APP下载

蜜蜂寄生螨—狄斯瓦螨的研究进展

2012-04-12韩日畴

环境昆虫学报 2012年3期
关键词:杀螨剂封盖雄蜂

张 祎,韩日畴

(广东省昆虫研究所,广州 510260)

狄斯瓦螨Varroa destructor(Anderson&Trueman,2000)是对世界养蜂业危害最大的蜜蜂寄生虫,广泛分布于东方蜜蜂、西方蜜蜂上。在欧洲和北美洲地区每年有几百万群意大利蜜蜂被毁灭,间接导致数十亿美元的经济损失 (Martin et al.,2004)。如今,除澳大利亚和非洲的部分地区还没有发现狄斯瓦螨外,全世界其他地方只要有蜜蜂生存的地方就有狄斯瓦螨的危害 (周婷,2005;罗其花等,2010)。狄斯瓦螨可危害蜜蜂封盖幼虫、蛹和成蜂,同时携带并传播蜜蜂病毒,与梅氏热厉螨 Tropilaelaps mercedesae共感染 (Luo et al.,2011),从而造成蜂群生产力严重下降,乃至全群毁灭。狄斯瓦螨对意大利蜜蜂的危害远远大于其原始寄主——中华蜜蜂 (Peng et al.,1987)。而在南美的热带地区,如巴西等国家的非洲化蜜蜂 (Africanized honey bees,AHB)对狄斯瓦螨也具有一定的耐受性,30多年来都没有严重的螨害爆发 (Calderón et al.,2010)。究其原因,狄斯瓦螨的繁殖特性与蜜蜂的生物学特性密切相关,控制狄斯瓦螨的繁殖是控制瓦螨种群数量增长的最有效的方式。本文将对狄斯瓦螨的繁殖特性、对蜜蜂的危害及目前的防治方法等展开介绍。

1 影响狄斯瓦螨繁殖的因素

狄斯瓦螨的繁殖期是在蜂巢内完成的,成年雌螨进入即将封盖的幼虫巢房,60 h后产下第一粒卵 (雄螨),接着再产2~5粒卵 (雌螨)。发育为雌螨的卵经24 h孵化为6足的幼虫,经48 h左右变为8足的前期若虫,随后蜕皮成后期若虫,再经3 d发育为成螨,整个发育期为6~9 d。雄螨整个发育期为6~7 d。雌螨一生中有3~7个产卵周期,最多可产30粒卵。影响狄斯瓦螨繁殖力的因素主要有:1)雌螨的繁殖力;2)蜜蜂蛹的封盖历期;3)蜜蜂幼虫的吸引力;4)巢房大小与类型。

1.1 雌螨的繁殖力

雌螨的繁殖力对种群的繁殖具有关键作用,影响因素多 (Hänel& Koeniger,1987;Calderón et al.,2007,2012)。研究发现,雌螨在蜂房内繁殖及其后代的性别由其宿主的龄期决定:成熟雌螨进入新封盖的预蛹房首先产雄螨卵随后才产雌螨卵 (Garrido&Rosenkranz,2003),但是如果将转到蛹期的蜂房中则仅有少数 (6%)的雌螨会首先产雄螨卵。如果缺少雄螨,则导致子代雌螨无法正常交配,从而不育。如果宿主发育提前或滞后都会影响雌螨的生育力 (Kirrane et al.,2011)。另外,工蜂房内子代螨发育不全 (40.6%)(Calderón et al.,2007;Carneiro et al.,2007),且子代雌螨不育 (Calderón et al.,2012)等因素也影响雌螨的繁殖力,因为当子代螨还没有发育成熟时,蜜蜂已经出房,而不成熟的子代螨则还留在蜂房内,被清洁蜂清除。

1.2 蜜蜂蛹的封盖历期

狄斯瓦螨的的繁殖只发生在封盖巢房内,因此封盖历期对狄斯瓦螨的繁殖具有重要的意义。研究发现,蜂房封盖后约45.0±25.0 h雌螨开始产卵,随后每产 1粒卵间隔 27.3±2.0 h(Calderón et al.,2012)。封盖期为 14 d 的欧洲意大利蜜蜂雄蜂房中,1头雌螨可以产生5头成熟雌螨后代。蜜蜂的封盖期越短,狄斯瓦螨繁殖的时间越短,能够成熟出房的狄斯瓦螨越少,从而会导致种群群体下降。有研究表明,封盖期减少1 h,狄斯瓦螨种群将下降8.7%。

1.3 巢房大小与类型

雄蜂房的瓦螨感染率是工蜂房的8~10倍,主要原因有:(1)在蜂群中瓦螨进入工蜂巢房是在封盖前15~20 h,而进入雄蜂房则是在封盖前40~50 h;(2)清洁蜂身上的成年雌螨倾向于选择5龄雄蜂房 (Calderone&Kuenen,2003);(3)工蜂房内雌螨的不育率明显高于雄蜂房 (Calderón et al.,2007;Maggi et al.,2010),将工蜂房内不育的雌螨转到雄蜂房,则可以重新繁殖后代。(4)雄蜂房内的次代可育螨 (次代螨中同时含有雄螨和雌螨)高于工蜂房 (Calderón et al.,2007)。(5)工蜂房内有很多发育不成熟的子代螨,而雄蜂房内不会出现子代螨不成熟的情况 (Calderón et al.,2007)。(6)工蜂房内的成年雄螨死亡率显著高于雄蜂房 (Calderón et al.,2012)。调查 Costa Rica地区的非洲化意蜂群的工蜂房与雄蜂房内的雄螨发现,工蜂房内的雄螨死亡率达23.9%,而雄蜂房内为6.9%。另外有些雌螨可能没有生育雄螨,使得工蜂房内雄螨缺失率达40.0%,雄蜂房内则仅为21.3%。(7)巢房的深度和宽度影响狄斯瓦螨的繁殖,在宽而浅的蜂房中容易受到狄斯瓦螨的侵染 (Piccirillo&De Jong,2003)。因此,雄蜂幼虫较工蜂幼虫更易于感染蜂螨。

