APP下载

水分与玉米秸秆还田对小麦根系生长和水分利用效率的影响

2016-10-14张素瑜王和洲杨明达王静丽贺德先

中国农业科学 2016年13期
关键词:土壤水分利用效率土层

张素瑜,王和洲,杨明达,王静丽,贺德先



水分与玉米秸秆还田对小麦根系生长和水分利用效率的影响

张素瑜1,王和洲2,杨明达1,王静丽1,贺德先1

(1河南农业大学农学院/河南粮食作物协同创新中心/小麦玉米作物学国家重点实验室,郑州 450002;2中国农业科学院农田灌溉研究所, 河南新乡453003)

【目的】通过两年的防雨棚微区控水试验,探索秸秆还田和水分调控对小麦根系生长、产量及水分利用效率的影响,为提高秸秆还田效果及推广应用秸秆还田技术提供参考。【方法】试验设玉米秸秆粉碎翻压还田(RS)和秸秆不还田(CK)处理;3种土壤水分处理,分别为田间持水量的50%—55%(干旱处理,D)、60%—65%(轻旱处理,SD)和70%—75%(适宜水分处理,N)。测量土壤水分含量、根干重、根干重密度、根系活力、籽粒产量和水分利用效率等指标。【结果】干旱条件下小麦成熟期的次生根数显著降低,与轻旱和适宜水分处理相比,不同生育时期小麦根系活力均显著降低,0—25 cm土层中的根干重密度在不同的生育时期也基本表现为降低趋势,产量下降幅度分别为4.34%—38.30%和14.30%—36.63%,但土壤贮水消耗量分别显著增加7.92%—25.56%和31.34%—90.72%,水分利用效率分别显著增加12.69%—30.09%和11.83%—32.88%。干旱条件下,与CK处理相比,RS处理在返青期和成熟期的单株次生根数分别提高了17.17%—29.41%和5.60%—27.86%,不同生育时期0—25 cm土层中根干重密度降低,花后根系活力及25—50 cm土层中根干重密度的下降幅度增大,产量和水分利用效率分别显著降低了15.02%—19.52%和7.51%—14.56%。轻旱和适宜水分条件下,与CK处理相比,RS处理提高了不同生育时期的单株次生根数,减缓了小麦花后的根系活力及25—50 cm土层中的根干重密度下降幅度,并且增加土壤贮水消耗量,降低灌溉量及总耗水量,除2013—2014年小麦生长季适宜水分条件下不同还田方式间产量和水分利用效率差异未达显著水平外,秸秆还田处理的产量和水分利用效率分别显著提高了6.09%—9.18%和6.77%—11.13%。另外,秸秆还田方式与水分调控的交互作用显著影响小麦产量和水分利用效率。【结论】在较好的土壤水分条件下(轻旱和适宜水分),秸秆还田对小麦根系生长具有正效应,有利于延缓根系衰老,增加土壤贮水消耗量、产量及水分利用效率,减少灌溉量;而在土壤水分条件较差时进行秸秆还田,小麦产量和水分利用效率显著降低。

小麦;玉米秸秆还田;土壤水分;根系生长;根系活性;水分利用效率

0 引言

【研究意义】中国是农作物秸秆资源大国。黄淮平原作为中国重要的粮食产区,秸秆资源丰富,2012年黄淮海主要粮食产区(3省2市)农作物秸秆理论资源量约为2.4×108t,秸秆利用率为76%,其中,肥料化利用(直接还田)所占比重最大,占秸秆利用总量的49%[1]。秸秆还田作为当前黄淮平原作物生产中的主要耕作技术,可以预测今后仍有增加的空间。此外,焚烧秸秆严重污染环境,加剧温室效应,严重威胁生态平衡,秸秆还田藏碳于土是减少温室气体排放的重要途径[2];同时,作物高产势必消耗更多的土壤养分,而秸秆还田则可作为一项重要的培肥改土措施。【前人研究进展】秸秆还田一方面能增加土壤有机质,改善土壤物理、化学特性,提高土壤生物活性,起到培肥改土的作用[3-4];另一方面还可以降低土壤蒸发,提高土壤供水和保墒能力,有利于作物产量和水分利用效率提高[5-7]。目前,秸秆还田方式以覆盖还田和粉碎翻压还田为主。研究表明,与秸秆覆盖还田相比,粉碎翻压还田的秸秆在土壤中的腐解速度更快,在提高土壤有机质含量,改善土壤团聚体稳定性等方面的作用更为显著[8]。但也有研究表明,秸秆腐解前期微生物与作物争夺氮源,引起作物缺氮[9];秸秆腐解过程中产生有机酸等化感物质,对作物根系及幼苗生长造成不利影响[10]等。以上秸秆还田的正负效应均与秸秆腐解密切相关,水分是秸秆腐解的主要影响因素。牛芬菊等[11]研究指出,玉米秸秆还田后,玉米生育前期表现出秸秆与作物争夺水分,后期则增强土壤保水性。左玉萍等[12]研究认为,土壤绝对含水量在15%—20%时,旱地土壤中秸秆分解速率最快,低于15%时秸秆几乎不分解。南雄雄等[13]通过室内模拟试验发现,秸秆还田后,在32 d的培养期内,土壤相对含水量为60%的土壤CO2释放速率始终低于土壤含水量为80%的处理。因此,土壤水分对秸秆还田效果起着至关重要的作用。【本研究切入点】以往的研究多集中在秸秆还田的方式方法及不考虑土壤水分条件下探讨秸秆还田的效应[3-7],而将不同土壤水分与秸秆粉碎翻压还田相结合的研究则不多见。另外,关于秸秆还田对下茬作物根系生长发育和功能的影响也尚未见系统报道。【拟解决的关键问题】本研究旨在探讨不同土壤水分条件下玉米秸秆粉碎翻压还田对小麦根系生长、功能、产量及水分利用效率的影响,以期为提高秸秆还田效果提供依据。

