APP下载

基于U模型的非线性系统Super-Twisting滑模控制研究

2016-10-28张建华吴学礼霍佳楠庄沈阳

河北科技大学学报 2016年4期
关键词:工程学院滑模河北

张建华,李 杨,吴学礼,霍佳楠,庄沈阳

(1.河北科技大学电气工程学院,河北石家庄 050018;2.河北省生产过程自动化工程技术研究中心,河北石家庄 050018;3.河北科技大学信息科学与工程学院,河北石家庄 050018;4.齐齐哈尔大学计算机与控制工程学院,黑龙江齐齐哈尔 161006)



基于U模型的非线性系统Super-Twisting滑模控制研究

张建华1,2,李杨2,3,吴学礼1,2,霍佳楠1,庄沈阳4

(1.河北科技大学电气工程学院,河北石家庄050018;2.河北省生产过程自动化工程技术研究中心,河北石家庄050018;3.河北科技大学信息科学与工程学院,河北石家庄050018;4.齐齐哈尔大学计算机与控制工程学院,黑龙江齐齐哈尔161006)

为了对基于U模型的非线性控制系统进行研究,利用Super-Twisting控制算法,解决非仿射非线性系统的控制问题,对非线性函数进行神经网络逼近,运用Super-Twisting控制算法进行控制。选取恰当的Lyapunov函数,对Super-Twisting算法的收敛性进行了证明。为了验证该方法的可行性和有效性,利用Matlab软件进行仿真,结果表明在神经网络自适应Super-Twisting控制器的作用下,被控系统具有快速的跟踪性能和输出的有界性。

鲁棒控制;非线性系统;神经网络;U模型;Super-Twisting算法;自适应

非线性特性普遍存在于实际的生产中,非线性系统的控制问题一直以来是科学研究中需要解决的一个普遍性问题[1-3]。目前,有很多种设计工具和分析方法来研究非线性系统[4-6],线性化方法是最为普遍的方法。但是,线性化方法也有其弊端,在非线性程度强、控制精度要求高的情况下,难以得到良好的控制效果,而且大多数线性控制方法不能直接应用于非线性系统的设计[7-9]。因此,研究人员提出了多种关于非线性控制器的设计方法,有相平面法,Backstepping,Lyapunov函数法,描述函数法,反馈线性化等设计方法[10-12]。

建立一个通用、易于控制器设计并具有高精度的非线性模型是解决控制系统设计的关键。U模型的起源正是基于这样的认识演变而来的,自U模型被提出以来,已为非线性控制系统设计开创了一个新的研究领域[13-14]。朱全民等人提出了运用牛顿-拉夫逊迭代算法求解多项式,为U模型中非线性系统控制器的设计提供了基础[13]。U模型是表示一类平滑非线性对象的时变参数多项式函数,建立了一个简单的通用映射[14],可将平滑非线性离散时间输入-输出动态对象模型完全转换为线性控制可设计的结构。

滑模控制也称作变结构控制,本质上是一种控制不连续性的非线性控制[15-17]。相比于其他控制器,滑模控制的优点有:整体结构简单、快速响应、对内部参数和外部扰动均不灵敏、无需系统在线辨识等[18-20]。滑模控制与其他控制的区别在于系统本身并不固定,而是能够在动态过程中,根据系统当前的状态有目的性地不断变化,最终使系统按照预先设定的轨迹运动。但是,传统的滑模控制也有其弊端,由于自身的离散性存在了不可避免的抖震问题。高阶滑模(HOSM)的提出消除了传统滑模的弊端,并保留了传统滑模的优点。

基于U模型的非线性系统控制可以实现很多系统的控制设计,特别是对于动态非线性对象进行极点配置,对前向自适应跟踪控制等控制问题。论文分析了基于U模型的三角结构非线性控制系统,运用了Lyapunov函数方法,对Super-Twisting算法的收敛性进行了证明,并对系统的状态和系统控制器的输出进行仿真,仿真结果证明所提出方法的正确性。

1 问题描述

考虑如下的非仿射非线性系统:

(1)

h(x(t))=W*hN(x(t))-ε(t),

这里用神经网络W*hN(x(t))对非线性函数进行逼近,ε(t)为逼近误差,W*是非线性系统神经网络理想逼近:

考虑系统(1),选择如下的坐标变换:

式中:yd表示系统的期望输出;αi作为虚拟控制器,理想的控制律为[1]

(2)