1.4 蜜蜂信息素

狄斯瓦螨侵染蜜蜂是一个复杂的过程,信息素在其中具有重要的作用。狄斯瓦螨通常被清洁蜂和5龄幼虫吸引,不同年龄的初生蜂对狄斯瓦螨的吸引力不同,小于3 h的初生蜂对狄斯瓦螨的吸引力明显不如清洁蜂,但是18~20 h初生蜂的吸引力就相当于清洁蜂了。出勤蜂身上携带的信息素不但没有吸引力,反而分泌干扰狄斯瓦螨侵染宿主的信息素,如出勤蜂携带的 (Z)-8-heptadecene就是一种瓦螨驱逐物质,并导致狄斯瓦螨子代数量的减少 (Nazzi et al.,2002;Del Piccolo et al.,2010)。清洁蜂的表面粗提物中也同时存在吸引和排斥狄斯瓦螨的信息素,而香叶醇和橙花叔醇可能是清洁蜂利用合成利它素从而控制种群内狄斯瓦螨数量的一种策略 (Pernal et al.,2005)。蜂王浆物质和巢脾提取物都含有抑制狄斯瓦螨繁殖的物质 (Nazzi& Milani,1996,Drijfhout et al.,2005)。

2 狄斯瓦螨对蜜蜂的危害

2.1 直接危害

2.1.1 影响蜜蜂的体重

狄斯瓦螨以蜜蜂的血淋巴为食,成年雌螨在蜂蛹的表皮上打孔喂养它的子代,研究表明狄斯瓦螨的唾液蛋白能够抑制血细胞凝集,阻止蜜蜂的伤口愈合并减少相应的宿主反应 (Richards et al.,2011)。因此,狄斯瓦螨可以从1个孔重复多次吸食血淋巴 (Kanbar&Engels,2003)。它们通常在腹部第二节打1个孔,极少数有3个孔,随着蜂蛹的发育生长,孔的直径也随着增加。在1头幼虫房中通常有4~5个雌螨及其后代侵染的话,伤口的愈合就会延迟直到蜕皮成蜂 (Kanbar&Engels,2003),但造成蜜蜂发育不良,体重下降(Yang&Cox-foster,2005)。体重的下降幅度依赖雌螨及其繁殖力的变化,但是即使只有1头雌螨也会导致工蜂体重下降约 7% (de Jong et al.,1982);若是雄蜂体重则下降11%~19%(Duay et al.,2002)。

2.1.2 影响蜜蜂的生理状态

狄斯瓦螨的寄生会改变蜜蜂的生理学特征。研究表明,工蜂在蛹期被螨寄生过的蜜蜂发育至成蜂时其体内的卵黄蛋白原浓度、血淋巴中总蛋白存量、血细胞特征和蜕皮激素含量都发生变化,很难维持蜜蜂过冬(Amdam et al.,2004)。雄蜂被侵染后则导致缺少3个中分子和小分子蛋白,且酸性蛋白的活性显著 (P<0.05)降低,碱性蛋白的活性升高,但总蛋白含量没有显著变化(Zółtowska et al.,2005)。狄斯瓦螨的寄生显著降低蜜蜂的体重,削弱了蜜蜂的免疫系统,缺乏可诱导的酚氧化酶(Gregory et al.,2005;Yang&Cox-foster,2005)。最近研究表明花粉可以激活蜜蜂的营养传感和代谢途径,并且使得与寿命相关和抗菌肽相关的基因表达上调。但是狄斯瓦螨导致的病毒增殖以及抑制蜜蜂的基本需求蛋白的代谢不会因为食取花粉而得到改善或者说逆转 (Alaux et al.,2011)。

2.1.3 影响蜜蜂的飞行学习等能力

工蜂在发育过程中被狄斯瓦螨侵染则会导致过早转变为出勤蜂,并显著缩短其寿命(De Jong et al.,1982;Amdam et al.,2004),雄蜂则会削弱其飞行能力和降低产精量 (Duay et al.,2002)。成年的出勤蜂被狄斯瓦螨寄生则降低其学习能力,干扰其方向感,降低认知功能,缺乏对环境刺激的响应能力,削弱对巢门的定位,降低其返巢率,可能狄斯瓦螨严重影响蜜蜂神经系统 (Kralj et al.,2007)。目前,还没有研究表明狄斯瓦螨是否直接对蜂王造成危害 (Drijfhout et al.,2005)。

2.1.4 影响蜂群的生存和发展

蜜蜂蜂群也会由于狄斯瓦螨的侵害而崩溃。在合适的条件下,只要狄斯瓦螨感染率超过7%,过冬蜂群可全群覆灭;夏天的蜂群中成年蜂的狄斯瓦螨寄生率如达到30% 而不采取防治措施的话,则几乎无法渡过同年冬天 (Rosenkranz et al.,2010)。意大利蜜蜂被狄斯瓦螨的寄生后抗压能力减弱,难以承受低温 (de Guzman et al.,2005)。因此,建议蜂农在过冬前和冬天维持较低的螨水平。一般来说,人们把过冬蜂群的消失归结为单因素影响的结果,如DWV是影响蜜蜂过冬能力的主要因素 (Dainat et al.2012)。但是,Hedtke et al.(2011)经过6年监测22个蜂场的220群蜂发现:过冬蜂群消失大概维持在4.8% ~22.4%之间,在此期间监测狄斯瓦螨、病毒、微孢子虫的动态变化发现:春季和夏季狄斯瓦螨的感染导致蜂群随后受到DWV、微孢子虫的感染以及白垩病的爆发。蜂群的消失是多因素共同作用的结果。狄斯瓦螨可以作为过冬蜂群是否消失的预警信号之一,具有非常关键的作用,但具有季节依赖性(Dainat et al.,2012)。

