APP下载

稀土氧化物纳米颗粒对植物的毒性效应及影响因素研究进展

2019-09-10于学茹王巨媛王翠苹田晓飞孙树臣王萍徐汝悦翟胜

福建农业学报 2019年6期
关键词:植物影响因素

于学茹 王巨媛 王翠苹 田晓飞 孙树臣 王萍 徐汝悦 翟胜

摘 要:稀土氧化物納米颗粒(Rare Earth Oxide Nanoparticles,REO NPs)具有纳米毒性和金属毒性的双重效应,其毒性效应、生态环境风险引起国内外学者的广泛关注。随着纳米技术的快速发展,纳米颗粒必然通过各种途径进入环境,给生态环境与人类健康造成危害。因此,研究REO NPs在环境介质中的迁移转化及其对植物的毒性效应机制,对REO NPs合理应用及其生态安全评价具有重要的理论价值和实践指导意义。本文通过查阅文献资料,总结了在水培、土培条件下REO NPs对蔬菜和农作物毒性效应、毒性机理及其影响因素,并在此基础上就REO NPs毒性效应和机理研究进行了展望。REO NPs毒性效应主要表现为:(1)抑制根系生长发育;(2)抑制叶绿素合成进而影响光合效率和生物量。毒性机理主要包括:(1)REO NPs溶出离子直接致毒或与矿质营养离子发生竞争,抑制营养吸收;(2)REO NPs破坏细胞选择透性、产生活性氧自由基、使细胞膜发生脂质过氧化而丧失功能;(3)REO NPs附着于组织表面,阻碍水分、营养物质运输和离子交换。影响REO NPs毒性的因子主要包括REO NPs特性(如溶解性、带电性、粒径大小及形状)、植物本身敏感性或耐受性、环境条件(如酸碱性、带电性等)。REO NPs的毒性效应研究存在选择的污染物类型较少,主要针对幼苗期的植物,少有分子生物学、土培方式、全环境条件研究等问题,后期可从上述方面进行深入研究。

关键词:REO NPs;植物;毒性效应;毒性机理;影响因素

中图分类号:X 501;X 503文献标识码:A文章编号:1008-0384(2019)06-739-09

Abstract: Rare earth oxide nanoparticles (REO NPs) have caught the attention by scientists worldwide as they can potentially harm the environment due to the toxicity associated with the particle size as well as the chemical property. With the advancement of nanotechnology, NPs inevitably enter the environment through various channels causing detrimental effects on the environment and human health. Therefore, studying the translocation and transformation of REO NPs in media and the response mechanism of plants toward the toxicity carries important theoretical and practical significance for the material applications and ecological security. This article summarizes the mechanism and affecting factors associated with the toxicity of REO NPs on the crops cultivated on soil or hydroponics and discusses the prospects of future research and utilization of the NPs. Currently, the toxic effects induced by REO NPs on plants were believed to include (1) the inhibition of root growth and development and (2) the retardation of chlorophyll synthesis reducing the photosynthetic efficiency and biomass accumulation. The toxicity mechanisms focused by various studies were mainly on (1) the functions directly caused by the dissolved REO NPs ions or their competing with other mineral ions on nutrient absorption, (2) the obstruction of selective cellular permeability, the production of oxygen free radicals, and the lipid peroxidation of cell membrane, and (3) the adherence of particles on surface of the plant tissues interfering normal water and nutrients transportation and ion exchange. Major factors that affect the toxicity might encompass the properties of REO NPs (such as, solubility, electrification, particle size, and shape), the sensitivity or tolerance of a plant to REO NPs, and the environmental conditions (such as, acidity, alkalinity, electrification, etc.).The study on toxic effects of REO NPs has fewer types of selected pollutants, mainly for plants in seedling stage, and fewer study on molecular biology, soil culture methods, and all environmental conditions. In the later stage, we can conduct in-depth research from the above aspects.

Key words: REO NPs; crops; phytotoxicity effect; phytotoxicity mechanism; affecting factors

0 引言

纳米材料(Nanomaterial)是至少一维在1~100 nm的材料;纳米颗粒(Nanoparticles, NPs)是至少二维在1~100 nm的材料[1]。NPs独特的尺寸、表面积、结晶性及表面电荷等特殊的理化性质 [2-3]使其有异于其他材料,更容易被生物吸收利用,从而影响生物生长发育[4]。纳米材料对生物效应的研究结果[5-6]表明,即使在较低浓度下,金属碳纳米管也会引发肉芽肿的形成,中高浓度的碳纳米管会损害老鼠的肺组织,产生肺部气囊。2005年,英、美等国制订并启动了NPs环境行为与生态效应的研究计划。2009年8月,Gilbert[7]对NPs致人死亡事件进行了讨论,Song等[8]研究发现,工作环境中存在的大量NPs致使两名工人肺部损伤而死亡。从此,NPs的生态毒理效应成为国内外学者的研究热点[9]。开展纳米颗粒的环境行为及其生态毒性效应与机理意义重大。