1 材料与方法

1.1 试验区概况

试验于2013年9月至2015年6月在河南商丘农田生态系统国家野外科学观测研究站(115°33′E,34°34′N)移动式防雨棚下进行。棚下单个测坑面积为2 m×3.3 m,深2 m。测坑四周用铁皮焊接以防侧渗,坑中土壤为潮土,容重为1.34 g·cm-3,田间持水量(field moisture capacity,FMC)为30%,有机质含量为10.5 g·kg-1,全氮含量为0.95 g·kg-1,速效氮和有效磷含量分别为53.8和27.5 mg·kg-1。

1.2 供试材料

供试材料为黄淮麦区大面积推广应用的小麦品种百农AK58(国审麦2005008)。

1.3 试验设计与田间管理

试验采用裂区设计,主处理为玉米秸秆还田措施,设2个水平:秸秆粉碎翻压还田(RS)和秸秆不还田(CK)。连续2年的秸秆还田处理均在同一试验区进行,还田量约为9 000 kg·hm-2,其中全氮含量为0.65%;副处理为土壤相对含水量,设3个水平:分别为田间持水量的50%—55%(D,干旱)、60%—65%(SD,轻旱)和70%—75%(N,适宜土壤含水量)。共6个处理组合,每个处理重复4次,共计24个试验小区。

秸秆还田处理:将玉米秸秆用机器粉碎(长度约5 cm),人工翻埋入土,深度为20 cm。

土壤水分控制:根据时域反射仪(time domain reflectometry,TDR (TRIME-PICOIPH,Germany))定期测定的土壤水分含量,确定灌水量。灌水量(mm)计算公式为:

Q=0.1×∑hd(w-w)

式中,h为第层土壤厚度(cm),d为第层土壤容重(g·cm-3),ww分别为第层土壤设定的目标含水量和灌溉前的实际土壤含水量(%)。当土壤水分含水量低于灌水下限时进行灌溉,灌至灌水上限。

在保证苗齐的条件下全生育期控水。其中,2013—2014年从分蘖期开始灌水;2014—2015年播种时底墒充足,返青期以后开始灌水。灌水计划湿润层深度:返青期以前为0.4 m,返青至拔节期为0.6 m,拔节至抽穗期为0.8 m,抽穗后为1.0 m。用水表控制灌水总量。返青前,通过直径为3 cm的塑料软管进行漫灌,边灌水边拖动软水管,尽量保证灌水均匀;拔节以后,为防止拖动软管造成茎蘖折断,将软管出水口对接一根长2 m的PVC管,将PVC管伸进小区,放在小麦行间,通过调节PVC管的位置,保证灌溉均匀。

试验分别于2013年10月15日和2014年10月20日播种,采用人工开沟条播,行距23 cm,9行区,测坑平行行区的两侧各留8 cm,以防止生育后期铁皮温度过高灼伤植株。播种量150 kg·hm-2,于三叶一心时定苗,基本苗数约2.9×106株/hm2。施240 kg N·hm-2、100 kg P2O5·hm-2和100 kg K2O·hm-2,其中总氮量的50%和全部磷肥、钾肥作基肥,于播前整地时施入,总氮量的另50%于拔节期随浇水施入。其他田间管理同一般高产田。分别于2014年6月2日和2015年6月3日收获。

1.4 测定项目和方法

1.4.1 土壤水分含量 通过时域反射仪TDR测定土壤含水量。小麦生育前期每隔15 d测定一次,生育后期每隔7—10 d测定一次,并以此为依据计算灌水量。灌水后待土壤水分平衡时再次测定土壤含水量。

1.4.2 根干重与根干重密度 依次于拔节期(2014年3月20日和2015年3月25日)、开花期(2014年4月20日和2015年4月23日)和灌浆期(2014年5月11日和2015年5月16日),每处理选取代表性样点,用直径为6.5 cm的根钻按照BOLINDER等[14]方法取样,每处理取3钻,分别在行上、行间距1/2处及与行相切处,3钻合一,为1个土壤—根系样品。每一个样点分两层取样:0—25 cm和25—50 cm。将每个样点不同土层的2个土壤—根系样品,分别装入100目的尼龙网袋浸泡1 h,然后用水缓慢冲洗,并用镊子仔细挑除杂质,最后将收集起来的根系置于80℃烘箱中烘至恒重,称重(g)并计算根干重密度(root weight density,RWD)。

=/

式中,为根重密度(g·m-3),为根干重(g),为土壤体积(m3)。

1.4.3 根系活力 分别于拔节期、开花期和灌浆中期,采用TTC比色法测定0—25 cm土层的根系活力。

1.4.4 籽粒产量及考种 成熟期每副区选取1 m2有代表性的样点,收割、脱粒、计产,并换算为每公顷产量。每副区另随机选取30株进行考种,并统计单株次生根数等。

1.4.5 水分利用效率 水分利用效率(water use efficiency,WUE,kg·hm-2·mm-1)=籽粒产量(kg·hm-2)/总耗水量(mm)

总耗水量(total water consumption,TWC)=。其中:为小麦生育期内有效降水量(mm),为灌水量(mm),为土壤贮水消耗量(mm)。测坑上方设有移动式防雨棚,因此,为0。

(mm)= 播前土壤贮水量(mm)-收获后土壤贮水量(mm)