2.2 间接危害

2.2.1 促进蜜蜂病毒的传播

狄斯瓦螨携带并传播各种蜜蜂病毒(Tentcheva et al.,2004;Shen et al.,2005;Parrella et al.,2006;Chen et al.,2006;Chantawannakul et al.,2006)。目前为止,被分离的蜜蜂病毒有18种,其中大部分都可被狄斯瓦螨携带。主要有卡什米尔病病毒 (Kashmir Bee Virus,KBV),腐幼病病毒(Sacbrood Virus,SBV),急性麻痹病病毒(A-cute Bee Paralysis Virus,ABPV),以色列麻痹病病毒(Israeli Acute Paralysis Virus,IAPV)和残翅病病毒(Deformed Wing Virus,DWV)。狄斯瓦螨可以通过水平传播和垂直传播病毒并通过诱导宿主免疫抑制反应激活这些潜伏病毒 (Yang&Coxfoster,2005;Santillán-Galicia et al.,2008)。如,DWV病毒首先在狄斯瓦螨体内复制繁殖,再大量传至蜂蛹使得蜂蛹发育不全,导致残翅 (Genersch&Aubert,2010),甚至直接影响蜂群的过冬能力(Dainat et al.,2012)。研究表明,蜜蜂病毒的单独存在并不威胁蜜蜂的健康,如果将病毒粒子注射到蜂蛹的血腔,同时注射狄斯瓦螨的唾液蛋白类物质则激活潜伏的病毒才能产生典型的病毒病症状 (Genersch&Aubert,2010)。而当狄斯瓦螨和病毒同时存在时,可能会导致降低蜂王的卵巢功能 (Gauthier et al.,2011)。一般来说蜜蜂群势越强对病毒的抵抗力越强,了解病毒动态变化对于了解蜜蜂疾病的发病机理非常关键。影响病毒动态变化的因素有蜂群中狄斯瓦螨的密度和感染时间、温度的变化 (Di Prisco et al.,2011)及杀螨剂的残留 (Locke et al.,2012)。了解宿主与病毒的关系有助于开发病害的有效防控方法 (Di Prisco et al.,2011)。

目前,随着狄斯瓦螨的传播,DWV演化出新的变种,命名为狄斯瓦螨病毒 (Varroa destructor virus 1,VDV-1)(Ongus et al.,2007;Moore et al.,2011;Zioni et al.,2011)。该病毒与 DWV 共感染蜜蜂,并产生重组体VDV-1-DWV,重组体是强毒株使得蜜蜂表现明显残翅症状 (Zioni et al.,2011)。

2.2.2 杀螨剂对蜜蜂的危害

随着各种杀螨剂的施用,杀螨剂本身对蜜蜂的毒性问题也逐渐受到关注。Pettis et al.(2004)发现用抗生素防治瓦螨会导致蜜蜂幼虫的死亡,将200 mg四环素溶于20 g蔗糖水中饲喂蜜蜂会导致80% 的幼虫死亡,而溶菌素和林肯霉素则当含量达到1000 mg每20 g蔗糖水时也会导致57%的幼虫死亡。草酸是研究最多的有机杀螨剂,能有效杀死瓦螨,但是实验室测定草酸对蜜蜂有慢性毒力作用 (Aliano et al.,2006)。而蜂箱实验表明,春天使用甲酸和草酸治螨,夏天蜂群难以复壮且蜂产品产量降低,而甲酸对蜂王有明显的直接毒性,甚至可以致死蜂王 (Giovenazzo&Dubreuil,2011)。ApiguardⓇ(主要成分是百里酚,也叫麝香草酚)则影响蜜蜂的行为,特别是出勤蜂 (Mondet et al.,2011)。百里酚、蝇毒磷则改变蜜蜂的解毒功能,干扰蜜蜂的发育,削弱免疫系统(Boncristiani et al,2011)。氟虫腈有可能引起蜂群的消失 (Bernal et al.,2011)。而巢脾中杀螨剂的残留会导致蜜蜂出现亚致死现象,即幼虫发育羽化的时间延长,成蜂寿命缩短,卫生蜂过早的转化为出勤蜂。另外,发育历期的延长,使得狄斯瓦螨的繁殖时间延长,有可能使得螨害更加严重 (Wu et al.,2011)。更值得注意的是有些有机磷杀螨剂会导致人的红血球细胞变形(Szatkowska et al.,2011)。因此,杀螨剂的残留问题越来越引起人们的重视。

当然,并不是所有杀螨剂都会产生副作用,左旋咪唑(levamisol)则不会扰乱蜜蜂的生长发育,而是使蜜蜂血淋巴中的总蛋白含量上升,降低瓦螨的侵染,但是并不清楚是哪些蛋白含量增加(Sokół et al.,2003)。另外,有些药物一直施用的话,蜜蜂也会习惯(Mondet et al.,2011)。可能是因为蜜蜂具有解毒机制,研究表明蜜蜂的细胞色素P450家族中的 CYP9Q能够使蜜蜂不受合成除虫菊酯和有机磷毒蝇磷的毒害。CYP9Q可以将合成除虫菊酯代谢成羧酸酯酶能够代谢的物质,而毒蝇磷具有与合成除虫菊酯相同的催化位点,因此也能够被降解,从而不对蜜蜂造成危害(Mao et al.,2011)。

3 螨害的防治

狄斯瓦螨的防治技术有物理防治、化学防治及生物防治。

3.1 物理防治

物理防治有热处理、细粉末处理、分蜂处理等,这些方法能在一定程度上减少蜂螨的数量,但是这种方法耗时也耗力,在实际工作中很难进行。割除雄蜂房可以减少瓦螨的数量,而不影响蜂群的健康,因此作为害虫综合防治的一个有用部分 (Calderone,2005;Wantuch et al.,2009)。