稀土元素氧化物是指元素周期表中原子序数为57到71的15种镧系元素氧化物,以及与镧系元素化学性质相似的钪(Sc)和钇(Y)共17种元素的氧化物,在石油、化工、冶金、纺织、陶瓷、玻璃、永磁材料等领域广泛应用,随着科技的进步和应用技术的不断突破,稀土氧化物的价值将越来越大。作为一种新型纳米材料,稀土氧化物纳米颗粒(REO NPs)广泛应用于抛光粉、发光材料和汽车尾气净化等方面[10-11]。在生产、使用过程中,REO NPs会通过不同途径进入水、大气和土壤环境,进而发生吸附、团聚、沉淀、解析、生物吸收或累积等环境行为[12],而吸附在植物根系表面的REO NPs会通过质外体或共质体进入植物体内,使植物致毒进而对生态环境和人类健康造成威胁[13]。目前,纳米颗粒毒理学的研究主要集中在金属单质及金属氧化物 [14-19],关于REO NPs对植物毒性效应、毒性机理以及影响因子研究相对较少 [20-22]。因此,REO NPs的迁移转化行为、生物可利用性和生态毒性效应急需开展广泛而深入的研究。本文在查阅相关文献的基础上,阐述不同类型REO NPs对植物的毒性效应、致毒机理及其影响因子,并结合目前研究存在的问题和不足,对后期研究方向进行展望。

1 REO NPs對植物的毒性效应

通过查阅已有文献资料,总结出REO NPs毒性机制主要包括:(1)有毒物质的释放(有毒金属离子);(2)诱导活性氧(Reactive Oxygen  Species,ROS)产生,破坏细胞膜结构,干扰植物抗氧化系统,损伤细胞器;(3)附着于组织表面,阻碍水分、营养物质运输和离子交换,具体见图1、表1,影响植物正常的代谢等等 [23-25]。

1.1 REO NPs溶出离子致毒

REO NPs可以溶解出一定量的金属离子,当金属离子达到一定浓度时,对植物产生毒性效应。溶解出的金属离子浓度较低时对植物没有显著的毒性效应,此时毒性效应可能来源于NPs本身独特的性质。因此,REO NPs可通过其自身和溶解出的金属离子产生毒性效应,但不同REO NPs对植物的毒性作用机理不同。Ma等[26]研究发现,La2O3 NPs和CeO2 NPs分别处理黄瓜,高浓度的La2O3 NPs表现出明显的毒性效应,CeO2 NPs未表现出毒性,且培养液中La2O3 NPs溶解出的La3+明显高于CeO2NPs溶解出的Ce3+,因此推测La2O3 NPs对黄瓜的毒性来源于溶解出的La3+。Zhang[27]和Rui等[20]发现,对于灵敏度较高的生菜来说,CeO2 NPs释放的Ce3+是造成其毒性的原因。Miralles等[21]报道指出CeO2 NPs产生植物毒性的关键因素是Ce3+的释放。在植物生长过程中,根系会分泌大量有机酸(柠檬酸、乙酸、草酸等)[28]及还原性物质(还原糖、酚类化合物)[29],这些物质会促进NPs的溶解,如反应式(1)、(2)、(3)[26]。但Chen等[22]研究发现Nd2O3 NPs在1/5 Hoagland溶液中能够溶解出Nd3+,同时设置溶出Nd3+浓度试验处理,但结果发现Nd2O3 NPs对南瓜的毒性是由NPs本身引起而非溶解出的Nd3+。这可能是由于不同REO NPs的溶解性、溶出离子毒性、植物敏感性以及环境条件不同所致。

1.2 REO NPs吸附吸收致毒

NPs具有较大的比表面积,更容易吸附在植物表面。较小的粒径,使其更容易进入细胞内部,与细胞器相互作用,影响生物正常的生理代谢。Ma等[48]研究发现,2 000 mg·L-1的La2O3 NPs暴露在水培黄瓜体系,通过TEM-EDS发现,在细胞间隙、胞间层以及细胞内部的细胞质和大液泡内均检测到La元素,P和La的相关性为0.997 6,原子比接近1,证实以LaPO4的形式存在。Chen等[22]发现,100 mg·L-1 Nd2O3NPs能够进入细胞,造成叶绿体膜的损伤,从而导致南瓜叶片黄化。Rui等[20]在探究磷酸盐对植物组织中CeO2 NPs转化的影响时发现,有无磷酸盐存在时,分别在黄瓜外表皮和细胞间隙、大液泡检测到针刺状的CePO4。Zhao等[51]通过FITC标记CeO2  NPs,在玉米根表皮、内皮、皮层和木质部发现CeO2 NPs,地上部也检测到Ce,从而得出结论,CeO2NPs通过蒸腾作用进入转运系统并通过木质部的驱动进行转移。Rico等[52]也发现,Ce可以被根部吸收并且转移到可食用的组织。

