APP下载

利用SLAF-Seq-BSA定位矮秆波兰小麦矮化基因Rht-dp

2018-01-05柴松岳程怡然周永红

四川农业大学学报 2017年4期
关键词:矮秆矮化波兰

柴松岳,姚 琴,程怡然,王 超,周永红,王 益

(四川农业大学小麦研究所,成都 611130)

利用SLAF-Seq-BSA定位矮秆波兰小麦矮化基因Rht-dp

柴松岳,姚 琴,程怡然,王 超,周永红,王 益*

(四川农业大学小麦研究所,成都 611130)

【目的】为了显著地缩小矮秆波兰小麦矮化基因Rht-dp的候选区域。【方法】借助SLAF-Seq-BSA(specific-locus amplified fragment sequencing and bulked segregant analysis)技术进行Rht-dp的关联分析。【结果】通过对亲本、极高和极矮池的SLAF-Seq分析,SLAF标签均匀分布在A和B基因组上,但仍有部分标签分布在D基因组或没有绑定在中国春基因组上。同时将Rht-dp定位在4B基因组上的154766 751-343858 300区域;结合前期SSR标记分析结果(99826 939-250584 662),最终将Rht-dp缩小在4B基因组上的154766 751-250584 662区域。【结论】矮秆波兰小麦与中国春具有一定的遗传差异。SLAF-Seq-BSA能有效地用于矮秆波兰小麦矮化基因Rht-dp的定位,为后期建立其他分子标记快速缩小目的区域奠定了物质基础。

矮秆波兰小麦;SLAF-Seq;BSA;Rht-dp

株高影响植物倒伏、收获指数以及产量。从发现和利用植物矮化基因开启“绿色革命”至今,大量水稻、玉米以及小麦等矮化优良品种应用于农业生产。因此,对农作物等的矮化基因及其机制的研究也成为植物研究的热点和重点。

目前,小麦中已经发现和命名了24个矮化基因,共29个等位基因。这些等位基因中,20个来源于六倍体普通小麦(Triticum aestivu m,2n=6x=42),其中围绕Rht-B1、Rht-D1、Rht-8和Rht 12的研究较多,它们通过干扰小麦体内赤霉素的合成或转导抑制茎秆的伸长导致矮化[1-4]。其余小麦矮化基因主要集中在简单的基因定位和对赤霉素的敏感性检测:其中16个为赤霉素敏感类型,13个为赤霉素不敏感类型[5];以及23个等位基因分别定位在小麦的2A、2B、3B、4B、4D、5A、5D、6A、7A 和 7B 染色体上[6-18]。同时,这29个等位基因中,16个为隐性或部分隐性基因,13个为显性或半显性基因;以及14个为天然矮化基因,15个为人工诱变矮化基因(见表1)。

表1 小麦矮秆基因(24个基因,共29个等位基因)Table1 All dwarfing genes in wheat(24 genes,totally 29 alleles)

作为普通小麦的亲缘物种,至今在四倍体小麦中先后发现9个矮化基因,分别是来源于硬粒小麦(T.turgidum)的 Rht14、Rht15、Rht16、Rht18 和 Rht19[8,11],圆锥小麦(T.durum)的 Rht22[12]和 Rht-B1f[13],以及波兰小麦(T.polonicum)的Rht-B1IC12196[5]和Rht-dp[10]。与来源于日本波兰小麦的显性基因Rht-B1IC12196不同,Rht-dp为隐性主效基因且来源于我国新疆矮秆波兰小麦(dwarf polish wheat,DPW,2n=4x=28,AABB,AS304)。2012 年 Kang H.Y.等[10]利用 SSR 标记对DPW×高秆波兰小麦的124个F2单株进行了遗传分析,发现该基因位于DPW的4BS染色体上,与SSR标记Xwmc511和Xgpw3017连锁且遗传距离分别为5.5 cM和0.5 cM。与国际小麦基因组测序组织最新公布的中国春序列比对,发现Xwmc511和Xgpw3017之间具有约1.5亿(99826 939~250584 662)个碱基序列。如此大的遗传区间不能实现Rhtdp的基因克隆。因此,进一步显著性地缩小与Rhtdp连锁的遗传区域是实现Rht-dp基因克隆的前提保障。