3.2 化学防治

最有名的杀螨剂是化学合成药剂“库蝇磷”、拟除虫菊酯、氟氯苯菊酯、甲脒 (双甲眯)。这些杀螨剂经济有效,易使用,不危害蜜蜂。不过易残留并累积,如果同时使用多种杀螨剂则可能危害蜜蜂,污染蜂脾和蜂产品。另外,狄斯瓦螨16年前已经对氟胺氰菊酯产生抗性,特别是除虫菊酯类已产生交叉抗性,比如氟丙菊酯(acrinathrin)和氟氯苯菊酯 (flumethrin);还有是有机磷酸盐,比如库蝇磷和甲眯。抗性螨的产生与传播将使瓦螨的防治效果更难以预料 (Lodesani,2004)。因此,科学家们倾向于开发天然物质这种相对温和的杀螨剂,主要有甲酸、草酸、乳酸、麝香草酚、百里酚、β-环糊精携带单帖烯类化合物等 (Ariana et al.,2002;Ostermann& Currie,2004;Elzen et al.,2004;Satta et al.,2005;Underwood&Currie,2005;胡福良等,2005;Bacandritsos et al., 2007;van Engelsdorp et al.,2008),这些物质的防治效果与施用方式、剂量以及蜂箱内的环境条件 (温度和湿度)或者当地气候相关 (Underwood&Currie,2003;Ostermann&Currie,2004;Elzen et al.,2004),实验室测定发现,温度和换气率会直接影响瓦螨的寿命 (Kozak&Currie,2011)。也许调整施用方式可以避免或者减少伤害,比如蚁酸防治瓦螨,低浓度长时间比高浓度短时间的要更好,因为可以有效控制瓦螨而不危害蜂王 (Underwood&Currie,2005),而熏蒸也许是更好的施用方式,用50%的蚁酸熏蒸17 h可以有效杀死封盖子中和成年蜂体上的螨,而对蜂王和未封盖子均无害 (van Engelsdorp et al.,2008)。最近,人们又发现桃心木属提取物 (El Zalabani et al.,2012)、百里香、大茴香,桉树提取物 (Ghasemi et al.,2011)、以及苦楝种子油(González-Gómez et al.,2012)等具有杀螨效果的天然产物,且百里香精油和苦楝种子油的杀螨效果很好,有望开发成新的杀螨剂。

不可否认,药物治螨起了一定的积极作用。但是,连续和大范围使用导致的狄斯瓦螨抗药性和蜂产品污染问题严重 (Maggi et al.,2010,2011)。1994年,最先发现蝇毒磷在蜂蜜中的残留,2005年之后,杀螨剂残留问题日益严重,各个国家相继发表研究报告:西班牙发现麝香草酚(thymol)等挥发性香油在蜂蜜中残留严重 (Adamczyk et al.,2005),蜂蜡中氟氰胺菊酯 (fluvalinate)残留严重 (Adamczyk et al.,2010);希腊,各种杀螨剂在蜂蜜中都有残留 (Karazafiris et al.,2008);意大利,鱼藤酮 (rotenone)在蜂蜜和蜂蜡中残留量 (Satta et al.,2005)大大超过欧盟标准。药物的残留给环境带来污染 (Wiest et al.,2011),也使得瓦螨具有抗性 (Lipiński et al.,2007)。抗性产生的原因可能是瓦螨体内细胞色素单加氧酶活性升高有关 (Miozes-Koch et al.,2000)。Hillesheim(1998)发现瓦螨的抗药性与其体内的多功能氧化酶活性增强有关,将酶的抑制剂添加到瓦螨防治药液中,可增加药液的毒杀效果。也有研究表明与瓦螨的体型大小有关(Maggi et al.,2011)。抗性的产生可能是一个综合影响因素,有待进一步研究。

3.3 生物防治

根据蜜蜂的抗螨特性,如工蜂和蜂王巢房内狄斯瓦螨繁殖率低,推测该幼虫的表皮信息物质或者蜂王浆的成分对瓦螨有趋避作用 (曾志将等,2007),提取到了烃类物质(Nazzi et al.,2002)和脂肪酸类物质 (Pernal et al.,2005;Drijfhout et al.,2005),其中用8-十七碳烯酸能够减少30%的子代螨 (Nazzi et al.,2002)。另外,利用抗螨特性的可遗传性,可以人工培育抗螨蜂群 (Danka et al.,2011)。

自然界中许多真菌能够杀死小壁虱和蜱螨,是非常有潜力的生防微生物。Shaw et al.(2002)分离到40种对瓦螨有抑制作用真菌,分别属于6个属,如轮枝孢菌 Verticillium lecanii,被毛孢属Hirsutella spp.,拟青霉属 Paecilomyces spp.,白僵菌Beauveria bassiana,绿僵菌 Metarhizium spp.和弯颈霉属 Tolypocladium spp.。通过实验室测定,防治效果最好的是轮枝孢菌、白僵菌和绿僵菌,7天内致死率达100%。Peng et al.(2002)发现汤普森被毛孢H.thompsonii对瓦螨也有明显抑制作用。随后,Kanga et al.(2002,2003)将绿僵菌和汤普森被毛孢的孢子应用于蜂箱内防治狄斯瓦螨,21 d后可以看到致死的瓦螨,42 d后仍能观察到孢子,并且在对照蜂箱内可以观察到所施用的孢子,说明真菌孢子能够通过成蜂在蜂箱之间传播,但是对于封盖内的瓦螨没有防治效果。Kanga et al.(2006)将绿僵菌与化学杀虫剂Tau-xuvalinate(ApistanⓇ)同时在蜂箱内施用,比较两者的杀螨效果。施用42 d后,Apistan处理组瓦螨减少了69倍,施用绿僵菌的则减少了25倍,空白对照则增加了1.3倍;但是Apistan处理组中封盖巢房内的瓦螨增加了13倍,真菌处理组的增加了3.6倍。由此可见,真菌的杀螨效果与药物相当,但是真菌不容易引起抗性,是非常有效的生防因子,不过,仍需要开发更加有效、方便的施用方式。Kanga et al.(2010)把绿僵菌孢子制成小饼状混合物放在蜂箱内,7 d后孢子萌发率达98%,杀螨率达到97%,显著降低封盖巢房内的瓦螨数量。但是,蜂箱内真菌孢子的毒力和致病力会随着时间的延长而降低,也许可以通过提高孢子的发芽效率和延长储存时间来解决这一问题,或者真菌与棕榈蜡粉末共处理也可以到达很好的防治效果(Meikle et al.,2008)。目前并没有研究真菌的杀螨机制。

细菌的次生代谢物也有杀螨潜力,Tsagou et al.(2004)发现微球菌Micrococcaceae和杆菌Bacillus sp.分泌的内毒素和外毒素可以加速瓦螨的死亡。粘质沙雷氏菌Serratia marcescens分泌的几丁质酶对瓦螨具有致死作用 (Tu et al.,2010)。开发有效的细菌生物杀螨剂也许是一个可行的研究方向。