1.3 REO NPs诱导产生活性氧致毒

目前研究普遍认为活性氧(Reactive Oxygen Species,ROS)、氧化胁迫以及脂质过氧化是纳米颗粒产生毒性效应的重要机制之一[52-53]。Cabiscol等[54]报道,NPs能够产生ROS,引起脂质过氧化,使细胞膜的透性发生改变,从而影响植物对营养物质的获取。金属离子对植物细胞的生化过程,电子传递链的干扰会产生ROS[55]。NPs本身的活性较强,在吸收能量或接触生物体内的电子供体时也会导致细胞内ROS的产生[56]。一般情况下,基态氧会转化成1O2、O-2、OH·、H2O2等物质[57-58]。C60和ZnO等纳米颗粒在光照条件下,能够发生如下反应[式(4)],产生ROS[59]。通过检测ROS浓度,可探究NPs的暴露对植物毒理学影响 [58, 60-63]。生物体内的ROS如果不能及时清除,将会对生物体产生氧化胁迫,导致膜脂过氧化、细胞器损伤、细胞结构破坏、DNA损伤,产生遗传毒性[40]等。这一过程主要包括3个阶段 [13,64]:①低水平的氧化胁迫,转录引子Nrf2调节抗氧化酶、解毒酶等组成的抗氧化防御系统,抵抗过氧化胁迫;②高水平的氧化胁迫,ROS刺激细胞中敏感性的酶,发出保护性的促炎反应;③最高水平的氧化胁迫,膜脂质过氧化,线粒体损伤,细胞功能丧失,直至引起细胞的调亡。Ma等[65]报道,1 000、2 000 ppm CeO2 NPs处理拟南芥,叶绿素含量较对照分别降低60%、85%,其中拟南芥中谷胱甘肽的表达也发生改变。Majumdar等[66]发现,CeO2 NPs可以通过干扰菜豆的抗氧化防御机制从而产生植物毒性。

植物和纳米颗粒相互作用的过程中,NPs会吸附到植物根表,由于NPs较小的粒径,因此植物组织的NPs可能会阻塞细胞壁小孔、胞间连丝和木质部导管,影响水分、矿质离子和有机物的运输[67-68],致使植物无法正常生长发育。

进入环境中的REO NPs会受到环境因素的影响,从而改变REO NPs对植物的毒性效应。REO NPs影响毒性效应的因素主要包括:REO NPs自身性质[69]、植物类型、环境因素(pH、DOM)等。Lee等[70]发现,暴露介质能够明显影响NPs生物毒性。此外,NPs浓度、暴露时间同样影响NPs对植物的毒性效应。

2.1 REO-NPs自身性质的影响

纳米级的粒径,使REO NPs具有独特的物理化學性质。植物细胞壁、细胞膜、各类细胞器膜孔径等也处于这一级别[71]。因此,与其他大颗粒材料相比,NPs可以直接透过细胞壁和细胞膜孔径进入植物细胞内部,改变细胞膜透性,破坏细胞膜完整性,与细胞内细胞器(内质网、液泡和吞噬体)[4]相互作用,随后导致细胞和遗传水平的毒性 [65,72]。另外,NPs也可以通过内吞作用[64,73]或者主动运输[74]等方式进入细胞内部。

REO NPs表面带有一定量的电荷 [75-76],因此,粒子与粒子之间、粒子与其他固体之间受到范德华引力和静电作用影响,进一步决定REO NPs在悬浮液中的存在状态[77]。Limbach等[78]通过测量Zeta电位发现,Hoagland′s溶液的离子能够改变NPs的表面电荷,导致NPs快速形成大块团聚体。Chen等[22]研究发现,单宁酸能够吸附在Nd2O3 NPs表面,使NPs表面带负电荷,加之植物根系表面附着的大量由D-半乳糖醛酸残基组成的水合多糖使其也带负电,两者表面的负电荷从而降低了吸附在根表的Nd2O3 NPs含量,最终降低Nd2O3 NPs的毒性效应。