得益于新一代测序技术的发展和应用,高通量的分子标记技术如单核苷酸多态性标记(single nucleotide polymorphisms,SNP)芯片、多样性芯片技术(diversity arrays technology,DArT)、SLAF-Seq-BSA(specific-locus amplified fragment sequencing and bulked segregant analysis)等已经广泛应用于植物目标性状的定位或全基因组关联分析。SLAF-Seq是一种高通量SNP挖掘和基因型鉴定技术[19]。群体分组分析法(BSA)通过构建某一性状的两个极端群体能有效地检测该性状的位点[20]。这两者的结合已经广泛应用于小麦及其近缘物种目标性状的精细定位及其候选基因的选择,如控制小麦粒重的TaTGW-7A[21]。因此,本研究借助SLAF-Seq-BSA技术,对DPW×高秆波兰小麦重组自交系(F7-8)群体构建的两个极高和极矮的库进行分析,以期显著性地缩小Rht-dp的遗传连锁区域。

1 材料和方法

1.1 实验材料

DPW、高秆波兰小麦、DPW×高秆波兰小麦重组自交系(F7-8)群体。DPW和高秆波兰小麦均是采自于我国新疆吐鲁番地区的自然分布的四倍体材料(2n=4x=28,AABB)。所有实验材料均种植在四川农业大学崇州现代农业研发基地,且保存在四川农业大学小麦研究所。

1.2 实验方法

1.2.1 株高考察

对田间种植的DPW、高秆波兰小麦、DPW×高秆波兰小麦重组自交系(F7-8)进行成熟期株高测量。亲本及每个株系测量10个单株。同时在重组自交系中选择30个最高株系以及30个最矮株系,并收集叶片保存在-20℃冰箱,为DNA提取备用。

1.2.2 SLAF-Seq测序和分析

亲本及两个重组自交系库的SLAF测序及分析参照 Hu M.等[21]和 J.T.Hill等[22]的方法,并由北京百迈克生物技术有限公司完成。利用国际小麦基因组测序组织公布的中国春基因组(v1.0-assembly)为参考基因组。

2 结果与分析

2.1 株高

在成熟期,高秆和矮秆波兰小麦平均株高分别为165 cm和95 cm;极高和极低重组自交系混合池的平均株高分别为150 cm和87 cm(见图1)。混合池间以及亲本间株高差异显著,符合SLAF-Seq-BSA分析要求。

图1 成株期不同材料间的株高Figure1 Plant height of different materials at the maturation stage plant height

2.2 SLAF-Seq结果

经过酶切成460~480 bp片段后,测序共获得18453 632~34557 031个读序,质量大于或等于30的碱基占 88.04%~88.83%,GC含量为 44.89%~45.61%。共获得532907个SLAF标签,每个SLAF标签的亲本测序深度为28.95×~29.01×,高秆和矮秆池测序深度分别为52.38×和43.70×。与中国春基因组比对,这些SLAF标签较均匀分布在各条A和B基因组上,其中3B基因组最多为46796个,而1A基因组最少为29179个。但共有19648个SLAF标签位于D基因组或没有绑定到中国春基因组上(见表2)。亲本间和混池间分别获得134779和145317个SNP。通过亲本和混池过滤,共获得37447个高质量的SNP位点。

2.3 Rht-dp关联分析

2.3.1 欧式距离(euclidean distance,ED)关联分析

根据J.T.Hill等[22]的ED值计算方法,计算获得所有位点拟合值的中间值作为关联阈值为1.49。根据该阈值,获得1个位于4B染色体上的关联区域,总长度为5.20亿个碱基(64715 030~585564 036,见图 2),

表2 SLAF标签在基因组上的分布统计Table2 The distribution of SLAF tags on genomes

2.3.2 SNP-index关联分析

通过计算混池间基因型频率的显著差异,用Δ(SNP-index)统计。SNP标记与性状关联度越强,Δ(SNP-index)越接近1。通过计算,取拟合后的Δ(SNP-index)值0.91为关联阈值(见图3),在4B染色体上获得一个总长度为1.89亿个碱基的关联区域。该区域在4B基因组上的起始位置为154766 751到343858 300。

2.3.3 ED,SNP-index和SSR综合分析

综合ED和SNP-index分析,SLAF-Seq-BSA将Rht-dp定位在4B基因组上的154766 751~343858 300区域。然而,Kang H.Y.等[10]的SSR标记分析结果,即Rht-dp位于4B基因组上的99826 939~250584 662区域。因此,取这两次分析的交集,最终将Rht-dp缩小在4BS基因组上的154766 751~250584 662区域,该区域具有约0.95亿个碱基。该区域内约有269个编码基因(见表1),其中含有一个依赖 S-腺苷-L-蛋氨酸(S-adenosyl-L-methionine)的甲基转移酶(Methyltransferase)。