4 展望

从目前的研究来看,人们对狄斯瓦螨与蜜蜂的相互作用、与病毒的相互作用等了解有限。如病毒是继发感染还是协同作用?对于“狄斯瓦螨综合症”只能根据当地的环境条件而采取综合管理防控方法,不足以提出一个彻底的解决方案,很难在短时间内研发“安全,有效,易用性强”的防治技术,或者培育耐受性蜂种。因此,我们需要更多的研究狄斯瓦螨生物学和蜜蜂病理学,借助于交叉学科共同研究蜂螨与蜜蜂以及病原物的相互作用关系。狄斯瓦螨基因组序列的初步测定 (Cornman et al.,2010)以及RNAi等生物技术和基因工程技术的不断成熟和应用 (Campbell et al.,2010),环境友好型瓦螨防治方法终将会取代传统的化学药剂。

References)

Adamczyk S,Lázaro R,Pérez-Arquillué C,Bayarri S,Herrera A,2010.Impact of the use of fluvalinate on different types of beeswax from Spanish hives.Arch.Environ.Contam.Toxicol.,58(3):733-739.

Adamczyk S,Lázaro R,Pérez-Arquillué C,Conchello P,Herrera A,2005.Evaluation of residues of essential oil components in honey after different anti-Varroa treatments.J.Agric.Food.Chem.,53(26):10085-10090.

Alaux C,Dantec C,Parrinello H,Le Conte Y,2011.Nutrigenomics in honey bees:digital gene expression analysis of pollen's nutritive effects on healthy and Varroa-parasitized bees.BMC Genomics,12:496.

Aliano NP,Ellis MD,Siegfried BD,2006.Acute contact toxicity of oxalic acid to Varroa destructor(Acari:Varroidae)and their Apis mellifera(Hymenoptera:Apidae)hosts in laboratory bioassays.J.Econ.Entomol.,99(5):1579-1582.

Amdam GV,Hartfelder K,Norberg K,Hagen A,Omholt SW,2004.Altered physiology in worker honey bees(Hymenoptera:Apidae)infested with the mite Varroa destructor(Acari:Varroidae):a factor in colony loss during overwintering?J.Econ.Entomol.,97(3):741-747.

Anderson DL,Trueman JW,2000.Varroa jacobsoni(Acari:Varroidae)is more than one species.Exp.Appl.Acarol.,24(3):165-189.

Ariana A,Ebadi R,Tahmasebi G,2002.Laboratory evaluation of some plant essences to control Varroa destructor(Acari:Varroidae).Exp.Appl.Acarol.,27(4):319-327.

Bacandritsos N,Papanastasiou I,Saitanis C,Nanetti A,Roinioti E,2007.Efficacy of repeated trickle applications of oxalic acid in syrup for varroosis control in Apis mellifera:influence of meteorological conditions and presence of brood.Vet.Parasitol.,148(2):174-178.

Bernal J,Martin-Hernandez R,Diego JC,Nozal MJ,Gozalez-Porto AV,Bernal JL,Higes M,2011.An exposure study to assess the potential impact of fipronil in treated sunflower seeds on honey bee colony losses in Spain.Pest Manag.Sci.,5.

Boncristiani H,Underwood R,Schwarz R,Evans JD,Pettis J,Vanengelsdorp D,2011.Direct effect of acaricides on pathogen loads and gene expression levels of honey bee Apis mellifera.J.Insect Physiol.,28.

Calderón RA,Zamora LG,Van Veen JW,Quesada MVA,2007.Comparison of the reproductive ability of Varroa destructor(Mesostigmata:Varroidae)in worker and drone brood of Africanized honey bees(Apis mellifera).Exp.Appl.Acarol.,43(1):25-32.

Calderón RA,van Veen JW,Sommeijer MJ,Sanchez LA,2010.Reproductive biology of Varroa destructor in Africanized honey bees(Apis mellifera).Exp.Appl.Acarol.,50:281-297.

Calderone NW,2005.Evaluation of drone brood removal for management of Varroa destructor(Acari:Varroidae)in colonies of Apis mellifera(Hymenoptera:Apidae)in the northeastern United States.J.Econ.Entomol.,98(3):645-650.

Campbell EM,Budge GE,Bowman AS,2010.Gene-knockdown in the honey bee mite Varroa destructor by a non-invasive approach:studies on a glutathione S-transferase. Parasit. & Vectors,3:73.

Chantawannakul P,Ward L,Boonham N,Brown M,2008.A scientific note on the detection of honeybee viruses using real-time PCR(TaqMan)in Varroa mites collected from a Thai honeybee(Apis mellifera)apiary.J.Invertebr.Pathol.,91(1):69-73.

Chen Y,Evans J,Feldlaufer M,2006.Horizontal and vertical transmission of viruses in the honey bee,Apis mellifera. J.Invertebr.Pathol.,92(3):152-159

Cornman SR,Schatz MC,Johnston SJ,Chen YP,Pettis J,Hunt G,Bourgeois L,Elsik C,Anderson D,Grozinger CM,Evans JD,2010.Genomic survey of the ectoparasitic mite Varroa destructor,a major pest of the honey bee Apis mellifera. BMC Genomics,11:602.

Dainat B,Evans JD,Chen YP,Gauthier L,Neumann P,2012.Dead or alive:deformed wing virus and Varroa destructor reduce the life span of winter honeybees.Appl.Environ.Microbiol.,78(4):981-987.

Dainat B,Evans JD,Chen YP,Gauthier L,Neumann P,2012.Predictive markers of honey bee colony collapse. PLoS One, 7(2):e32151.

Danka RG,Harris JW,Villa JD,2011.Expression of Varroa sensitive hygiene(VSH)in commercial VSH honey bees(Hymenoptera:Apidae).J.Econ.Entomol.,104(3):745-749.

de Guzman LI,Rinderer TE,Bigalk M,Tubbs H,Bernard SJ,2005.Russian honey bee(Hymenoptera:Apidae)colonies:Acarapis woodi(Acari:Tarsonemidae)infestations and overwintering survival.J.Econ.Entomol.,98(6):1796-1801.

de Jong D,De Jong PH,Gonçalves LS,1982.Weight loss and other damage to developing worker honeybees from infestation with V.jacobsoni.J.Apicult.Res.,21:165-216.

