APP下载

遥感在水库温室气体研究中的应用

2011-09-11吴炳方

中国三峡 2011年9期
关键词:库区温室植被

吴炳方 赵 炎 曾 源

上:三峡水库重庆奉节县瞿塘峡江段。 摄影/黄正平

下:(卫星遥感图片)2001年10月22日,欧洲宇航局最小的人造地球观测卫星“普罗巴”(Proba)被发射升空,开始围绕地球运行,运行周期为3年半。它拍摄到中国三峡水利工程。 摄影/国际图/CFP

水库的温室气体排放是水库蓄水后产生的一种自然现象。在全球气候变暖的大背景下,发电水库的温室气体排放已引起人们对水电的广泛关注。

水库的温室气体排放主要产生于汇入库区水体中有机物质的分解。目前,国内外专家学者基于生态学方法,对不同气候、地形条件下的水库开展了观测研究,结果表明水库存在一定量的温室气体排放,但在不同环境和流域背景条件下水库的排放水平存在明显的区别。即使在同一个水库内,受水库形态以及水力和水环境条件空间异质性的影响,不同水域的温室气体排放也存在显著的差异。

影响水库温室气体排放的主要过程可分为两类:其一是为水库或其沉积物提供有机碳的过程,其二是影响水库温室气体产生与排放的过程。前者主要取决于水库集水区内通过地表径流提供的有机物质输入和消落区内植物、凋落物、土壤中挟带的陆源有机质;后者的影响因素则包括水体中有机质、温度、溶解氧以及表层水体初级生产力等水体理化特征的表征参数。通过对上述过程和参数的监测,有助于了解和分析产生水库温室气体排放强度及其时空变化的原因。

目前,国际上开展水库温室气体研究尚未形成一套成熟的方法体系,如何以科学严谨的方法获得水库的温室气体排放强度及其变化动态,是各国学者正在努力探讨的科学问题。

2008年8月,联合国教科文组织(UNESCO)与国际水电协会(IHA)联合启动“淡水水库温室气体排放研究项目”,旨在了解水库温室气体排放的影响及相关过程,基于其前期的研究成果,提出了《淡水水库温室气体测量指南》(下简称《指南》)。《指南》在述及基于原位监测数据的排放量估算时,指出了对监测数据进行空间尺度外推、时间整合以及净排放量计算的重要性,但对于水库温室气体排放这样一种存在极强空间异质与时间变异性的现象而言,《指南》推荐的统计分析方法存在明显的不足。

因此,基于原位观测的生态学研究方法,虽然有助于了解温室气体产生、排放的过程,但无法掌握水库,尤其是大型水库温室气体排放的空间分布特征和时间变化过程,从而使得水库温室气体排放量的估算存在很大的不确定性。科学家L o u is等人对温带(加拿大、美国、芬兰)与热带(巴西、法属圭亚那)地区20多个水库的水库温室气体测量结果进行了比较,结果表明不同气候条件下水库的排放存在明显的差异。以甲烷为例:温带地区平均甲烷排放约20mg/m2.d,而热带地区达到300mg/m2.d(毫克每平方米每天)。在同一个水库内,其观测结果也表现出较大的变化幅度,如法属圭亚那的小梭(Petit Saut)水库的平均甲烷排放约为1140mg/m2.d,而观测获得的实际排放通量变化范围为5~3800mg/m2.d,若仅以该水库的平均排放水平进行排放量的估算或与其他水库进行对比,显然将导致片面的结论。

另一方面,人们往往是在水库建成后才意识到水库的温室气体排放问题,因此大多缺乏水库建设前温室气体排放的本底值,从而无法以生态学观测手段获得由水库建设导致的温室气体净排放水平,无法对水库温室气体排放进行客观的评价。解决的方法是将遥感与生态学方法相结合,掌握水库温室气体排放空间格局、时间过程和净排放水平。

遥感数据具有多尺度、多光谱、多时相的特点。多尺度是指遥感能以不同的空间分辨率记录地表信息,以不同的详细程度反映地表格局等特征;多光谱是指遥感以不同的波段设置,记录地物在不同波长处对太阳辐射的吸收特性;多时相则是指遥感能以不同的周期对同一地区进行重复观测,并且伴随遥感技术的发展,可以形成较长时间序列内的遥感数据集。遥感数据的以上特点,决定了它能在反映地球表面宏观结构特性的同时,也反映微观局部的差异,全面、客观、系统地反映地表的状况及动态,遥感也因此成为目前可实现对地表时空连续观测的重要技术手段,广泛应用于地物的识别以及对地表空间结构与时间过程的监测,具体的应用包括地表温度与土壤湿度监测、植被类型与植被覆盖度监测、水环境质量监测、地表水分蒸发以及生态系统质量及演化评定等。

上:国家环境保护卫星遥感重点实验室在北京成立。图为技术人员正在维护卫星地面接受站设备。 摄影/邓佳/CFP

下:2010年9月22日10时40分,我国在酒泉卫星发射中心用长征2号丁火箭成功发射“遥感卫星十一号”。 摄影/海晗/CFP

受传感器信号接收过程中大气吸收与散射以及地表其他过程的影响,遥感技术并不能直接捕捉水库水气界面的温室气体通量特征,只能通过对与水库温室气体排放相关的各个过程和参数的间接监测,反映水库温室气体排放强度及其空间分布特征。主要体现在三个方面:一是对库区生境的动态监测,包括集水区水土流失、面源污染、消落区植被恢复等,分析库区陆地生态系统碳元素注入等过程对水库温室气体排放产生的影响;二是对水库水环境异质性的监测,分析产生水库温室气体排放空间异质性的原因;三是利用遥感历史积累数据,实现对历史状况的追溯。