2.2 植物类型对REO-NPs的毒性效应影响

在基因和环境的共同作用下,植物具有不同的生理特征和组织结构,表现出不同的敏感性和耐受性。Ma等[25]通过不同植物根的伸长试验,探究了4种REO NPs (CeO2、La2O3、Gd2O3、Yb2O3)对高等植物的潜在影响。2 000 mg·L-1 La2O3、Gd2O3、Yb2O3 NPs抑制了萝卜、油菜、西红柿、生菜、小麦、甘蓝和黄瓜的根伸长,然而,从毒性大小来看,对生菜产生的毒性效应明显大于油菜和小麦。CeO2  NPs作为唯一的四价稀土氧化物,在相同浓度的处理下,只对生菜产生了明显的抑制,对油菜和小麦物均没有产生影响。Schwabe等[38]研究发现,在CeO2 NPs处理下,小麦地上部未检测到Ce元素,而在南瓜地上部却检测到含量比较高的Ce。Lópezmoreno等[79]研究发现,相同浓度CeO2 NPs处理后,促进了玉米和黄瓜根的生长,但却抑制了苜蓿和番茄根的生长。也有相关报道发现,土壤以CeO2形式存在的Ce在根际发生络合反应和氧化还原反应致使玉米很难吸收CeO2[80-82]。

2.3 环境因子对REO-NPs毒性效应的影响

目前,针对NPs毒性效应的研究基本都在培养条件容易控制的实验室进行,研究结果与外界环境条件可能会有一定的偏差。在自然水体中,进入环境的纳米颗粒会受到自然环境因素(如pH、DOM等)的影响,因此,NPs在环境中的迁移性和生物转化也会因环境的改变而改变。DOM普遍存在于土壤和自然水体中,研究表明,低分子量的DOM可以增加REO NPs的悬浮性[83]。这主要是因为DOM能够吸附在NPs表面,改变NPs的表面电荷[84],使静电力和空间排斥力增大,进而提高NPs在环境中的稳定性[85],最终影响NPs的在环境中的迁移和转化[86]。研究表明,聚丙烯酸可通过增加空间排斥力来提高CeO2 NPs的稳定性[75,87]。Schwabe等[38]研究发现,柠檬酸能够降低萝卜组织对CeO2 NPs的积累,促进萝卜根系的生长,提高生物量。同样的结果也出现在Collin等[88]的研究中,富里酸和阿拉伯树胶均能够降低CeO2 NPs在南瓜和小麦根部的积累。Zhao等[51]研究发现,海藻酸包裹的CeO2 NPs增加了Ce在玉米根部的积累,但是和裸露的CeO2 NPs相比,前者降低了地上部Ce的含量。NPs的比表面积[89]及DOM的性质[77,80]共同影响DOM吸附量。

REO NPs的植物毒性效应也受到pH的影响,目前的文献报道,植物根系分泌的有机酸会改变根系周围环境的化学成分 [90-92]。Schwabe等[38]发现,无论是CeO2 NPs单独处理,还是CeO2 +有机质,小麦组pH升高,zeta电位降低,团聚体增大;而南瓜组则株降低了pH值,CeO2+GA及CeO2 + FA的粒径基本恒定,CeO2 NPs对小麦和南瓜均未产生毒性效应。

3 REO NPs植物毒性研究存在问题及后期研究方向

3.1 存在问题

目前,稀土氧化物纳颗粒生态毒理学研究取得了不少研究成果,但在REO NPs对植物毒性效应及机理方面仍需进行广泛深入的研究,主要有以下几个方面的问题:

(1)关于REO NPs毒性效应及机理的研究中,选择的污染物类型较少,以CeO2、La2O3 NPs居多,Nd2O3、Gd2O3、Yb2O3等稀土氧化物研究较少。

(2)目前,针对受试体主要为处于幼苗期的植物,生长周期较短,对植物整个生命周期的研究很少。

(3)在探究REO NPs机理时,主要通过植物的一些生长、生理指标反映其毒性效应和机制,缺乏从分子生物学等微观角度(如基因、蛋白组学等)深层次机理解释。

(4)在目前的研究中,主要采取水培的方式来探究REO NPs对植物的毒性效应,而土培的研究相对较少;

(5)外界环境条件对REO NPs的环境行为及其生态毒性效应影响很大,关于不同环境条件下REO NPs的环境迁移转化与毒性机理研究较少。

3.2 后期研究方向

因此,关于REO NPs的相关研究后期可以从以下几个方面展开:

(1)加强利用同步辐射X射线吸收近边结构(XANEs)研究不同REO NPs处理下植物组织中NPs的存在形态,为更加清晰地阐述REO NPs的致毒机理提供充分的依据。

(2)开展植物全生命周期生物指标、分子生物学研究,从基因、蛋白组学等角度进行研究,为阐明REO-NPs毒性机理提供深层次的科学解释。

(3)强化采用土培方式开展研究,弥补当前土培研究的不足,為探究REO NPs在土壤中迁移转化及植物毒性效应提供更多数据资料和参考,也可以使研究成果更易于指导生产实践。

(4)加强外界环境条件对REO NPs的环境行为、生态毒性效应及机理的研究,探明不同环境条件下REO NPs的环境行为及其生态毒性效应。

参考文献:

[1]LEAD J R, BATLEY G E, ALVAREZ P J J, et al.Nanomaterials in the environment: behavior, fate, bioavailability, and effects-an updated review,2018:2029-2063.