Del Piccolo F,Nazzi F,Vedova GD,Milani N,2010.Selection of Apis mellifera workers by the parasitic mite Varroa destructor using host cuticular hydrocarbons.Parasitology,137:967-973.

Di Prisco G,Zhang X,Pennacchio F,Caprio E,Li J,Evans JD,Degrandi-Hoffman G,Hamilton M,Chen YP,2011.Dynamics of persistent and acute deformed wing virus infections in honey bees,Apis mellifera.Viruses,3(12):2425-2441.

Drijfhout FP,Kochansky J,Lin S,Calderone NW,2005.Components of honeybee royal jelly as deterrents of the parasitic Varroa mite,Varroa destructor.J.Chem.Ecol.,31(8):1747-1764.

Duay P,De Jong D,Engels W,2002.Decreased flight performance and sperm production in drones of the honey bee(Apis mellifera)slightly infested by Varroa destructor mites during pupal development.Genet.Mol.Res.,1(3):227-232.

El Zalabani SM,El-Askary HI,Mousa OM,Issa MY,Zaitoun AA,Abdel-Sattar E,2012.Acaricidal activity of Swietenia mahogani and Swietenia macrophylla ethanolic extracts against Varroa destructor in honeybee colonies.Exp.Parasitol.,130(2):166-170.

Elzen PJ,Westervelt D,Lucas R,2004.Formic acid treatment for control of Varroa destructor(Mesostigmata:Varroidae)and safety to A-pis mellifera(Hymenoptera:Apidae)under southern United States conditions.J.Econ.Entomol.,97(5):1509-1512.

Garrido C,Rosenkranz P,2003.The reproductive program of female Varroa destructor mites is triggered by its host,Apis mellifera.Exp.Appl.Acarol.,31(3-4):269-273.

Gauthier L,Ravallec M,Tournaire M,Cousserans F,Bergoin M,Dainat B,de Miranda JR,2011.Viruses associated with ovarian degeneration in Apis mellifera L.queens.PLoS One,25;6(1):e16217.

Genersch E,Aubert M,2010.Emerging and re-emerging viruses of the honey bee(Apis mellifera L.).Vet.Res.,41:11-12.

Ghasemi V,Moharramipour S,Tahmasbi G,2011.Biological activity of some plant essential oils against Varroa destructor(Acari:Varroidae),an ectoparasitic mite of Apis mellifera(Hymenoptera:Apidae).Exp.Appl.Acarol.,12.

Giovenazzo P,Dubreuil P,2011.Evaluation of spring organic treatments against Varroa destructor(Acari:Varroidae)in honey bee A-pis mellifera(Hymenoptera:Apidae)colonies in eastern Canada.Exp.Appl.Acarol.,55(1):65-76.

González-Gómez R,Otero-Colina G,Villanueva-Jiménez JA,Pe˜na-Valdivia CB,Santizo-Rincón JA,2012.Repellency of the oily extract of neem seeds(Azadirachta indica)against Varroa destructor(Acari:Varroidae).Exp.Appl.Acarol.,24.

Gregory PG,Evans JD,Rinderer T,de Guzman L,2005.Conditional immune-gene suppression of honeybees parasitized by Varroa mites.J.Insect.Sci.,5:7.

Hänel H,Koeniger N.1987.Possible regulation of the reproduction of the honey bee mite Varroa jacobsoni(Mesostigmata:Acari)by a host's hormone:Juvenile hormone III.J.Invertebr.Pathol.,49(3):259-264.

Hedtke K,Jensen PM,Jensen AB,Genersch E,2011.Evidence for emerging parasites and pathogens influencing outbreaks of stress-related diseases like chalkbrood.J.Invertebr.Pathol.,108(3):167-173.

Hu FL,Zhu W,Li YH,2005.Use of essential oils for controlling Varroa destructor in honey bee colonies.Chinese Bulletin of Entomology,42(4):375-379.[胡福良,朱威,李英华,2005.香精油的抗蜂螨作用及其在蜂群中的应用.昆虫知识,42(4):375-379]

Kanbar G,Engels W,2003.Ultrastructure and bacterial infection of wounds in honey bee(Apis mellifera)pupae punctured by Varroa mites.Parasitol.Res.,90(5):349-354.

Kanga LH,James RR,Boucias DG,2002.Hirsutella thompsonii and Metarhizium anisopliae as potential microbial control agents of Varroa destructor,a honey bee parasite.J.Invertebr.Pathol.,81(3):175-184.

Kanga LH,Jones WA,James RR,2003.Field trials using the fungal pathogen,Metarhizium anisopliae(Deuteromycetes:Hyphomycetes)to control the ectoparasitic mite,Varroa destructor(Acari:Varroidae)in honey bee,Apis mellifera(Hymenoptera:Apidae)colonies.J.Econ.Entomol.,96(4):1091-1099.

Kanga LH,Jones WA,Gracia C,2006.Efficacy of strips coated with Metarhizium anisopliae for control of Varroa destructor(Acari:Varroidae)in honey bee colonies in Texas and Florida.Exp.Appl.Acarol.,40(3-4):249-258.

Kanga LH,Adamczyk J,Marshall K,Cox R,2010.Monitoring for resistance to organophosphorus and pyrethroid insecticides in Varroa mite populations.J.Econ.Entomol.,103(5):1797-1802.

Kanga LH,Adamczyk J,Patt J,Gracia C,Cascino J,2010.Development of a user-friendly delivery method for the fungus Metarhizium anisopliae to control the ectoparasitic mite Varroa destructor in honey bee,Apis mellifera,colonies.Exp.Appl.Acarol.,52(4):327-342.

Karazafiris E,Tananaki C,Menkissoglu-Spiroudi U,Thrasyvoulou A,2008.Residue distribution of the acaricide coumaphos in honey following application of a new slow-release formulation.Pest.Manag.Sci.,64(2):165-171.

Kirrane MJ,De Guzman LI,Rinderer TE,Frake AM,Wagnitz J,Whelan PM,2011.Asynchronous development of honey bee host and Varroa destructor(Mesostigmata:Varroidae)influences reproductive potential of mites.J.Econ.Entomol.,104(4):1146-1152.