1.5 数据统计分析

运用Office 2010和Surfer 10.0软件对数据进行分析与作图,用SAS V8.0软件进行统计分析。

2 结果

2.1 小麦全生育期不同处理的土壤水分含量时空变化动态

2013—2014年小麦出苗—灌浆期间土壤相对含水量的控制结果分别为48.7%—55.5% FMC(D)、58.1%—64.3% FMC(SD)和67.5%—72.1% FMC(N),重复间相对误差分别为0.78%—1.91%(D)、0.47%—2.49%(SD)和0.36%—2.30%(N)。2014—2015年土壤相对含水量分别为47.7%—55.8% FMC(D)、54.2%—66.2% FMC(SD)和67.9%—72.7% FMC(N),重复间相对误差分别为0.59%—1.38%(D)、0.07%—2.54%(SD)、0.08%—1.61%(N)。结果表明,不同梯度土壤水分处理控制结果符合原初的试验设计要求。

进一步的分析指出,尽管控水水平一致,但相同土壤水分条件下,RS处理与CK处理的土壤水分变化趋势不尽相同(图1)。对于干旱处理,播种后0—120 d,RS处理的土壤水分含量表现为明显的减小趋势,且较CK低;对于轻旱和适宜水分处理,播种后0—40 d,RS处理0—40 cm土层中的土壤水分有减小趋势,可能是由于秸秆腐解消耗了土壤水分;但在播种后0—160 d,40 cm以下土层的土壤水分含量变化较CK平稳,且2013—2014年(图1-a)RS处理的土壤水分含量明显高于CK,而CK处理土壤上层及下层的含水量则低于中部土层,土壤水分含量波动较大,说明秸秆还田有利于蓄水保墒,减少土壤蒸散量。在播种后200 d,不同处理不同土层中的水分含量急剧降低,这可能与彼时气温较高,作物耗水量大,农田总耗水量大有关。

a:2013—2014年不同处理的土壤相对含水量时空变化动态

a: Spatiotemporal dynamics of soil relative moisture content during the growing period of wheat in 2013-2014 (%)

b:2014—2015年不同处理的土壤相对含水量时空变化动态

b: Spatiotemporal dynamics of soil relative moisture content during the growing period of wheat in 2014-2015 (%)

RS:秸秆还田;CK:秸秆不还田;D:干旱,50%—55% FMC;SD:轻旱,60%—65% FMC;N:适宜水分,70%—75% FMC

RS: Returningcorn stalks to field; CK: Non-corn stalks returning; D: Drought, 50%-55% FMC; SD: Slight drought, 60%-65% FMC; N: Normal water supply, 70%-75% FMC

图1 小麦全生育期不同处理的土壤相对含水量时空变化动态

Fig. 1 Spatiotemporal dynamics of soil relative moisture content during the growing period of wheat

2.2 不同土壤水分条件下秸秆还田对小麦根系生长与生理功能的影响

2.2.1 对不同生育时期单株次生根数的影响 由表1可知,秸秆还田对小麦不同生育时期单株次生根数的影响均达极显著水平,不同土壤水分含量仅对成熟期单株次生根数的影响达极显著水平,两者的交互作用对成熟期单株次生根数的影响也达显著水平。相同还田方式下,随着土壤水分含量的增加,不同生育时期单株次生根数基本表现为增加趋势,即:D<SD<N。相同土壤水分条件下,返青期,不同水分条件下(D、SD和N),RS处理的单株次生根数较CK分别高出17.17%—29.41%、11.34%—21.84%和24.14%—24.27%;拔节期,对于干旱处理,RS处理较CK单株次生根数降低6.18%—6.31%;对于轻旱和适宜水分处理,RS处理的单株次生根数较CK则分别高出-5.90%—9.38%和3.59%—37.96%;成熟期,不同水分条件下RS处理的单株次生根数较CK分别高出5.60%—27.86%、7.58%—34.88%和27.46%—37.44%。说明秸秆还田有利于小麦单株次生根系发生,在轻旱和适宜水分条件下表现更为明显。

表1 不同处理对不同生育时期小麦单株次生根数的影响

PRS:还田方式;SMC:水分调控;IA:交互作用。同列数据后标有不同小写字母表示处理间的差异达显著水平(<0.05),*表示<0.05,**表示<0.01。下同

PRS: Patterns of corn stalks returning; SMC: Soil moisture control; IA: Interaction. Data with different small letters within the same column mean the difference among the data is significant (<0.05), with * meaning<0.05 and ** meaning<0.01. The same as below

2.2.2 对不同土层中根干重密度的影响 不同土层中小麦的根干重密度均在花期达最大值,随着生育时期的推进,根干重密度降低(图2)。在0—25 cm土层,相同还田方式下,不同生育时期根干重密度的变化趋势基本表现为随土壤水分含量的增加而增加,即:D<SD<N。对于干旱处理,不同生育时期RS处理的根干重密度均小于CK;对于轻旱处理,RS处理在拔节期和花期的根干重密度与CK间差异未达显著水平;适宜水分处理2013—2014年在拔节期和花期的根干重密度与CK间差异未达显著水平,灌浆期则显著高于CK;2014—2015年在拔节—开花期的根干重密度显著高于CK,灌浆期差异则未达显著水平。在25—50 cm土层,相同还田方式下,不同土壤水分处理的根干重密度在花期和灌浆期的变化趋势基本表现为SD>N>D,且干旱处理的根干重密度在灌浆期显著低于轻旱和适宜水分处理。可见,轻度干旱提高了小麦生育后期25—50 cm土层中的根干重密度。相同土壤水分条件下,对于干旱处理,开花—灌浆期RS处理的根干重密度均低于CK,在灌浆期则达显著水平。RS条件下,不同水分处理25—50 cm土层根干重密度的下降幅度分别为45.92%—56.78%,31.33%—38.53%和27.54%—28.95%;CK条件下,不同水分处理下25—50 cm土层根干重密度的下降幅度分别为44.97%—45.12%,38.25%—43.02%和31.42%—33.63%。干旱条件下,RS处理根干重密度的下降幅度显著高于CK;而轻旱和适宜水分条件下,则显著低于CK。