Super-Twisting算法是一种二阶滑模控制方法,该系统表示为

式中:函数x1,x2是变量;k1,k2是控制增益。研究表明该系统是有限时间收敛的,并且具有很好的鲁棒性[20]。

2 非线性系统控制

定理非仿射非线性系统(1),设计虚拟控制器(2)实现反步迭代控制,根据Super-Twisting算法设计控制器,实现闭环系统是一致渐近有界稳定的。

第1步:

z1=x1-yd,

根据系统(1),有

理想的虚拟控制律为

选取神经网络对非线性h1(x1(t))进行逼近,有

选取虚拟控制律

于是可以得到

并且有

对于子系统

x2=α1+z2,

选取下面的自适应律

选取Lyapunov函数

沿系统对时间求导可得

沿系统对时间求导,并应用下面的不等式

根据上面的过程,可得

其中

第i步,(2≤i≤n-1):

zi=xi-αi-1,

根据系统,有

理想的虚拟控制律为

选取控制律为

所以有

其中

选取下面的自适应律

选取Lyapunov函数

沿系统对时间求导可得

沿系统对时间求导,并应用下面的不等式

可以得到

其中:

最后一步,也就是第n步,

zn=xn-αn-1,

于是就有

理想的虚拟控制律为

选取控制律为

如果

zn+1=u-αn,

所以有

其中

选取下面的自适应律

对于控制器选取

选取下面的自适应律

于是就有

其中

选取Lyapunov函数

沿系统对时间求导可得

其中

δn=kn+1εn+εn+1,

于是就有zn有限时间渐近有界稳定,于是代入之前的n-1步就有

沿系统对时间求导可得

其中

于是就有反步迭代过程中闭环系统是一致渐近有界稳定的,从而定理得证。

3 仿真实例

算例: 系统描述如下

期望的系统输出为yd=sin(t),通过定理中的结论,选取

仿真选取x=[00]T,选取控制器为

图1 系统状态和预设轨迹Fig.1 System state and pre-specified trajectory

神经网络仿真过程中,为神经网络对非线性系统的逼近过程,神经网络自适应增益应该选取的大一些,通过选取双曲函数作为神经网络作用函数,神经网络权值初始条件为0,则有:

图1表示在神经网络自适应滑模控制器作用下,被控系统的输出能够在很短的时间内跟踪上预先设定的轨迹。

4 结 论

本文通过U模型的控制思路,将系统输出作为虚拟控制的输入,设计了非线性系统的Super-Twisting控制器,实现非仿射非线性系统的神经网络自适应控制,具有有限时间收敛的特点,能够更好地实现神经网络控制收敛时间的问题,完成了非线性系统的有限时间控制,最后通过仿真实验验证了算法的有效性。

/

[1]ZHANG Jianhua, ZHU Quanmin, WU Xueli, et al. A generalized indirect adaptive neural networks backstepping control procedure for a class of non-affine nonlinear systems with pure-feedback prototype[J]. Neurocomputing, 2013, 121:131-139.

[2]吴学礼, 刘浩南, 许晴. 机器人手臂控制系统的设计与研究[J]. 河北科技大学学报, 2014,35(4):361-365.

WU Xueli, LIU Haonan, XU Qing. Design and research of robot arm control system[J]. Journal of Hebei University of Science and Technology, 2014,35(4):361-365.

[3]YANG Qingyun, CHEN Mou. Adaptive neural prescribed performance tracking control for near space vehicles with input nonlinearity[J]. Neurocomputing, 2016,174(Part B):780-789.

[4]YANG Yana, HUA Changchun, GUAN Xinping. Finite time control design for bilateral teleoperation system with position synchronization error constrained[J]. IEEE Trans on Cybernetics, 2016,46(3):609-619.

[5]CHEN Weisheng, HUA Shaoyong, GE Shuzhi. Consensus-based distributed cooperative learning control for a group of discrete-time nonlinear multi-agent systems using neural networks[J]. Automatica, 2014,50(9):2254-2268.

[6]纪志强, 魏明, 吴启蒙, 等. 基于递归神经网络的TVS电脉冲响应建模[J]. 河北科技大学学报, 2015,36(2):157-162.

JI Zhiqiang, WEI Ming, WU Qimeng, et al. EMP response modeling of TVS based on the recurrent neural network[J]. Journal of Hebei University of Science and Technology, 2015, 36(2):157-162.

[7]WANG Ding, MA Hongwen, LIU Derong. Distributed control algorithm for bipartite consensus of the nonlinear time-delayed multi-agent systems with neural networks[J]. Neurocomputing, 2016,174(Part B): 928-936.

[8]YANG Yana, HUA Changchun, GUAN Xinping. Adaptive fuzzy finite-time coordination control for networked nonlinear bilateral teleoperation system[J]. IEEE Trans on Fuzzy Systems, 2014,22(3):631-641.

[9]HERTY M, YONG Wenan. Feedback boundary control of linear hyperbolic systems with relaxation[J]. Automatica, 2016,69:12-17.

[10]YANG Yana, GE Chao, WANG Wang, et al. Adaptive neural network based prescribed performance control for teleoperation system under input saturation[J]. Journal of the Franklin Institute, 2015,352(5):1850-1866.

[11]HSU Chunfei, CHANG Chunwei. Intelligent dynamic sliding-mode neural control using recurrent perturbation fuzzy neural networks[J]. Neurocomputing, 2016,173(Part 3):734-743.