Kozak PR,Currie RW,2011.Laboratory study on the effects of temperature and three ventilation rates on infestations of Varroa destructor in clusters of honey bees(Hymenoptera:Apidae).J.Econ.Entomol.,104(6):1774-1782.

Kralj J,Brockmann A,Fuchs S,Tautz J,2007.The parasitic mite Varroa destructor affects non-associative learning in honey bee foragers,Apis mellifera L.J.Comp.Physiol.A Neuroethol.Sens.Neural.Behav.Physiol.,193(3):363-370.

Lipiński Z,Szubstarski J,Szubstarska D,2007.Detection of the high risk pyrethroid resistant Varroa destructor mites in apiaries of the Warmia-Mazury province in Poland.Wiad.Parazytol.,53(3):245-249.

Locke B,Forsgren E,Fries I,de Miranda JR,2012.Acaricide treatment affects viral dynamics in Varroa destructor-infested honey bee colonies via both host physiology and mite control.Appl.Environ.Microbiol.,78(1):227-235.

Lodesani M,2004.Control strategies against Varroa mites.Parassitologia.,46(1-2):277-279.

Luo QH,Zhou T,Dai PL,Song HL,Wu YY,Wang Q,2011.Prevalence,intensity and associated factor analysis of Tropilaelaps mercedesae infesting Apis mellifera in China.Exp.Appl.Acarol.,18.

Luo QH,Zhou T,Wang Q,Dai PL,Wu YY,2010.Advances in research on classification and major species of bee mites.Scientia Agricultura Sinica,43(3):585-593.[罗其花,周 婷,王 强,代平礼,吴艳艳,2010.蜂螨的种类及蜜蜂主要害螨研究进展.中国农业科学,43(3):585-593]

Maggi MD,Ruffinengo SR,Negri P,Eguaras MJ,2010.Resistance phenomena to amitraz from populations of the ectoparasitic mite Varroa destructor of Argentina. Parasitol.Res.,107(5):1189-1192.

Maggi M,Peralta L,Ruffinengo S,Fuselli S,Eguaras M,2011.Body size variability of Varroa destructor and its role in acaricide tolerance.Parasitol.Res.,22.

Mao W,Schuler MA,Berenbaum MR,2011.CYP9Q-mediated detoxification of acaricides in the honey bee(Apis mellifera).Proc.Natl.Acad.Sci.USA.,108(31):12657-12662.

Martin SJ,Medina LM,2004.Africanized honeybees have unique tolerance to Varroa mites.Trends Parasitol.,20(3):112-114.

Meikle WG,Mercadier G,Holst N,Girod V,2008.Impact of two treatments of a formulation of Beauveria bassiana(Deuteromycota:Hyphomycetes)conidia on Varroa mites(Acari:Varroidae)and on honeybee(Hymenoptera:Apidae)colony health.Exp.Appl.Acarol.,28.

Miozes-Koch R,Slabezki Y,Efrat H,Kalev H,Kamer Y,Yakobson,Dag A,2000.First detection in Israel of fluvalinate resistance in the Varroa mite using bioassay and biochemical methods.Exp.Appl.Acarol.,24(1):35-43.

Mondet F,Goodwin M,Mercer A,2011.Age-related changes in the behavioural response of honeybees to Apiguard(Ⓡ),a thymolbased treatment used to control the mite Varroa destructor.J.Comp.Physiol.A Neuroethol.Sens.Neural.Behav.Physiol.,15.

Moore J,Jironkin A,Chandler D,Burroughs N,Evans DJ,Ryabov EV,2011.Recombinants between deformed wing virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee colonies.J.Gen.Virol.,92(Pt 1):156-161.

Nazzi F,Milani N,1996.The presence of inhibitors of the reproduction of Varroa jacobsoni Oud.(Gamasida:Varroidae)in infested cells.Experim.Appli.Aearol.,20(11):617-623.

Nazzi F,Milani N,Vedova GD,2002.(Z)-8-heptadecene from infested cells reduces the reproduction of Varroa destructor under laboratory conditions.J.Chem.Ecol.,28(11):2181-2190.

Ongus JR,Zhang Q,Boot WJ,Calis J,Bonmatin JM,Bengsch E,Peters D,2007.Detection and localisation of picorna-like virus particles in tissues of Varroa destructor,an ectoparasite of the honey bee,Apis mellifera.J.Invertebr.Pathol.,96(2):97-105.

Ostermann DJ,Currie RW,2004.Effect of formic acid formulations on honey bee(Hymenoptera:Apidae)colonies and influence of colony and ambient conditions on formic acid concentration in the hive.J.Econ.Entomol.,97(5):1500-1508.

Parrella G,Caprio E,Mazzone P,2006.Development of improved molecular methods for the detection of deformed wing virus(DWV)in honeybees(Apis mellifera L.)and mites(Varroa destructor Oud.).Commun.Agric.Appl.Biol.Sci.,71(2 Pt B):625-629.

Peng CYS,Fang Y,Xu S,Ge L,1987.The resistance mechanism of the Asian honey bee Apis cerana Fabr.,to an ectoparasitic mite Varroa jacobsoni Oudemans.J.Invertebr.Pathol.,(49):54-60.

Peng CYS,Zhou XS,Kaya HK,2002.Virulence and site of infection of the fungus,Hirsutella thompsonii,to the honey bee ectoparasitic mite,Varroa destructor.J.Invertebr.Pathol.,(81):185-195.

Pernal SF,Baird DS,Birmingham AL,Higo HA,Slessor KN,Winston ML,2005.Semiochemicals influencing the host-finding behaviour of Varroa destructor.Exp.Appl.Acarol.,37(1-2):1-26.

Pettis JS,Kochansky J,Feldlaufer MF,2004.Larval Apis mellifera L.(Hymenoptera:Apidae)mortality after topical application of antibiotics and dusts.J.Econ.Entomol.,97(2):171-176.

Piccirillo GA,De Jong D,2003.The influence of brood comb cell size on the reproductive behavior of the ectoparasitic mite Varroa destructor in Africanized honey bee colonies.Genet.Mol.Res.,2(1):36-42.

