APP下载

一类具有细胞感染年龄和一般饱和感染率的病毒感染动力学模型的稳定性分析

2016-10-28李梁晨

河北科技大学学报 2016年4期
关键词:将式病毒感染稳态

李梁晨,徐 瑞

(军械工程学院基础部,河北石家庄 050003)



一类具有细胞感染年龄和一般饱和感染率的病毒感染动力学模型的稳定性分析

李梁晨,徐瑞

(军械工程学院基础部,河北石家庄050003)

为了了解病毒在人体内的感染、受制、清除等动力学过程,研究一类具有细胞感染年龄和一般饱和感染率的病毒感染动力学模型,证明当病毒的基本再生率大于1时,模型存在唯一的病毒感染稳态解。通过分析相应特征方程讨论了可行稳态解的局部稳定性,在构造Lyapunov泛函和应用LaSalle不变集原理的基础上,证明了当基本再生率小于1时,病毒未感染稳态解是全局渐近稳定的;当基本再生率大于1时,病毒感染稳态解是全局渐近稳定的。

稳定性理论;细胞感染年龄;饱和感染率;Lyapunov泛函;LaSalle不变集原理

传染病是威胁人类生存、发展的重要因素之一。近年来,很多学者开始从微观角度对传染病的流行条件进行研究[1],为此他们建立了一系列描述人体内感染过程的病毒感染动力学模型,这些模型关注于染病个体体内的疾病动力学过程。通过研究病毒感染动力学模型,可以了解病毒在人体内的感染、复制(繁衍)、清除等动力学过程,为临床制定合理的治疗方案提供理论依据。

1996年NOWAK等[2]提出了病毒感染动力学的基本模型。受其启发,在文献[2]中模型的基础上,许多学者进行了扩展性的研究,对基于不同病毒的具体感染特征提出了大量的数学模型[3-7]。在这些模型中,被感染细胞的死亡率和产生病毒的速率都被设为了常数。然而,文献[8—9]通过实验证明,被感染细胞的死亡率和产生病毒的速率是随着细胞的感染年龄(健康细胞被感染后的时长)而改变的。因此,文献[10]提出并研究了如下具有细胞感染年龄的HIV感染模型:

(1)

其中:x(t),v(t)分别表示t时刻健康T细胞的密度和细胞外具有感染性的病毒的密度;a为细胞的感染年龄;y(a,t)表示在t时刻感染年龄为a的染病T细胞的密度;s,d,u,β均为正常数,s为健康T细胞的产生率,d为健康T细胞的死亡率,u为病毒的死亡率;βx(t)v(t)为双线性感染率;δ(a),k(a)分别表示感染年龄为a的染病T细胞的死亡率和产生病毒的速率。

在模型(1)中,感染项是据浓度原理[11]建立的双线性形式的感染率βx(t)v(t):每个健康T细胞与每个病毒之间在单位时间内发生感染的概率为常数。而文献[12—13]中的实验表明,病毒感染细胞时的感染率通常是一个关于病毒浓度的增函数,并且函数曲线通常是S型的,如在文献[3]中,作者使用了一种饱和发生率βxv/(1+αv),文献[4]提出了病毒动力学模型中更一般化的饱和感染率βxvq/(1+αvp)。

笔者研究一类具有细胞感染年龄和一般饱和感染率的病毒感染模型:

(2)

模型(2)的边界条件为

y(0,t)=x(t)f(v(t)),

(3)

初始条件为

x(0)=xs>0,y(a,0)=ys(a)≥0,v(0)=vs>0,

(4)

基于生物学意义,假设f(v(t))满足以下条件:

f(0)=0,f′(v(t))>0,f″(v(t))≤0,

(5)

为使模型符合实际,进一步假设:

H1) a≥0,s>0,d>0,u>0 ;

H2)当a≥0时,δ(a)是有界的,且对于某个正常数δmin,δ(a)>δmin恒成立;

H3) k(a)是有界的,且被感染细胞存在一个极限年龄a+,使得当0

不难证明,模型(2)在边界条件(3)和初始条件(4)下有唯一的非负解。

1 基本再生率与稳态解

显然,模型(2)总存在一个未感染稳态解E0(x0,0,0),其中x0=s/d。

使用文献[14]中介绍的下一代矩阵方法,通过计算可以得到病毒的基本再生率的表达式为

如果模型(2)存在病毒感染稳态解E*(x*,y*(a),v*),则它必满足下列方程组:

(6)

从式(6)的第2和第4个方程解得:

y*(a)=x*f(v*)e-∫a0δ(ε)dε,

(7)

将式(7)代入式(6)的第3个方程可得:

(8)

因此,若模型(2)存在病毒感染稳态解,则以下方程组有正根。

(9)

定理1当R0>1时,模型(2)存在唯一的病毒感染稳态解E*。

证明考虑方程组(9)正根的存在性问题。若x*为正,方程组(9)等价于

(10)

计算可得:

由拉格朗日中值定理可知,在(0,v)上至少存在1点ξ,使得:

2 局部稳定性

定理2当R0<1时,模型(2)的未感染稳态解E0是局部渐近稳定的。

证明将模型(2)在E0处线性化并引入扰动变量:

得到:

(11)

求式(11)满足下列形式:

(12)

的非平凡解。

将式(12)代入式(11)可得:

(13)

从式(13)的第2和第4个方程解得:

(14)

将式(14)代入式(13)的第3个方程,整理可得模型(2)在E0处的特征方程:

(15)

下面用反正法证明,当R0<1时,方程(15)的根都具有负实部。

假设方程(15)存在一个根λ1,满足Re(λ1)≥0。则:

显然,这与R0<1矛盾。因此,当R0<1时,方程(15)的根都具有负实部,E0是局部渐近稳定的。

定理3当R0>1时,模型(2)的病毒感染稳态解E*是局部渐近稳定的。

证明将模型(2)在E*处线性化并引入扰动变量:

x2(t)=x(t)-x*,y2(a,t)=y(a,t)-y*(a),v2(t)=v(t)-v*,

得到:

(16)

求式(16)满足下列形式:

(17)

的非平凡解。

将式(17)代入式(16)可得:

(18)

从式(18)的第2和第4个方程解得:

(19)

从式(18)的第1个方程可以得到:

(λ+d+f(v*))c3=-f′(v*)x*c4,

(20)

将式(19)和式(20)代入式(18)的第3个方程,得到模型(2)在E*处的特征方程:

(21)

当R0>1时,由拉格朗日中值定理和条件(5)可得:

下面用反证法证明,当R0>1时,方程(21)的根都具有负实部。

假设方程(21)存在1个根λ1,满足Re(λ1)≥0,则:

显然,这是矛盾的。因此,当R0>1时,方程(21)的根都具有负实部,E*是局部渐近稳定的。

3 全局稳定性

笔者通过构造适当的Lyapunov泛函并应用LaSalle不变集原理来研究模型(2)的可行稳态解的全局稳定性。

定理4当R0<1时,模型(2)的未感染稳态解E0是全局渐近稳定的。

证明记

(22)

显然,在条件H2)和条件H3)下p(a)是有界的。p(a)的导数为

p′(a)=δ(a)p(a)-k(a),

(23)

构造Lyapunov泛函:

显然,V1(t)是非负的,且在E0处取得最小值0。沿着模型(2)的解对V1(t)求全导数可得:

(24)

使用分部积分法可以得到:

(25)

将式(25)代入式(24)可得:

(26)

当v(t)=0时,

当v(t)>0时,

由拉格朗日中值定理和条件(5)可知,存在ξ∈(0,v(t)),使得:

定理5当R0>1时,模型(2)的病毒感染稳态解E*是全局渐近稳定的。

证明构造Lyapunov泛函:

其中p(a)如式(22)中所定义。

显然,V1(t)是非负的,且在E*处取得最小值0。沿着模型(2)的解对V2(t)求全导数可得:

(27)

可得:

使用分部积分法得到:

(28)

在式(28)中:

(29)

由式(28)和式(29)推出:

(30)

将式(30)代入式(27),整理可得:

/

[1]王开发. 病毒感染动力学模型分析[D]. 重庆:西南大学, 2007.

WANG Kaifa. Studies on Dynamics of Virus Infection[D]. Chongqing: Southwest University, 2007.

[2]NOWAK M A, BANGHAM C R M. Population dynamics of immune responses to persistent viruses [J]. Science, 1996, 272:74-83.

[3]CULSHAW R, RUAN S, WEB G. A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay[J]. Journal of Mathematical Biology, 2003, 46(5):399-428.