柱形图上不同小写字母表示处理间的差异达显著水平(P<0.05)。下同

2.2.3 对不同土层中根系活力的影响 小麦根系活力从拔节期到灌浆期逐渐降低,不同处理间根系活力的变化趋势是:相同还田方式下,干旱处理的根系活力显著低于轻旱和适宜水分处理(图3)。相同土壤水分条件下,拔节期RS处理的根系活力分别较CK高出26.23%—26.93%、8.63%—15.65%和10.38%—25.84%;花期—灌浆期,干旱条件下,RS处理的根系活力显著低于CK;轻旱和适宜水分条件下,RS处理与CK间根系活力的差异未达显著水平。从开花至灌浆期间,不同水分条件下RS处理根系活力的下降幅度分别为44.91%—53.43%、28.92%—35.23%和27.66%—33.86%;CK处理根系活力的下降幅度分别为37.52%—49.10%、33.16%—39.04%和33.06%—36.84%。其中,水分调控对根系活力下降幅度的影响达极显著水平。分析认为,干旱胁迫下,小麦生育后期的根系活力急剧降低,因而改善小麦生育后期的土壤水分状况可提高根系活力,有利于延缓根系衰老。

图3 不同处理对小麦不同生育时期根系活力的影响

2.3 不同土壤水分条件下秸秆还田对小麦籽粒产量及其构成因素的影响

由表2可知,相同还田方式下,不同土壤水分含量对小麦穗数、穗粒数和产量的影响达显著水平;相同土壤水分条件下,秸秆还田增加小麦穗数,降低千粒重。两者的交互作用对产量的影响达极显著水平。

相同还田方式下,小麦穗数和产量随土壤水分含量的增加而增加,即:D<SD<N,与轻旱和适宜水分处理相比,干旱处理的减产幅度分别为4.34%—38.30%和14.30%—36.63%。相同土壤水分条件下,干旱时RS处理的产量较CK显著降低15.02%—19.52%;对于轻旱处理,RS处理的产量较CK则显著增加6.09%—9.18%;在适宜水分条件下,2014—2015年RS处理的产量较CK显著提高6.96%。另外,从两年的平均产量来看,RS处理的产量较CK增加。

表2 不同处理对小麦籽粒产量及其构成因素的影响

SN:穗数;GS:穗粒数;GW:千粒重; GY:产量

SN: Spike number; GS: Grains per spike; GW: 1000-grain weight; GY: Grain yield

2.4 不同土壤水分条件下秸秆还田对小麦耗水量及水分利用效率的影响

由表3可知,秸秆还田方式对土壤贮水消耗量的影响达显著水平,水分调控对小麦生长季灌水量、土壤贮水消耗量、总耗水量及水分利用效率的影响均达极显著水平,两者的交互作用对水分利用效率的影响也达显著水平。

相同还田方式下,不同土壤水分处理的灌水量和总耗水量随控水梯度的增加显著增加,即:D<SD<N,而土壤贮水消耗量和水分利用效率则表现为随控水梯度的增加而降低,即:D>SD>N,说明随着土壤干旱程度的加剧,土壤贮水消耗量增加,作物水分利用效率提高。干旱条件下,CK处理的灌水量、土壤贮水消耗量和总耗水量与RS处理间的差异未达显著水平,但CK的水分利用效率显著提高8.13%—17.04%。轻旱和适宜水分条件下,与CK处理相比,RS处理的灌水量分别减小5.05%—5.26%和5.04%—5.88%,土壤贮水消耗量分别显著增加8.30%—13.50%和17.40%—25.93%,除2014—2015的适宜水分外,RS处理的水分利用效率提高6.77%—11.13%和7.95%。说明干旱条件下,秸秆还田显著降低水分利用效率;而轻旱和适宜水分条件下,秸秆还田降低灌水量,显著提高水分利用效率。此外,对比两年的数据可以看出,2014—2015年各处理的土壤贮水消耗量明显高于2013—2014年,这与2014—2015年小麦播种时底墒水充足有关。

表3 不同处理对小麦耗水量和水分利用效率的影响

TIA:灌水量;CSWS:土壤贮水消耗量;TWC:总耗水量;WUE:水分利用效率

TIA: Total irrigation amount; CSWS: Consumption of soil water storage; TWC: Total water consumption; WUE: Water use efficiency

3 讨论

3.1 秸秆还田和土壤水分处理对土壤时空分布的影响

秸秆腐解是非常复杂且漫长的化学过程,它不仅需要合适的C/N[9],而且腐解过程中消耗土壤水分[11]。当土壤水分状况较差时,秸秆腐解会造成与植株争夺水分,加剧土壤水分的胁迫程度。本研究中在干旱条件下,RS处理的土壤水分较CK差,对于轻旱和适宜水分处理,RS处理中下层土壤水分变化平稳,波动较小,起到了贮水保墒的作用,给根系的生长营造较好的生长环境,同时保证返青—拔节期良好的水分供应。吕美蓉等[15]的研究也表明,秸秆还田有利于提高土壤水分充足期(土壤相对湿度不低于80%)的土壤含水率(0—100 cm),但降低土壤水分亏缺(土壤相对湿度不高于60%)时的土壤含水率(0—50 cm)。