3 讨论与结论

图2 欧式距离方法关联分析Figure2 The euclidean distance correlated analysis

波兰小麦与圆锥小麦、硬粒小麦和普通小麦的遗传相似度较低[23-24]。同时能积累高浓度的锌、铁和铜等营养元素在种子中,以及具有高千粒重等因素,波兰小麦也广泛地受到育种家的重视[25]。同时,相关研究也表明来源于中国的波兰小麦与圆锥小麦、硬粒小麦和普通小麦的遗传相似度更低[23]。矮秆波兰小麦来源于我国新疆,对锌和镉等重金属元素具有较高的耐受性[26]。尽管其携带的天然主效隐性矮化基因Rht-dp也位于4BS上,但利用Rht-B1进行同源克隆,在高秆和矮秆波兰小麦中我们没有获得与Rht-B1相似的基因序列。同时,Rht-B1IC12196是一个显性主效基因[5],其所在的4BS基因组区域与Rht-dp的区域不同。因此,Rht-dp与Rht-B1IC12196不同,是一个独立起源于中国的矮化基因。同时,本研究的SLAF-Seq分析发现共19648个SLAF标签位于D基因组或没有绑定到中国春基因组上,表明这两份波兰小麦与中国春确实具有一定的遗传差异,尽管未绑定的部分SLAF标签也可能是由于中国春参考基因组的不完善导致。

图3 SNP-index关联分析Figure3 The SNP-index correlated analysis

不同的矮化基因涉及不同的矮化机制。多数矮化基因干扰植物激素的合成、信号转导或运输,抑制细胞的生长和分化而导致矮化。主要包含赤霉素、细胞分蘖素、油菜内酯素、吲哚乙酸、独脚金内酯素等[27-30]。然而,还有部分矮化基因通过干扰苯丙氨酸途径从而影响木质素或异黄酮等物质的合成导致矮化[31-32]。我们前期利用转录组和蛋白质组学对矮秆波兰小麦和高秆波兰小麦在不同光照条件下的茎秆进行分析,发现矮秆波兰小麦的Rht-dp可能干预木质素和纤维素合成,导致矮秆波兰小麦茎秆的木质素和纤维素含量降低从而导致矮化[26]。本研究利用SLAF-Seq-BSA分析和前期的SSR标记分析结果相结合,最终将Rht-dp缩小在4BS基因组上的154766 751~250584 662区域,该区域具有约0.95亿个碱基。与之前的SSR标记结果相比,显著性地缩小了0.55亿个碱基位置。在该区域内约有269个编码基因(见表2),其中包含一个依赖S-腺苷-L-蛋氨酸的甲基转移酶,该转移酶是木质素和异黄酮合成的关键限速酶[33]。阻碍S-腺苷-L-蛋氨酸的合成或者抑制S-腺苷-L-蛋氨酸甲基转移酶均能导致植物的矮化[34-35]。因此,该基因可以作为Rht-dp的目标候选基因,但有待于进一步的验证。然而,由于Rht-dp的连锁区域仍然较大,不利于目的基因的筛选。当前中国春基因组参考序列版本(v1.0-assembly,2017年1月公布)的释放以及目前候选区域的确定也将极大地利于其它分子标记的开发和利用,从而进一步缩小该区域并实现Rht-dp的精细定位和目的基因的克隆。目前,我们也正依据该目的区域内参考基因组序列挖掘和设计了大量的SSR标记并应用于该重组自交系的验证,将Rht-dp的候选区域缩小到了0.1亿个碱基区域内(数据未发表),证实了利用SLAF-Seq-BSA关联分析目标性状是切实可行的。

[1]PENG J,RICHARD D E,HARTLEY N M,et al.‘Green revolution’genes encode mutant gibberellin response modulators[J].Nature,1999,400(6741):256-261.

[2]PEARCE S,SAVILLE R,VAUGHAN S P,et al.Molecular characterization of Rht-1 dwarfing genes in hexaploid whea[tJ].Plant Physiol,2011,157(4):1820-1831.

[3]LI Y,XIAO J,WU J,et al.A tandem segmental duplication(TSD)in green revolution gene Rht-D1b region underlies plant height variation[J].New Phytologist,2012,196(1):282-291.

[4]CHEN L,HAO L,CONDON A G,et al.Exogenous GA3 application can compensate the morphogenetic effects of the GA-responsive dwarfing gene Rht12 in bread whea[tJ].Plos One,2014,9(1):e86431.

[5]WATANABE N.Triticum polonicum IC12196:a possible alternative source of GA3-insensitive semi-dwarfism[J].Cereal Research Communications,2004,32(4):429-434.

[6]EILLS M H,REBETZKE G J,AZANZA F,et al.Molecular mapping of gibberllin-responsive dwarfing genes in bread wheat[J].Theoretical and Applied Genetics,2005,111(3):423-430.