[2]AUFFAN M, ACHOUAK W, ROSE J, et al.Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli[J]. Environmental Science & Technology, 2008,42(17):6730-6735.

[3]AUFFAN M, ROSE J, PROUX O, et al.Enhanced adsorption of arsenic onto maghemites nanoparticles: As (III) as a probe of the surface structure and heterogeneity[J]. Langmuir, 2008,24(7):3215-3222.

[4]NEL A, XIA T, MDLER L, et al.Toxic potential of materials at the nanolevel[J]. Science, 2006,311(5761):622-627.

[5]GEOFF B.Nanotechnology: A little knowledge[J]. Nature, 2003,424(6946):246-248.

[6]SERVICE R.American Chemical Society meeting. Nanomaterials show signs of toxicity[J]. Science (New York, NY), 2003, 300(5617):243.

[7]NATASHA G.Nanoparticle safety in doubt[J]. Nature, 2009,460(7258):937.

[8]SONG Y, LI XDU X.Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma[J]. European Respiratory Journal, 2009,34(3):559-567.

[9]OBERDRSTER G, OBERDRSTER EOBERDRSTER J.Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles[J]. Environmental Health Perspectives, 2005,113(7):823-839.

[10]PATIL S, KUIRY S, SEAL S, et al.Synthesis of nanocrystalline ceria particles for high temperature oxidation resistant coating[J]. Journal of Nanoparticle Research, 2002,4(5):433-438.

[11]CORMA A, ATIENZAR P, GARCIA H, et al.Hierarchically mesostructured doped CeO2 with potential for solar-cell use[J]. Nature Materials, 2004,3(6):394.

[12]JUDY J D, UNRINE J MBERTSCH P M.Evidence for biomagnification of gold nanoparticles within a terrestrial food chain[J]. Environmental Science & Technology, 2010,45(2):776-781.

[13]王震宇, 赵建, 李娜, 等, 人工纳米颗粒对水生生物的毒性效应及其机制研究进展[J]. 环境科学, 2010,31(6):1409-1418.

WANG Z Y, ZHAO J, LI N, et al. Review of Ecotoxicity and Mechanism of Engineered Nanoparticles to Aquatic Organisms[J]. Environmental Science, 2010,31(6):1409-1418.(in Chinese)

[14]MA  X, GEISER-LEE J, DENG Y, et al.Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation[J]. Science of the Total Environment, 2010,408(16):3053-3061.

[15]STEGEMEIER J P, COLMAN B P, SCHWAB F, et al.Uptake and distribution of silver in the aquatic plant Landoltia punctata (duckweed) exposed to silver and silver sulfide nanoparticles[J]. Environmental Science & Technology, 2017,51(9):4936-4943.

[16]LIN D,XING B.Root uptake and phytotoxicity of ZnO nanoparticles[J]. Environmental Science & Technology, 2008,42(15):5580-5585.

[17]王震宇, 于曉莉, 高冬梅, 等, 人工合成纳米 TiO2和 MWCNTs 对玉米生长及其抗氧化系统的影响[J]. 环境科学, 2010,31(2). 480-487.

WANG Z Y,YU X L,GAO D M,et al.Effect of nano-rutile TiO2 and multi-walled carbon nanotubeson the growth of maize(Zeamays L.)seedlings and the relev antantioxidant response [J]. Environmental Science, 2010,31(2). 480-487.(in Chinese)

[18]ASLI SNEUMANN P M.Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport[J]. Plant Cell & Environment, 2009,32(5):577-584.

[19]金盛杨, 王玉军, 汪鹏, 等, 纳米氧化铜对小麦根系生理生化行为的影响[J]. 土壤, 2011,43(4):605-610.

JIN S Y, WANG Y J, WANG P, et al.Effects of CuO Nanoparticles on Physiological and Biochemical Behaviors of Wheat (Triticum aestivum L.) Root [J]. Soils, 2011,43(4):605-610.(in Chinese)

[20]RUI Y, ZHANG P, ZHANG Y, et al.Transformation of ceria nanoparticles in cucumber plants is influenced by phosphate[J]. Environmental Pollution, 2015,198:8-14.

[21]MIRALLES P, CHURCH T LHARRIS A T.Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants[J]. Environmental Science & Technology, 2012,46(17):9224-9239.