3.2 秸秆还田和土壤水分对小麦次生根系生长及根系活力的影响

水分条件对小麦单株次生根数、根系分布与功能的影响显著[16],干旱条件下小麦单株次生根数、总根长、总吸收面积、活性吸收面积及根系活力均明显降低。适当控水可激发根系生理活性[17],小麦并能促进根系向中下层延伸和生长[18]。本研究印证了上述观点。干旱条件下,小麦单株次生根数和根系活力显著降低,花后根系活力及根干重密度下降幅度较大,根系衰老较快;轻旱处理则有利于促进次生根的发生,提高根系活力及25—50 cm土层的根干重密度。前人研究指出,拔节以后根系主要集中在0—60 cm土层,其中0—30 cm土层的根系占80%以上[19],0—40 cm土层是根干重的主要分布区域[20]。土壤浅层根系极易受到干旱胁迫,其衰退消亡的速率较快[21],而较深层根系由于受大气干热变化影响较小,微环境较稳定,衰亡速度较为缓慢[20],相对于浅层根系,花后深层土壤中根系的数量和质量对小麦生长发育更为重要[22]。邱新强[23]等研究表明,小麦根系的生长重心随着生育进程的推进逐渐向深层转移,灌浆期,仅20—50 cm土层中的根长表现为正生长,其他土层均表现为负生长。本研究中,秸秆还田有利于次生根的发生,在轻旱和适宜水分条件下表现更为明显;并且在轻旱和适宜水分条件下,RS处理提高拔节期的根系活力,延缓花后根系衰老及25—50 cm土层中根干重密度的下降幅度,有效利用深层水分及养分。而在干旱条件下,RS处理花后根系活力及0—50 cm土层中根干重密度显著降低,根系衰老加速。

3.3 秸秆还田和土壤水分对小麦产量与水分利用效率的影响

秸秆还田显著提高作物产量,并且存在累积效应,连续秸秆还田后增产效果更为明显[6,24]。秸秆还田条件下小麦的增产原因,大部分研究认为是提高了千粒重或穗粒数,但穗数有所降低[25-26]。也有不同的观点,韩宾等[27]的研究指出,相同耕作方式下(耙耕和深松),与不还田处理相比,玉米秸秆还田处理小麦穗数增加2.57%—6.76%,产量增加2.35%—4.67%。黄婷苗等[28]研究认为,穗数变化是影响秸秆还田条件下小麦产量的直接原因,当施氮量增加到某一阈值时,秸秆还田表现为增产。这是因为氮素充足时,不仅满足了微生物分解秸秆的需要,也保障了小麦正常生长,穗数增加。本试验中,小麦整个生育期的施氮量较高(纯氮为240 kg·hm-2),轻旱和适宜水分条件下,RS处理小麦的穗数增加。另有研究指出,秸秆覆盖后增产与否, 与降水多少即水分年型关系密切,干旱年份往往增产显著,而湿润年份不增产甚至减产[29-30]。本研究结果显示,秸秆还田的增产效应很大程度上取决于土壤水分状况,在土壤水分较好的情况下(轻旱和适宜水分处理),秸秆还田处理的产量分别增加了7.69%和1.65%,在干旱条件下则表现为秸秆还田显著降低产量。结合前人的研究可以看出,秸秆还田效果不仅受土壤水分状况的制约,而且与秸秆还田方式密切相关。吕美蓉等[15]研究表明,当土壤水分充足时,秸秆还田有利于下茬提高作物产量,本研究结果与之相似。

在一定范围内,干旱促进根系向深层生长,增加土壤水分消耗,有利于对深层土壤水的利用。秸秆还田提高水分利用效率的原因可能是增加了土壤矿质营养,作物所需营养元素得到补充后从而促进植株地上部生长,从而改善了对土壤水的有效利用[31]。本研究中,干旱处理显著提高土壤贮水消耗量及水分利用效率,但产量显著降低;轻旱和适宜水分条件下,RS处理则提高水分利用效率,原因可能是秸秆还田改善了小麦生育期的土壤水分状况,延缓深层根系(25—50 cm土层)衰老,提高土壤贮水消耗量,降低总耗水量。该研究结果与高飞等[32]、赵亚丽等[7]的研究结果较为相似。

3.4 土壤水分时空分布、小麦根系生长及产量形成、水分利用效率三者的关系

作物根系与土壤水分既相互联系又相互制约,一方面,根系本身的生长发育及生理变化很大程度上受制于土壤水分状况[33],另一方面,根系的生长又促进作物对深层土壤水分的吸收利用,缩短水分到达根表的距离[34]。秸秆还田影响土壤水分的时空分布,进而影响根系的生长与分布。轻旱和适宜水分条件下,RS处理改善了小麦生育期间的土壤水分状况,促进根系生长,提高拔节期根系活力,降低花后根系活力及根干重密度的下降幅度,进而增强根系对水分及养分的吸收利用。研究表明,小麦根量和根系活力对肥水吸收与是否早衰具有决定性影响[35],根重密度与作物产量密切相关[36]。因此,在轻旱和适宜水分条件下RS处理的增产原因,一方面是因为秸秆还田改善了土壤水分状况,起到蓄水保墒的作用,利于植株生长;另一方面则是因为秸秆还田促进根系生长并延缓了根系衰老。水分利用效率由作物产量和总耗水量决定。本研究中,RS处理在轻旱和适宜水分条件下提高小麦产量,增强蓄水保墒作用,增加土壤贮水消耗量,降低总耗水量,最终提高水分利用效率。而在干旱条件下,秸秆腐解造成微生物与植株竞争水分,导致土壤水分状况变劣,影响根系及植株生长,虽然总耗水量降低,但产量降低幅度更大,因此,水分利用效率下降。

4 结论

秸秆还田效应受土壤水分状况的制约。轻旱和适宜土壤水分条件下,秸秆粉碎翻压还田可以改善土壤水分状况,增加土壤贮水量,促进小麦次生根的发生,有效延缓根系衰老,最终表现为产量和水分利用效率的提高;干旱条件下,秸秆还田处理不同生育时期土壤水分状况较差,小麦生育后期根系衰老加速,产量及水分利用效率显著降低。因此,玉米秸秆粉碎翻压还田时应保证较好的土壤水分条件,而土壤水分较差时则不宜进行秸秆还田。

References:

[1] 方放, 李想, 石祖梁, 王飞, 常志州, 张姗, 孙仁华, 宝哲, 邱凌. 黄淮海地区农作物秸秆资源分布及利用结构分析. 农业工程学报, 2015, 2(31): 228-234.