[4]SONG Xinyu, NEUMANN A U. Global stability and periodic solution of the viral dynamics[J]. Journal of Mathematical Analysis and Applications, 2007, 329(1):281-297.

[5]DEANS J A, COHEN S. Immunology of malaria [J]. Annual Review of Microbiology, 1985, 52:541-542.

[6]PERELSON A, NELSON P W. Mathematical analysis of HIV-1 dynamics in vivo [J]. Siam Review, 1999, 41(1):3-44.

[7]WANG Xia, TAO Youde, SONG Xinyu. Global stability of a virus dynamics model with Beddington-De-Angelis incidence rate and CTL immune response [J]. Nonlinear Dynamics, 2011, 66(4): 825-830.

[8]REILLY C, WIETGREFE S, SEDGEWICK G, et al. Determination of simian immunodeficiency virus production by infected activated and resting cells [J]. Aids, 2007, 21(2):163-171.

[9]GILCHIRST M A, COOMBS D, PERELSON A S. Optimizing within-host viral fitness: Infected cell lifespan and virion production rate [J]. Journal of Theoretical Biology, 2004, 229(2): 281-289.

[10]NELSON P W, GILCHRIST M A, COOMBS D, et al. An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells[J]. Mathematical Biosciences and Engineering Mbe, 2004, 1(2):267-288.

[11]HAMER W H. Epidemic disease in England-the evidence of variability and of persistency of type[J]. Lancet, 1906, 1:733-739.

[12]EBERT D, ZSCHOKKE-ROHRINGER C D, CARIUS H J. Dose effects and density dependent regulation of two micro parasites of Daphnia magna [J]. Oecologia, 2000, 122(2):200-209.

[13]MCLEAN A R, BOSTOCK C J. Scrapie infections initiated at varying doses: an analysis of 117 titration experiments[J]. Philosophical Transactions of the Royal Society of London, 2000, 355:1043-1093.

[14]DENESSCHE P V, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180(1/2):29-48.

[15]SIGDEL R P, MCCLUSKEY C C. Global stability for an SEI model of infectious disease with immigration[J]. Applied Mathematics and Computation, 2014, 243: 684-689.

[16]HALE J K, LUNEL S V. Introduction to Functional Differential Equations[M]. New York: Springer, 1993.

Stability analysis of a viral infection dynamics model with infection age of cells and general saturated infection rate

LI Liangchen, XU Rui

(Basic Courses Department, Ordnance Engineering College, Shijiazhuang,Hebei 050003, China)

In order to understand the viral dynamics processes inclucding infection, duplicate, eliminate, etc. in human body, a viral infection model with infection age of cells and general saturated infection rate is investigated. It is proved that the model has a unique infected steady state when the basic reproduction ratio is greater than one unity. By analyzing the characteristic of relevant equations, the local stability of effective steady state is dislussed. By using suitable Lyapunov functional and LaSalle’s invariance principle, it is proved that when the basic reproduction ratio is less than one unity, the infection-free steady state is globally asymptotically stable; and when the basic reproduction ratio is greater than one unity, the infected steady state is globally asymptotically stable.

stability theory; infection age of cells; saturation infection rate; Lyapunov functional; LaSalle’s invariance principle

1008-1542(2016)04-0349-08

10.7535/hbkd.2016yx04006

2015-12-09;

2016-04-19;责任编辑:张军

国家自然科学基金(11371368)

李梁晨(1990—),男,河北唐山人,硕士研究生,主要从事微分方程与动力系统方面的研究。

E-mail:llc610@126.com

O175MSC(2010)主题分类:34N05

A

李梁晨,徐瑞.一类具有细胞感染年龄和一般饱和感染率的病毒感染动力学模型的稳定性分析[J].河北科技大学学报,2016,37(4):349-356.

LI Liangchen, XU Rui.Stability analysis of a viral infection dynamics model with infection age of cells and general saturated infection rate[J].Journal of Hebei University of Science and Technology,2016,37(4):349-356.

猜你喜欢

将式病毒感染稳态
AKNS方程的三线性型及周期孤立波解
预防诺如病毒感染
可变速抽水蓄能机组稳态运行特性研究
碳化硅复合包壳稳态应力与失效概率分析
电厂热力系统稳态仿真软件开发
因子von Neumann代数上非线性*-Lie导子的刻画
元中期历史剧对社会稳态的皈依与维护
单自由度系统
一类非线性偏微分方程的n-孤子解
猪细小病毒感染的防治