[22]CHEN G, MA C, MUKHERJEE A, et al.Tannic acid alleviates bulk and nanoparticle Nd2O3 toxicity in pumpkin: a physiological and molecular response[J]. Nanotoxicology, 2016,10(9): 1243-1253.

[23]LIMAN R, ACIKBAS YCIGˇERCI  H, Cytotoxicity and genotoxicity of cerium oxide micro and nanoparticles by Allium and Comet tests[J]. Ecotoxicology and Environmental Safety, 2019, 168:408-414.

[24]ZHANG Z, HE X, ZHANG H, et al.Uptake and distribution of ceria nanoparticles in cucumber plants[J]. Metallomics, 2011, 3(8): 816-822.

[25]MA Y, KUANG L, HE X, et al.Effects of rare earth oxide nanoparticles on root elongation of plants[J]. Chemosphere, 2010, 78(3): 273-279.

[26]MA Y, ZHANG P, ZHANG Z, et al.Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber[J]. Nanotoxicology, 2015, 9(2): 262-270.

[27]ZHANG P, MA Y H,ZHANG Z Y.Interactions between engineered nanomaterials and plants: phytotoxicity, uptake, translocation, and biotransformation, in Nanotechnology and Plant Sciences[J]. Springer,  2015:77-99.

[28]JONES D L.Organic acids in the rhizosphere-a critical review[J]. Plant and Soil, 1998, 205(1): 25-44.

[29]WANG Z, XIE X, ZHAO J, et al.Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.)[J]. Environmental Science & Technology, 2012, 46(8): 4434-4441.

[30]ZHAO L, SUN Y, HERNANDEZ-VIEZCAS J A, et al.Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in situ μ-XRF mapping of nutrients in kernels[J]. Environmental Science & Technology, 2015, 49(5): 2921-2928.

[31]ZHAO L, PENG B, HERNANDEZ-VIEZCAS J A, et al.Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation[J]. ACS Nano, 2012, 6(11): 9615-9622.

[32]RAHMAN N A,AROSLI W I W. Nutritional compositions and antioxidative capacity of the silk obtained from immature and mature corn[J]. Journal of King Saud University-Science, 2014, 26(2): 119-127.

[33]LIU Y, XU L,DAI Y. Phytotoxic Effects of Lanthanum Oxide Nanoparticles on Maize (Zea mays L.)[C]//in IOP Conference Series: Earth and Environmental Science, 2018, IOP Publishing.

[34]YUE L, MA C, ZHAN X, et al.Molecular mechanisms of maize seedling response to La2O3 NP exposure: water uptake, aquaporin gene expression and signal transduction[J]. Environmental Science: Nano, 2017, 4(4): 843-855.

[35]ZHANG W, MUSANTE C, WHITE J C, et al. Bioavailability of cerium oxide nanoparticles to Raphanus     sativus L. in two soils.[J]. Plant physiology and biochemistry, 2017,110: 185-193.

[36]TRUJILLO-REYES J, VILCHIS-NESTOR A, MAJUMDAR S, et al.Citric acid modifies surface properties of commercial CeO2 nanoparticles reducing their toxicity and cerium uptake in radish (Raphanus sativus) seedlings[J]. Journal of Hazardous Materials, 2013, 263, 677-684.

[37]LPEZ-MORENO M L, DE LA ROSA G, HERNNDEZ-VIEZCAS J , et al.Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants[J]. Environmental Science & Technology, 2010, 44(19): 7315-7320.

[38]SCHWABE F, SCHULIN R, LIMBACH L K, et al.Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture[J]. Chemosphere, 2013, 91(4): 512-520.

[39]PRIESTER J H, GE Y, MIELKE R E, et al.Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption[J]. Proceedings of the National Academy of Sciences, 2012, 109(37): E2451-E2456.

[40]WANG Q, MA X, ZHANG W, et al.The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety[J]. Metallomics, 2012, 4(10): 1105-1112.

[41]ZHAO L, SUN Y, HERNANDEZ-VIEZCAS J A, et al.Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study[J]. Journal of Agricultural and Food Chemistry, 2013, 61(49): 11945-11951.

[42]MA Y, ZHANG P, ZHANG Z, et al. Where does the transformation of precipitated ceria nanoparticles in     hydroponic plants take place?[J]. Environmental Science & Technology, 2015,49(17): 10667-10674.

[43]ZHANG P, MA Y, LIU S, et al. Phytotoxicity, uptake and transformation of nano-CeO2 in sand cultured     romaine lettuce[J]. Environmental Pollution, 2017,220:1400-1408.

[44]MA Y, HE X, ZHANG P, et al. Xylem and phloem based transport of CeO2 nanoparticles in hydroponic     cucumber plants[J]. Environmental Science & Technology, 2017,51(9):5215-5221.