Fang F, Li X, Shi Z L, Wang F, Chang Z Z, Zhang S, Sun R H, Bao Z, Qiu L. Analysis on distribution and use structure of crop straw resources in Huang-Huai-Hai Plain of China., 2015, 31(2): 228-234. (in Chinese)

[2] 王虎, 王旭东, 田霄鸿. 秸秆还田对土壤有机碳不同活性组分储量及分配的影响. 应用生态学报, 2014, 25(12): 3491-3498.

Wang H, Wang X D, Tian X H. Effect of straw-returning on the storage and distribution of different active fractions of soil organic carbon., 2014, 25(12): 3491-3498. (in Chinese)

[3] 张静, 温晓霞, 廖允成, 刘阳. 不同玉米秸秆还田量对土壤肥力及冬小麦产量的影响. 植物营养与肥料学报, 2010, 16(3): 612-619.

Zhang J, Wen X X, Liao Y C, Liu Y. Effects of different amount of maize straw returning on soil fertility and yield of winter wheat., 2010, 16(3): 612-619. (in Chinese)

[4] 李玮, 乔玉强, 陈欢, 曹承富, 杜世州, 赵竹. 秸秆还田和施肥对砂姜黑土理化性质及小麦-玉米产量的影响. 生态学报, 2014, 34(17): 5052-5061.

Li W, Qiao Y Q, Chen H, Cao C F, Du S Z, Zhao Z. Effects of combined straw and N application on the physicochemical properties of lime concretion black soil and crop yields., 2014, 34(17): 5052-5061. (in Chinese)

[5] 金友前, 杜保见, 郜红建, 常江, 章力干. 玉米秸秆还田对砂姜黑土水分动态及冬小麦水分利用效率的影响. 麦类作物学报, 2013, 33(1): 89-95.

Jin Y Q, Du B J, Gao H J, Chang J, Zhang L G. Effects of maize straw returning on water dynamics and water use efficiency of winter wheat in lime concretion black soil., 2013, 33(1): 89-95. (in Chinese)

[6] 周怀平, 解文艳, 关春林, 杨振兴, 李红梅. 长期秸秆还田对旱地玉米产量、效益及水分利用的影响. 植物营养与肥料学报, 2013, 19(2): 321-330.

Zhou H P, Xie W Y, Guan C L, Yang Z X, Li H M. Effects of long-term straw-returning on corn yield, economic benefit and water use in arid farming areas., 2013, 19(2): 321-330. (in Chinese)

[7] 赵亚丽, 薛志伟, 郭海斌, 穆心愿, 李潮海. 耕作方式与秸秆还田对冬小麦-夏玉米耗水特性和水分利用效率的影响. 中国农业科学, 2014, 47(17): 3359-3371.

Zhao Y L, Xue Z W, Guo H B, Mu X Y, Li C H. Effects of tillage and straw returning on water consumption characteristics and water use efficiency in the winter wheat and summer maize rotation system., 2014, 47(17): 3359-3371. (in Chinese)

[8] Spaccini R, Piccolo A, Haberhauer G F, Stemmer M, Gerzabek M H. Decomposition of maize straw in three European soils as revealed by DRIFT spectra of soil particle fractions., 2001, 99(3/4): 245-260.

[9] Parnas H. A theoretical explanation of the priming effect based on microbial growth with two limiting substrates., 1976, 8(2): 139-144.

[10] 杨思存, 霍琳, 王建成. 秸秆还田的生化他感效应研究初报. 西北农业学报, 2005, 14(1): 52-56.

Yang S C, Huo L, Wang J C. Allelopathic effect of straw returning., 2005, 14(1): 52-56. (in Chinese)

[11] 牛芬菊, 张雷, 李小燕, 熊春蓉, 张成荣. 旱地全膜双垄沟播玉米秸秆还田对玉米生长及产量的影响. 干旱地区农业研究, 2014, 32(3): 161-165.

Niu F J, Zhang L, Li X Y, Xiong C R, Zhang C R. Effect of stalk returning and plastic mulching on growth and yield of maize under ridge and furrow planting in dryland., 2014, 32(3): 161-165. (in Chinese)

[12] 左玉萍, 贾志宽. 秸秆分解土壤水分适宜区间及临界值.西北农业学报, 2003, 12(3): 73-75.

Zuo Y P, Jia Z K. Suitable soil water content and critical value for straw decomposing., 2003, 12(3): 73-75. (in Chinese)

[13] 南雄雄, 田霄鸿, 张琳, 游东海, 吴玉红, 曹玉贤. 小麦和玉米秸秆腐解特点及对土壤中碳、氮含量的影响. 植物营养与肥料学报, 2010, 16(3): 626-633.

Nan X X, Tian X H, Zhang L, You D H, Wu Y H, Cao Y X. Decomposition characteristics of maize and wheat straw and their effects on soil carbon and nitrogen contents., 2010, 16(3): 626-633. (in Chinese)

[14] Bolinder M A, Angers D A, Dubuc J P. Estimating shoot to root ratios and annual carbon inputs in soils for cereal crops., 1997, 63: 61-66.

[15] 吕美蓉, 李增嘉, 张涛, 宁堂原, 赵建波, 李洪杰. 少免耕与秸秆还田对极端土壤水分及冬小麦产量的影响. 农业工程学报, 2010, 26(1): 41-46.

Lü M R, Li Z J, Zhang T, Ning T Y, Zhao J B, Li H J. Effects of minimum or no-tillage system and straw returning on extreme soil moisture and yield of winter wheat., 2010, 26(1): 41-46. (in Chinese)

[16] 马富举, 李丹丹, 蔡剑, 姜东, 曹卫星, 戴廷波. 干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响. 应用生态学报, 2012, 23(3): 724-730.