[12]HUA Changchun, YANG Yana, GUAN Xinping. Neural network-based adaptive position tracking control for bilateral teleoperation under constant time delay[J]. Neurocomputing,2013,113(3):204-212.

[13]ZHU Q M, GUO L Z. A pole placement controller for non-linear dynamic plant[J]. Proc of IMechE, Part Ⅰ: J Systems and Control Engineering, 2002, 216(16): 467-476.

[14]ZHU Q M, WARWOCL K, DOUCE J L. Adaptive general predictive controller for nonlinear systems[J]. IEEE Proc of Control Theory Application, 1991, 138(1): 33-40.

[15]NAGESH I, EDWARDS C. A multivariable Super-Twisting sliding mode approach[J]. Automatica, 2014, 50(3):984-988.

[16]BASIN M, RODRIGUEZ-RAMIREZ P, DING S, et al. A nonhomogeneous Super-Twisting algorithm for systems of relative degree more than one[J]. Journal of the Franklin Institute, 2015,352(4):1364-1377.

[17]CHEN Binglong, GENG Yunhai. Super Twisting controller for on-orbit servicing to non-cooperative target[J]. Chinese Journal of Aeronautics, 2015,28(1):285-293.

[18]LI Shu, GONG Mingzhe, LIU Yanjun. Neural network-based adaptive control for a class of chemical reactor systems with non-symmetric dead-zone[J]. Neurocomputing, 2016,174(Part B):597-604.

[19]徐凤霞, 朱全民, 赵东亚, 等. 基于U模型的非线性控制系统设计方法十年发展综述[J].控制与决策, 2013,28(7):961-971.

XU Fengxia, ZHU Quanmin, ZHAO Dongya, et al.U-model based design methods for nonlinear control systems a survey of the development in the 1st decade[J]. Control and Decision, 2013,28(7):961-971.

[20]MORENO J A, OSORIO M. Strict Lyapunov functions for the Super-Twisting algorithm[J]. IEEE Transactions on Automatic Control, 2012,57(4):1035-1040.

StudyofSuper-TwistingslidingmodecontrolforUmodelbasednonlinearsystem

ZHANGJianhua1,2,LIYang2,3,WUXueli1,2,HUOJianan1,ZHUANGShenyang4

(1.SchoolofElectricalEngineering,HebeiUniversityofScienceandTechnology,Shijiazhuang,Hebei050018,China;2.HebeiProvincialResearchCenterforTechnologiesinProcessEngineeringAutomation,Shijiazhuang,Hebei050018,China;3.SchoolofInformationScienceandEngineering,HebeiUniversityofScienceandTechnology,Shijiazhuang,Hebei050018,China;4.CollegeofComputerandControlEngineering,QiqiharUniversity,Qiqihar,Heilongjiang161006,China)

TheSuper-TwistingcontrolalgorithmisadoptedtoanalyzetheUmodelbasednonlinearcontrolsysteminordertosolvethecontrollerdesignproblemsofnon-affinenonlinearsystems.Thenon-affinenonlinearsystemsarestudied,theneuralnetworkapproximationofthenonlinearfunctionisperformed,andtheSuper-Twistingcontrolalgorithmisusedtocontrol.TheconvergenceoftheSuper-TwistingalgorithmisprovedbyselectinganappropriateLyapunovfunction.TheMatlabsimulationiscarriedouttoverifythefeasibilityandeffectivenessofthedescribedmethod.TheresultshowsthattheoutputofthecontrolledsystemcanbetrackedinaveryshorttimebyusingthedesignedSuper-Twistingcontroller,andtherobustnessofthecontrolledsystemissignificantlyimprovedaswell.

robustcontrol;nonlinearsystem;neuralnetwork;Umodel;Super-Twistingalgorithm;adaptive

1008-1542(2016)04-0376-06

10.7535/hbkd.2016yx04010

2015-12-25;

2016-03-28;责任编辑:李穆

河北省自然科学基金(F2015208128);河北省教育厅青年基金(QN20140157,BJ2016020)

张建华(1980—),男,吉林延吉人,讲师,博士,主要从事神经网络控制、滑模控制、航迹优化等方面的研究。

E-mail:zhangjianhua@hebust.edu.cn

TP273

A

张建华,李杨,吴学礼,等.基于U模型的非线性系统Super-Twisting滑模控制研究[J].河北科技大学学报,2016,37(4):376-381.

ZHANGJianhua,LIYang,WUXueli,etal.StudyofSuper-TwistingslidingmodecontrolforUmodelbasednonlinearsystem[J].JournalofHebeiUniversityofScienceandTechnology,2016,37(4):376-381.

猜你喜欢

工程学院滑模河北
福建工程学院
河北顶呱呱机械制造有限公司
福建工程学院
福建工程学院
基于组合滑模控制的绝对重力仪两级主动减振设计
河北:西洋乐器畅销海外
福建工程学院
使用SGCMGs航天器滑模姿态容错控制
孙婷婷
EHA反馈线性化最优滑模面双模糊滑模控制