[45]ZHANG P, MA Y, ZHANG Z, et al. Species-specific toxicity of ceria nanoparticles to Lactucaplants[J]. Nanotoxicology, 2015,9(1): 1-8.

[46]BARRIOS A C, RICO C M, TRUJILLO-REYES J, et al. Effects of uncoated and citric acid coated cerium     oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants[J]. Science of the     Total Environment, 2016,563: 956-964.

[47]RICO C M, JOHNSON M G, MARCUS M A, et al.Intergenerational responses of wheat (Triticum aestivum L.) to cerium oxide nanoparticles exposure[J]. Environmental Science: Nano, 2017, 4(3): 700-711.

[48]MA Y, HE X, ZHANG P, et al.Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus)[J]. Nanotoxicology, 2011, 5(4): 743-753.

[49]DE LA TORRE ROCHE R, SERVIN A, HAWTHORNE J, et al. Terrestrial trophic transfer of bulk and     nanoparticle La2O3 does not depend on particle size[J]. Environmental Science & Technology, 2015,49(19):11866-11874.

[50]ZHANG P, MA Y, ZHANG Z, et al.Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus)[J]. Environmental Science & Technology, 2012, 46(3): 1834-1841.

[51]ZHAO L, PERALTA-VIDEA J R, VARELA-RAMIREZ A, et al.Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: Insight into the uptake mechanism[J]. Journal of Hazardous Materials, 2012, 225, 131-138.

[52]RICO C M, MORALES M I, BARRIOS A C, et al.Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains[J]. Journal of Agricultural and Food Chemistry, 2013, 61(47): 11278-11285.

[53]OBERDRSTER G, STONE VDONALDSON K.Toxicology of nanoparticles: a historical perspective[J]. Nanotoxicology, 2007, 1(1): 2-25.

[54]CABISCOL CATAL E, TAMARIT SUMALLA J,ROS SALVADOR J.Oxidative stress in bacteria and protein damage by reactive oxygen species[J]. International Microbiology the Official Journal of the Spanish Society for Microbiology, 2000, 3(1): 3-8.

[55]SHARMA S SDIETZ K-J.The relationship between metal toxicity and cellular redox imbalance[J]. Trends in Plant Science, 2009, 14(1): 43-50.

[56]KOVACIC P,SOMANATHAN R.Biomechanisms of nanoparticles (toxicants, antioxidants and therapeutics): electron transfer and reactive oxygen species[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(12): 7919-7930.

[57]GILL S STUTEJA N.Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant physiology and Biochemistry, 2010, 48(12): 909-930.

[58]SHARMA P, JHA A B, DUBEY R S, et al.Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions[J]. Journal of Botany, 2012,2012.

[59]LEE J, FORTNER J D, HUGHES J B, et al.Photochemical production of reactive oxygen species by C60 in the aqueous phase during UV irradiation[J]. Environmental Science & Technology, 2007, 41(7): 2529-2535.

[60]BEGUM P,FUGETSU B.Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L.) and the role of ascorbic acid as an antioxidant[J]. Journal of Hazardous Materials, 2012, 211(14):S119.

[61]NAIR R, VARGHESE S H, NAIR B G, et al.Nanoparticulate material delivery to plants[J]. Plant Science, 2010, 179(3): 154-163.

[62]RICO C M, MORALES M I, MCCREARY R, et al.Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings[J]. Environmental Science & Technology, 2013, 47(24): 14110-14118.

[63]RICO C M, HONG J, MORALES M I, et al.Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging[J]. Environmental Science & Technology, 2013, 47(11): 5635-5642.

[64]XIA T, KOVOCHICH M, LIONG M, et al.Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways[J]. ACS Nano, 2007, 2(1): 85-96.

[65]MA C, CHHIKARA S, XING B, et al.Physiological and molecular response of Arabidopsis thaliana L. to nanoparticle cerium and indium oxide exposure[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(7): 768-778.

[66]MAJUMDAR S, PERALTA-VIDEA J R, BANDYOPADHYAY S, et al.Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms[J]. Journal of Hazardous Materials, 2014, 278:279-287.

[67]PERALTA-VIDEA J R, HERNANDEZ-VIEZCAS J A, ZHAO L, et al.Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants[J]. Plant Physiology and Biochemistry, 2014, 80:128-135.

[68]張海, 彭程, 杨建军, 等. 金属型纳米颗粒对植物的生态毒理效应研究进展[J]. 应用生态学报, 2013(3): 885-892.

ZHANG H, PENG C, YANG J J,et al. Eco-toxicological effect of metal-based nanoparticles on plants: Research progress[J].Chinese Journal of Applied Ecology,2013(3):885-892.(in Chinese)

[69]KHODAKOVSKAYA M V, DE SILVA K, BIRIS A S, et al.Carbon nanotubes induce growth enhancement of tobacco cells[J]. ACS Nano, 2012, 6(3): 2128-2135.