Ma F J, Li D D, Cai J, Jiang D, Cao W X, Dai T B. Responses of wheat seedlings root growth and leaf photosynthesis to drought stress., 2012, 23(3): 724-730. (in Chinese)

[17] 王冀川, 徐雅丽, 高山, 韩秀峰,徐翠莲,乔建军. 滴灌小麦根系生理特性及其空间分布. 西北农业学报, 2012, 21(5): 65-70.

Wang J C, Xu Y L, Gao S, Han X F, Xu C L, Qiao J J. The physiological characteristics and root spatial distribution of spring wheat in drip irrigation field., 2012, 21(5): 65-70.(in Chinese)

[18] 廖荣伟, 刘晶淼, 白月明, 安顺清, 梁宏, 卢建立, 乐章燕, 曹玉静. 华北平原冬小麦根系在土壤中的分布研究. 气象与环境学报, 2014, 30(5): 83-89.

Liao R W, Liu J M, Bai Y M, An S Q, Liang H, Lu J L, Le Z Y, Cao Y J. Spatial distribution of winter wheat root in soil under field condition in North China plain., 2014, 30(5): 83-89. (in Chinese)

[19] 刘坤, 陈新平, 张福锁. 不同灌溉策略下冬小麦根系的分布与水分养分的空间有效性. 土壤学报, 2003, 40(5): 697-703.

Liu K, Chen X P, Zhang F S. Winter wheat root distribution and soil water and nutrient ability., 2003, 40(5): 697-703. (in Chinese)

[20] 王淑芬, 张喜英, 裴冬. 不同供水条件对冬小麦根系分布、产量及水分利用效率的影响. 农业工程学报, 2006, 22(2): 27-32.

Wang S F, Zhang X Y, Pei D. Impacts of different water supplied conditions on root distribution, yield and water utilization efficiency of winter wheat., 2006, 22(2): 27-32. (in Chinese)

[21] 李秧秧, 邵明安. 小麦根系对水分和氮肥的生理生态反应. 植物营养与肥料学报, 2000, 6(4): 383-388.

Li Y Y, Shao M A. Physio-ecological response of spring wheat root to water and nitrogen., 2000, 6(4): 383-388. (in Chinese)

[22] Wang C, Liu W, Li Q, Ma D, Lu H, Feng W, Xie Y, Zhu Y, Guo T. Effects of different irrigation and nitrogen regimes on root growth and its correlation with above-ground plant parts in high- yielding wheat under field conditions., 2014, 165(3): 138-149.

[23] 邱新强, 高阳, 黄玲, 李新强, 孙景生, 段爱旺. 冬小麦根系形态性状及分布. 中国农业科学, 2013, 46(11): 2211-2219.

Qiu X Q, Gao Y, Huang L, Li X Q, Sun J S, Duan A W. Temporal and spatial distribution of root morphology of winter wheat., 2013, 46(11): 2211-2219. (in Chinese)

[24] 杨宪龙, 路永莉, 同延安, 林文, 梁婷. 长期施氮和秸秆还田对小麦-玉米轮作体系土壤氮素平衡的影响. 植物营养与肥料学报, 2013, 19(1): 65-73.

Yang X L, Lu Y L, Tong Y A, Lin W, Liang T. Effects of long-term N application and straw returning on N budget under wheat-maize rotation system., 2013, 19(1): 65-73. (in Chinese)

[25] 张珊,石祖梁,杨四军, 顾克军,戴廷波,王飞,李想,孙仁华. 施氮和秸秆还田对晚播小麦养分平衡和产量的影响. 应用生态学报, 2015, 26(9): 2714-2720.

Zhang S, Shi Z L, Yang S J, Gu K J, Dai T B, Wang F, Li X, Sun R H. Effects of nitrogen application rates and straw returning on nutrient balance and grain yield of late sowing wheat in rice-wheat rotation., 2015, 26(9): 2714-2720. (in Chinese)

[26] 陈金, 唐玉海, 尹燕枰, 庞党伟, 崔正勇, 郑孟静, 彭佃亮, 杨卫兵, 杨东清, 李艳霞, 王振林, 李勇. 秸秆还田条件下适量施氮对冬小麦氮素利用及产量的影响. 作物学报, 2015, 41(1): 160-167.

Chen J, Tang Y H, Yin Y P, Pang D W, Cui Z Y, Zheng M J, Peng T L, Yang W B, Yang D Q, Li Y X, Wang Z L, Li Y. Effects of straw returning plus nitrogen fertilizer on nitrogen utilization and grain yield in winter wheat., 2015, 41(1): 160-167. (in Chinese)

[27] 韩宾, 李增嘉, 王芸, 宁堂原, 郑延海, 史忠强. 土壤耕作及秸秆还田对冬小麦生长状况及产量的影响. 农业工程学报, 2007, 23(2): 48-53.

Han B, Li J Z, Wang Y, Ning T Y, Zheng Y H, Shi Z Q. Effects of soil tillage and returning straw to soil on wheat growth status and yield., 2007, 23(2): 48-53. (in Chinese)

[28] 黄婷苗, 郑险峰, 侯仰毅, 李晓, 王朝辉. 秸秆还田对冬小麦产量和氮、磷、钾吸收利用的影响. 植物营养与肥料学报, 2015, 21(4): 853-863.

Huang T M, Zheng X F, Hou Y Y, Li X, Wang C H. Yield and N, P and K uptake and utilization of winter wheat affected by straw return to soil., 2015, 21(4): 853-863. (in Chinese)

[29] Wang X B, Wu H J, Kuai D, Zhang D C, Feng Z H, Zhao Q S, Wu X P, Jin K, Cai D X, Oenema O,Hoogmoed W B. Tillage and crop residue effects on rainfed wheat and maize production in northern China., 2012, 132: 106-116.

[30] Wicks G A, Crutchfield D A, Burnside O C. Influence of wheat () straw mulch and metolachlor on corn () growth and yield., 1994, 42(1): 141-147.