[7]MCINTOSH R A,DEVOS K M,DUBCOVSKY J,et al.Catalogue of gene symbols for wheat[C]//Brisbane:Processing 11thInternational Wheat Genetic Symposium,2008:59.

[8]HAQUE M A,MARTINEK P,KOBAYASHI S,et al.Microsatellite mapping of genes for semi-dwarfism and branched spike in Triticum durum Desf.var.ramosoobscurum Jakubz.“Vetvistokoloskaya”[J].Genetic Resources Crop Evolution,2012,59(5):831-837.

[9]PENG Z S,LI X,YANG Z J,et al.A new reduced height gene found in the tetraploid semi-dwarf wheat landrace Aiganfanmai[J].Genetics and Molecular Research,2011,10(4):2349-2357.

[10]KANG H Y,LIN L J,SONG Z J,et al.Identification,fine mapping and characterization of Rht-dp,recessive wheat dwarfing(reduced height)gene derived from Triticum polonicum[J].Genes&Genomic,2012,34(5):509-515.

[11]KONZAK C F.Mutations and mutation breeding.Wisconsin,American:Heyne EG(ed)wheat and wheat improvement[C]//2ndEdition American Society of Agronomy,1987:428-443.

[12]PENG Z S,LI X,YANG Z J.A new reduced height gene found in the tetraploid semi-dwarf wheat landrace Aiganfanmai[J].Genetic Resources Crop Evolution,2011,10(4):2349-2357.

[13]WATANABE N,KOSUGE K,KUBOYAMA T.Genetic mapping of the genes and development of near-isogenic lines in durum whea[tC]//EWAC Newslet,2008:27-28.

[14]KONZAK C.Genetic analysis,genetic improvement and evaluation of induced semi-dwarf mutants in wheat[C]//Vienna:Semidwarf cereal mutants and their use in cross-breeding III research coordination meeting,International Atomic Energy Agency,1988:39-50.

[15]HAQUE M,MARTINEK P,WATANABE N,et al.Genetic mapping of gibberellic acid-sensitive genes for semi-dwarfism in durum whea[tJ].Cereal Reseach Communication,2011,39(2):171-178.

[16]CHEN G,ZHENG Q,BAO Y,et al.Molecular cytogenetic identification of a novel dwarf wheat line with introgressed Thinopyrum ponticum chromatin[J].Journal of Biosciences,2012,37(1):149-155.

[17]CHEN S,GAO R,WANG H,et al.Characterization of novel reduced height gene(Rht23)regulating panicle morphology and plant architecture in bread whea[tJ].Euphytica,2015,203(3):583-594.

[18]VIKHE P,PATIL R,CHAVAN A,et al.Mapping gibberellinsensitive dwarfing locus Rht18 in durum wheat and development of SSR and SNP markers for selection in breeding[J].Molecular Breeding,2017,37(3):28.

[19]SUN X,LIU D,ZHANG X,et al.SLAF-seq:an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing[J].Plos One,2013,8(3):e58700.

[20]POMRANING K R,SMITH K M,FREITAG M.Bulk segregant analysis followed by high-throughputsequencing reveals the Neurospora cell cycle gene,ndc-1,to be allelic with the gene for ornithine decarboxylase,spe-1[J].Eukaryot Cell,2011,10(6):724-733.

[21]HU M,ZHANG H,LIU K,et al.Cloning and characterization of TaTGW-7A gene associated with grain weight in wheat via SLAF-Seq-BSA[J].Frontiers PlantScience,2016,7(e0145970):1902.

[22]HILL J T,DEMAREST B L,BISGROVE B W,et al.MMAPPR:mutation mapping analysis pipeline for pooled RNA-seq[J].Genome Research,2013,23(4):687-697.

[23]WANG Y,WANG C,ZHANG H,et al.Genetic analysis of wheat(Triticum aestivum L.)and related species with SSR markers[J].Genetic Resources Crop Evolution,2013,60(3):1105-1117.

[24]MICHALCOVA V,DUSINSKYY R,SABO M,et al.Taxonomical classification and origin of KamutRwheat[J].Plant Systematics&Evolution,2014,300(7):1749-1757.

[25]WIWART M,SUCHOWILSKA E,KANDLER W,et al.Can polish wheat(Triticum polonicum L.)be an interesting gene source for breeding wheat cultivars with increased resistance to Fusarium head bligh[tJ].Genetic Resources and Crop Evolution,2013,60(8):2359-2373.

