POD方法没有的优势.

多学科交叉融合是创新的源泉.当今世界,学科前沿的重大突破和重大创新成果大多是学科交叉、融合、汇聚的结果.POD方法与数据驱动、深度学习等人工智能领域的交叉,可以使POD方法使用范围更广泛,降维效率更高.

表5 对POD方法的改进Table 5 Improvement of POD method

3 POD方法研究展望

随着计算机技术的发展,研究者们得到更多数据的同时已然离不开使用各种降维方法对数据进行处理.虽然目前已经获得了一些成熟的降阶方法,但随着未来工程结构系统越来越复杂、运行条件复杂多变、各种非线性因素相互耦合,许多简化模型不再适用.今后值得进一步研究的问题如下:

(1)根据各降维方法的特点,结合多种方法对高维系统进行二次降维.例如,中心流形方法和L-S方法可以保留原系统的拓扑性质,因此,复杂结构系统的降阶模型可以通过POD方法得到,然后通过中心流形方法和L-S方法进行进一步降维研究;

(2)21世纪是人工智能的时代,作为人工智能领域的重要内容,机器学习以及新兴的深度学习也是新的研究热点,机器学习与其他学科交叉以及新的数据处理方法成为新的趋势.机器学习是实现人工智能的一种方法,需要大量的数据和运算来进行训练.其中,深度学习是目前最热门的机器学习方法,它是利用深度神经网络来解决特征表达的一种学习过程,但是深度神经网络复杂,训练数据多,计算量大.目前,国内外对于POD方法在数据驱动尤其是深度学习中的应用研究[62,63]较少,今后可以通过POD方法与深度学习结合,开展进一步研究,对深度学习方法进行完善.

4 结论

POD方法目前已经逐渐成为处理大型复杂高维系统的最主要方法.本文简要介绍了POD方法的基本原理及POD方法的发展历史,详细列举了POD方法在CFD、PIV技术中的应用,对POD方法和DMD方法各自的优缺点进行了对比,最后简要概括了POD方法在结构动力学、热传导问题、人工智能方面的应用.POD方法相较于其他方法,具有准确性强、适用范围广、流场重构效率高等优势,同时还有很多缺陷,如无法给出模态的稳定性等.针对具体问题,许多研究人员也对POD方法做出了相应的改进,如与DEIM相结合的POD-DEIM方法、与MRA结合的mPOD方法、与功率和频率分析相结合的SPOD方法等.随着人们对人工智能的需求越来越高,POD方法在数据驱动技术尤其是深度学习的研究中将会有更广泛的应用前景.

猜你喜欢

降维流场模态
基于BERT-VGG16的多模态情感分析模型
混动成为降维打击的实力 东风风神皓极
多模态超声监测DBD移植肾的临床应用
降维打击
基于HYCOM的斯里兰卡南部海域温、盐、流场统计分析
车辆CAE分析中自由模态和约束模态的应用与对比
一种改进的稀疏保持投影算法在高光谱数据降维中的应用
天窗开启状态流场分析
基于瞬态流场计算的滑动轴承静平衡位置求解
基于国外两款吸扫式清扫车的流场性能分析