Richards EH,Jones B,Bowman A,2011.Salivary secretions from the honeybee mite,Varroa destructor:effects on insect haemocytes and preliminary biochemical characterization.Parasitology,138(5):602-608.

Rosenkranz P,Aumeier P,Ziegelmann B,2010.Biology and control of Varroa destructor.J.Invertebr.Pathol.,103(Suppl.1):S96-119.

Santillán-Galicia MT,Carzaniga R,Ball BV,Alderson PG,2008.Immunolocalization of deformed wing virus particles within the mite Varroa destructor.J.Gen.Virol.,89(Pt 7):1685-1689.

Satta A,Floris I,Eguaras M,Cabras P,Garau VL,Melis M,2005.Formic acid-based treatments for control of Varroa destructor in a Mediterranean area.J.Econ.Entomol.,98(2):267-273.

Shaw KE,Davidson G,Clark SJ,Ball BV,Pell JK,Chandler D,Sunderland KD,2002.Laboratory bioassays to assess the pathogenicity of mitosporic fungi to Varroa destructor(Acari:Mesostigmata),an ectoparasitic mite of the honeybee,Apis mellifera.Biologil.Contr.,24(3):266-276.

Shen M,Cui L,Ostiguy N,Cox-Foster D,2005.Intricate transmission routes and interactions between picorna-like viruses(Kashmir bee virus and sacbrood virus)with the honeybee host and the parasitic varroa mite.J.Gen.Virol.,86(Pt 8):2281-2289.

Sokół R,2003.The influence of levamisol on the level of total protein in haemolymph of bees infected with Varroa destructor.Wiad Parazytol.,49(2):219-224.

Szatkowska B,Bukowska B,Huras B,2011.The effect of bromfenvinphos and its impurities on human erythrocyte.Food Chem.Toxicol.,49(2):502-507.

Tentcheva D,Gauthier L,Zappulla N,Dainat B,Cousserans F,Colin ME,Bergoin M,2004.Prevalence and seasonal variations of six bee viruses in Apis mellifera L.and Varroa destructor mite populations in France. Appl.Environ.Microbiol.,70(12):7185-7191.

Tsagou V,Lianou A,Lazarakis D,Emmanouel N,Aggelis G,2004.Newly isolated bacterial strains belonging to Bacillaceae(Bacillus sp.)and Micrococcaceae accelerate death of the honey bee mite,Varroa destructor(V.jacobsoni),in laboratory assays.Biotechenol.Lett.,26(6):529-532.

Tu S,Qiu XH,Cao L,Han RC,Zhang Y,Liu XJ,2010.Expression and characterization of the chintiases from Serratia marcescens GEI strain for the control of Varroa destructor,a honey bee parasite.J.Invertebr.Pathol.,(104):75-82.

Underwood RM,Currie RW,2003.The effects of temperature and dose of formic acid on treatment efficacy against Varroa destructor(Acari:Varroidae),a parasite of Apis mellifera(Hymenoptera:Apidae).Exp.Appl.Acarol.,29(3-4):303-313.

Underwood RM,Currie RW,2005.Effect of concentration and exposure time on treatment efficacy against Varroa mites(Acari:Varroidae)during indoor winter fumigation of honey bees(Hymenoptera:Apidae)with formic acid. J.Econ.Entomol.,98(6):1802-1809.

van Engelsdorp D,Underwood RM,Cox-Foster DL,2008.Shortterm fumigation of honey bee(Hymenoptera:Apidae)colonies with formic and acetic acids for the control of Varroa destructor(Acari:Varroidae).J.Econ.Entomol.,101(2):256-264.

Wantuch HA,Tarpy DR,2009.Removal of drone brood from Apis mellifera(Hymenoptera:Apidae)colonies to control Varroa destructor(Acari:Varroidae)and retain adult drones.J.Econ.Entomol.,102(6):2033-2040.

Wiest L,Buleté A,Giroud B,Fratta C,Amic S,Lambert O,Pouliquen H,Arnaudguilhem C,2011.Multi-residue analysis of 80 environmental contaminants in honeys,honeybees and pollens by one extraction procedure followed by liquid and gas chromatography coupled with mass spectrometric detection.J.Chromatogr.A,1218(34):5743-5756.

Wu JY,Anelli CM,Sheppard WS,2011.Sub-lethal effects of pesticide residues in brood comb on worker honey bee(Apis mellifera)development and longevity.PLoS One,6(2):e14720.

Yang X,Cox-Foster DL,2005.Impact of an ectoparasite on the immunity and pathology of an invertebrate:evidence for host immunosuppression and viral amplification. Proc. Natl. Acad. Sci.U.S.A.,102(21):7470-7475.

Zeng ZZ,Peng WJ,Liu YB,2007.Pheromone of honeybee and control mite.Apicult.Chin.,58(11):25-26.[曾志将,彭文君,刘益波,2007.蜜蜂信息素与蜂螨的防治.中国蜂业,58(11):25-26]

Zhou T,2005.The biological characteristics and the natural distribution of Varroa destructor in China.Ph.D Dissertation.[周婷,2005.狄斯瓦螨的生物学特性及在我国的自然分布.博士学位论文]

Zioni N,Soroker V,Chejanovsky N,2001.Replication of Varroa destructor virus 1(VDV-1)and a Varroa destructor virus 1-deformed wing virus recombinant(VDV-1-DWV)in the head of the honey bee.Virology,417(1):106-112.

Zółtowska K,Lipiński Z,Dmitryjuk M,2005.The total protein content,protein fractions and proteases activities of drone prepupae of Apis mellifera due to varrosis.Wiad Parazytol.,51(1):43-47.

猜你喜欢

杀螨剂封盖雄蜂
一种集装袋
微型晶体谐振器封盖移载机械手移载精度分析
“成熟蜜”改称“封盖蜜”更合适一些
新型杀螨剂β-酮腈衍生物及其开发
割雄蜂蛹经验谈
不同杀螨剂对柑桔红蜘蛛速效与持效性防治田间试验
常见杀螨剂
杀螨剂的类型与使用技术
基于PLC的船艏侧推筒体封盖系统的控制设计
割雄蜂房要做到事半功倍