[70]LEE W-M, KWAK J IAN Y-J.Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity[J]. Chemosphere, 2012, 86(5): 491-499.

[71]PORTER A E, GASS M, MULLER K, et al.Direct imaging of single-walled carbon nanotubes in cells[J]. Nature Nanotechnology, 2007, 2(11): 713.

[72]JIA G, WANG H, YAN L, et al.Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene[J]. Environmental Science & Technology, 2005, 39(5): 1378-1383.

[73]MAYSINGER D, LOVRIC' J, EISENBERG A, et al.Fate of micelles and quantum dots in cells[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 65(3): 270-281.

[74]ORR G, PANTHER D J, PHILLIPS J L, et al.Submicrometer and nanoscale inorganic particles exploit the actin machinery to be propelled along microvilli-like structures into alveolar cells[J]. ACS Nano, 2007, 1(5): 463-475.

[75]LIMBACH L K, BEREITER R, MULLER E, et al.Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency[J]. Environmental Science & Technology, 2008, 42(15): 5828-5833.

[76]LIMBACH L K, LI Y, GRASS R N, et al.Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations[J]. Environmental Science & Technology, 2005, 39(23): 9370-9376.

[77]HOTZE E M, PHENRAT TLOWRY G V.Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment[J]. Journal of Environmental Quality, 2010, 39(6): 1909-1924.

[78]LIMBACH L K, GRASS R NSTARK W J.Physico-chemical differences between particle-and molecule-derived toxicity: Can we make inherently safe nanoparticles?[J]. CHIMIA International Journal for Chemistry, 2009, 63(1-2): 38-43.

[79]LPEZ-MORENO M L, DE LA ROSA G, HERNáNDEZ-VIEZCAS J A, et al.XAS corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species[J]. Journal of Agricultural and Food Chemistry, 2010, 58(6): 3689.

[80]BIRBAUM K, BROGIOLI R, SCHELLENBERG M, et al.No evidence for cerium dioxide nanoparticle translocation in maize plants[J]. Environmental Science & Technology, 2010, 44(22): 8718-8723.

[81]WYTTENBACH A, FURRER V, SCHLEPPI P, et al.Rare earth elements in soil and in soil-grown plants[J]. Plant and Soil, 1998, 199(2): 267-273.

[82]XU X, ZHU W, WANG Z, et al.Accumulation of rare earth elements in maize plants (Zea mays L.) after application of mixtures of rare earth elements and lanthanum[J]. Plant and Soil, 2003, 252(2): 267-277.

[83]NAVARRO E, BAUN A, BEHRA R, et al.Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi[J]. Ecotoxicology, 2008, 17(5): 372-386.

[84]QUIK J T, LYNCH I, VAN HOECKE K, et al.Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water[J]. Chemosphere, 2010, 81(6): 711-715.

[85]DOMINGOS R F, TUFENKJI N,WILKINSON K J.Aggregation of titanium dioxide nanoparticles: role of a fulvic acid[J]. Environmental Science & Technology, 2009, 43(5): 1282-1286.

[86]GHOSH S, MASHAYEKHI H, BHOWMIK P, et al.Colloidal stability of Al2O3 nanoparticles as affected by coating of structurally different humic acids[J]. Langmuir, 2009, 26(2): 873-879.

[87]SEHGAL A, LALATONNE Y, BERRET J-F, et al.Precipitation Redispersion of Cerium Oxide Nanoparticles with Poly (acrylic acid): Toward Stable Dispersions[J]. Langmuir, 2005, 21(20): 9359-9364.

[88]COLLIN B, OOSTVEEN E, TSYUSKO O V, et al.Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans[J]. Environmental Science & Technology, 2014, 48(2): 1280-1289.

[89]YANG KXING B.Adsorption of fulvic acid by carbon nanotubes from water[J]. Environmental Pollution, 2009, 157(4): 1095-1100.

[90]HYUNG H,KIM J-H.Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters[J]. Environmental Science & Technology, 2008, 42(12): 4416-4421.

[91]ROVIRA A D.Plant root exudates[J]. The Botanical Review, 1969, 35(1): 35-57.

[92]JONES D L,DARRAH P R.Role of root derived organic acids in the mobilization of nutrients from the rhizosphere[J]. Plant and Soil, 1994, 166(2): 247-257.

(責任编辑:张 梅)

猜你喜欢

植物影响因素
植物的防身术
把植物做成药
哦,不怕,不怕
将植物穿身上
突发事件下应急物资保障能力影响因素研究
农业生产性服务业需求影响因素分析
村级发展互助资金组织的运行效率研究
基于系统论的煤层瓦斯压力测定影响因素分析
植物罢工啦?
植物也疯狂