[31] Tisdale S L, Nelson W L.. Beijing: Science Press, 1984: 394-410.

[32] 高飞, 贾志宽, 路文涛, 韩清芳, 杨宝平, 侯贤清. 秸秆不同还田量对宁南旱区土壤水分、玉米生长及光合特性的影响. 生态学报, 2011, 31(3): 777-783.

Gao F, Jia Z K, Lu W T, Han Q F, Yang B P, Hou X Q. Effects of different straw returning treatments on soil water, maize growth and photosynthetic characteristics in the semi-arid area of Southern Ningxia., 2011, 31(3): 777-783. (in Chinese)

[33] 李鲁华, 李世清, 翟军海, 史俊通. 小麦根系与土壤水分胁迫关系的研究进展. 西北植物学报, 2001, 21(1): 1-7.

Li L H, Li S Q, Zhai J H, Shi J T. Review of the relationship between wheat roots and water stress., 2001, 21(1): 1-7. (in Chinese)

[34] 刘浩, 段爱旺, 孙景生, 高阳, 申孝军, 刘占东. 间作模式下冬小麦与春玉米根系的时空分布规律. 应用生态学报, 2007, 18(6): 1242-1246.

LIU H, DUAN A W, SUN J S, GAO Y, SHEN X J, LIU Z D. Spatiotemporal distribution patterns of winter wheat and spring maize root systems under intercropping., 2007, 18(6): 1242-1246. (in Chinese)

[35] 卢百关, 杜永, 李筠, 王宝祥, 周振玲, 孙中伟, 杨波, 秦德荣, 徐大勇. 黄淮地区稻茬小麦超高产群体特征研究. 中国生态农业学报, 2015, 23(1): 43-51.

Lu B G, Du Y, Li J, Wang B X, Zhou Z L, Sun Z W, Yang B, Qin D R, Xu D Y. Population characteristics of super-high-yielding wheat under rice stubble in Huang-Huai area., 2015, 23(1): 43-51. (in Chinese)

[36] Fageria N K, Moreira A. The role of mineral nutrition on root growth of crop plants., 2011, 110(1): 251-331.

(责任编辑 杨鑫浩,李莉)

Influence of Returning Corn Stalks to Field under Different Soil Moisture Contents on Root Growth and Water Use Efficiency of Wheat (L.)

ZHANG Su-yu1, WANG He-zhou2, YANG Ming-da1, WANG Jing-li1, HE De-xian1

(1College of Agronomy, Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crop/National Key Laboratory of Wheat and Maize Crop Sciences, Zhengzhou 450002;2Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453003, Henan)

【Objective】To evaluate the influence of soil moisture and corn stalks returning practice on wheat root growth, grain yield and water use efficiency,a 2-year micro-plot experiment was conducted under rain-proof shelter condition, aiming at provide reference for improving effect and application of stalks returning to field. 【Method】Prior to wheat sowing,corn stalks were cut and incorporated into soil by plowing (stalks returning, RS), with non-stalks returning as control (CK). Both RS and CK were subjected to 50%-55% (Drought, D), 60%-65% (Slight Drought, SD) and 70%-75% (Normal, N) of field moisture capacity, respectively.【Result】The results showed that nodal roots per plant at maturity, root activity, root dry weight density within 0-25 cm soil layer of winter wheat in D treatments at different growing stages were dramatically decreased compared with those in either SD or N treatments, grain yield was decreased by 4.34%-38.30% and 14.30%-36.63%, respectively, though consumption of soil water storage and water use efficiency in D treatments increased by 7.92%-25.56% and 31.34%-90.72%, 12.69%-30.09% and 11.83%-32.88%, respectively. In D treatment, nodal roots per plant were 17.17%-29.41% and 5.60%-27.86% higher than those in CK at re-growing and maturity stages, but root dry weight density within 0-25 cm soil layer at different growing stages was lower in RS ​​treatments than that in CK. The decrement in both root vigor and root dry weight density within 25-50 cm soil layer after flowering was significantly higher than those in CK, grain yield and water use efficiency in RS were significantly decreased by 15.02%-19.52% and 7.51%-14.56% compared with that in CK. In SD and N treatment, nodal roots per plant were higher at different growing stages and the decrement in both root vigor and root dry weight density within 25-50 cm soil layer were lower in RS treatments, while irrigation amount and total water consumption were all decreased. Consumption of soil water storage was significantly increased, except for the N treatment in 2013-2014, grain yield and water use efficiency were dramatically increased by 6.09%-9.18% and 6.77%-11.13% compared with those in CK treatments. In addition, the present study also showed a significant interaction both of grain yield and water use efficiency between corn stalks returning and soil moisture conditions.【Conclusion】Corn stalks returning practice reduced irrigation amount, improved grain yield and water use efficiency by conserving soil water storage and improving root physiological function during the whole growing period under normal soil water and even slight drought conditions, but decreased grain yield and water use efficiency under drought condition.

wheat (L.); returning corn stalks to field; soil moisture content; root growth; root vigor; water use efficiency (WUE)

2015-11-10;接受日期:2016-05-17

国家“十二五”科技支撑计划(2013BAD07B07-4)、河南省重点实验室项目(132300413207)

张素瑜,E-mail:729401747@qq.com。通信作者贺德先,Tel:0371-63579616;E-mail:hedexian@126.com

猜你喜欢

土壤水分利用效率土层
土钉喷锚在不同土层的支护应用及效果分析
土层 村与人 下
土层——伊当湾志
土层 沙与土 上
避免肥料流失 提高利用效率
西藏高原土壤水分遥感监测方法研究
不同覆盖措施对枣园土壤水分和温度的影响
植被覆盖区土壤水分反演研究——以北京市为例
土壤水分的遥感监测方法概述
不同白菜品种对锌的响应及锌利用效率研究