[26]WANG Y,XIAO X,WANG X,et al.RNA-Seq and iTRAQ reveal the dwarfing mechanism of dwarf polish wheat(Triticumpolonicum L.)[J].International Journal Biological Sciences,2016,12(6):653-666.

[27]HONG Z,UWGUCHIEGUCHI-TANAKA M,SHIMIZU-SATO S,et al.Loss-of-function of a rice brassinosteroid biosynthetic enzyme,C-6 oxidase,prevents the organized arrangement and polar elongation of cells in the leaves and stem [J].Plant Journal,2002,32(4):495-508.

[28]ITOH H,TATSUMI T,SAKAMOTO T,et al.A rice semi-dwarf gene,Tan-Ginbozu(D35),encodes the gibberellin biosynthesis enzyme,ent-kaurene oxidase[J].Plant Molecular Biology,2004,54(4):533-547.

[29]AYA K,HOBO T,SATO-IZAWA K,et al.A novel AP2-type transcription factor,SAMLL ORGAN SIZE1,controls organ size downstream of an auxin signaling pathway[J].Plant Cell Physiol,2014,55(5):897-912.

[30]JIANG L,LIU X,XIONG G,et al.DWARF 53 acts as a repressor of strigolactone signaling in rice[J].Nature,2013,504(7480):401-405.

[31]HUANG J,GU M,LAI Z,et al.Functional analysis of the Arabidopsis PAL gene family in plant growth,development,and response to environmental stress[J].Plant Physiol,2010,153(4):1526-1538.

[32]TRABUCCO G M,MATOS D A,LEE S J,et al.Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon[J].BMC Biotechnology,2013,13(1):61.

[33]MASUTA C,TANAKA H,UEHARA K,et al.Broad resistance to plant viruses in transgenic plants conferred by antisense inhibition of a host gene essential in S-adenosylmethionine-dependent transmethylation reaction[J].Proceedings of the National Academy of Science USA,1995,92(13):6117-6121.

[34]MOFFATTBA,STEVENSYY,ALLENMS,etal.Adenosinekinase deficiency is associated with developmental abnormalitiesandreduced transmethylation[J].Plant Physiol,2002,128(3):812-821.

[35]LI W,HAN Y,FENG T,et al.Knockdown of SAMS genes encoding S-adenosyl-L-methionine synthetases causes methylation alterations of DNAs and histones and leads to late flowering in rice[J].Plant Physiol,2011,168(15):1837-1843.

Mapping of Rht-dp Derived from Dwarf Polish Wheat(Triticum polonicum)via SLAF-Seq-BSA

CHAI Song-yue,YAO Qin,CHENG Yi-ran,WANG Chao,ZHOU Yong-hong,WANG Yi*
(Triticeae Research Institute,Sichuan Agricultural University,Chengdu 611130,China)

【Objective】Fine mapping of Rht-dp derived from dwarf polish wheat(DPW).【Method】In this study,SLAF-Seq-BSA(specific-locus amplified fragment sequencing and bulked segregant analysis)was used to map the Rht-dp associated with dwarfism in DPW.【Results】Most of SLAF tags were evenly distributed in A and B genomes.However,a handful of tags were distributed in D genome or were not mapped on the genomes of Chinese Spring.Meanwhile,Rht-dp was mapped on the 4B genome started from 154766 751 to 343858 300.Combined with our previous SSR results,Rht-dp was finally mapped on the 4B genome started from 154766 751 to 250584 662.【Conclusion】All results indicated that there are some differences of genetic similarity between DPW and Chinese Spring.SLAF-Seq-BSA is an efficient strategy for mapping the Rht-dp,which would further help to fine map the Rht-dp by developing other new molecular markers,such as SSR marker.

dwarf polish wheat;SLAF-Seq;BSA;Rht-dp

S512.5

A

1000-2650(2017)04-0459-06

10.16036/j.issn.1000-2650.2017.04.001

2017-11-09

国家自然科学基金项目(31671688)。

柴松岳,硕士生。*责任作者:王益,副研究员,从事作物功能基因组学研究,E-mail:wangyi@sicau.edu.cn。

(本文审稿:武 晶;责任编辑:刘诗航;英文编辑:刘诗航)

猜你喜欢

矮秆矮化波兰
进军波兰
小麦矮秆突变体je0098的遗传分析与其矮秆基因定位
冀西北苹果矮化密植栽培技术
47份外引小麦种质中矮秆基因的检测及其降秆效应分析
波兰睡眠研究会
矮化中间砧苹果幼树抽条调查
在波兰,遇见地下仙境
网络时代
甘蓝型油菜半矮秆细胞质雄性不育系9162 A的选育及应用
普通小麦品种陕农33矮秆突变体的矮化效应分析