库区陆地生态系统动态监测

作为产生水库温室气体排放的重要碳物质来源,进入库区水体碳物质的量决定了温室气体产生以及排放量。《指南》中指出水库中碳物质来源包括自源与异源两类,自源主要产生于水生生物的代谢过程,异源则包括消落区内植被与土壤中有机物质的淹没分解以及集水区内随水土流失的有机物质注入。

集水区水土流失是影响库区水体的重要地表过程,而随水土流失进入水体的碳物质是使水库在建设前后持续产生温室气体的重要碳物质来源;消落区植被与土壤中的有机碳则是导致水库温室气体净排放的主要碳物质来源。遥感可以监测陆地生态系统的碳负荷,从而分析库区陆域入库碳通量,为水库温室气体的估算提供依据。

遥感技术之所以可以成为水土流失监测的一种有效手段,是由于其对地表一些典型的水土流失标志,如地表裸露程度、植被覆盖度和土地利用类型变化等,进行了空间连续的记录。以经过高精度预处理(定标、辐射校正、大气校正、几何校正等)的遥感影像提取包括库区土壤可蚀性因子、地形因子、植被因子等水土流失标志的专题信息,结合开展地面调查获得的地区水土流失防治以及降雨强度等综合信息,辅以GIS的空间数据处理和分析功能,可实现对库区水土流失强度的定量监测。基于上述方法对三峡库区2007年水土流失进行监测,并根据不同的流失强度进行分区,结果表明:三峡库区2007年水土流失总面积37335平方公里,占库区土地面积的64.5%,其中轻度侵蚀面积占29.2%、中度侵蚀面积占42%、强度及以上侵蚀面积占28.8%。以上结果结合库区土壤属性等数据,可用以定性分析可能产生明显碳流失的敏感区域。

在水土流失监测的基础上,补充开展库区径流小区观测,分析不同地形和植被条件下的碳流失强度,建立碳流失强度与地形、植被以及水土流失强度的定量关系,进而实现对库区陆域的碳流失通量估算。

消落区是水库季节性水位涨落而周期性出露于水面的特殊区域。以三峡水库为例,2010年三峡水库实现175米最高位蓄水,意味着次年水位降至145米汛限水位后将在30米的水位落差内形成消落区。在水位逐渐降低的过程中,出露的消落区将产生植被的自然恢复及植物与土壤中有机物质的积累过程。利用高时间分辨率遥感数据,对不同高程下消落区在退水初期的植被状况及其随后的恢复过程进行跟踪监测,包括植被的覆盖度水平、生物量等,进而可以估算消落区植被的碳储量水平。对2009年三峡172米消落区内植被的遥感监测结果表明,消落区平均植被覆盖度在退水初期(2009年6月)为31%,而在退水末期(2009年8月)达到67.6%。当水库进入新一轮的蓄水过程,新生植被再次被淹没时,即可根据遥感监测的结果,估算蓄水淹没的植被生物量或有机碳的量,结合特定环境条件下植物体的分解速率研究结果,实现对水淹没植被产生的温室气体排放量及相应排放速率的估算。

2008年1月30日,北京,国家环境保护卫星遥感重点实验室常务副主任伊球研究员正与同事利用卫星遥感影像分析水污染状况。 摄影/邓佳/CFP

与此同时,水库低水位期间对消落区植被的遥感监测结果,也可为开展蓄水后水气界面观测点位的选择提供参考。消落区在出露期植被恢复的特殊性质,决定了其在蓄水后将成为水库温室气体排放的热点区域,因此在设置观测点开展通量观测时,需重点考虑。根据蓄水前对消落区植被分布状况遥感监测的结果,结合地形和土壤等信息,对可能产生相同排放水平的区域进行分区,并设置相应观测点开展观测,基于分区与观测结果可对消落区产生的温室气体排放量进行估算。

水环境异质性的监测

基于原位观测的生态学方法,受仪器与经费的影响,往往只能选择小部分水域开展观测,且容易将注意力集中于可能产生温室气体的敏感区域如浅水区、消落区等。由于各个观测点的空间代表性有限,在进行排放水平的空间外推或基于观测数据进行模型模拟时,将导致估算结果偏离真实的排放水平。

遥感技术可获取不同理化状态下表层水体所表现出来的反射率差异,实现对叶绿素a、可溶性有机质等影响温室气体排放关键参数的空间分布特征,分析表层水体空间异质性,进而可客观分析由此导致的温室气体排放空间分布格局。

纯净水体在可见光波段的反射率曲线是接近线性的,且随着波长增加反射率呈降低趋势。自然水体中由于污染物质对入射辐射的选择性吸收和散射作用,使水体的反射光谱曲线呈现不同的形态。通常认为影响水体光谱反射率的污染物质主要有三种:浮游植物、悬浮物以及由黄腐酸、腐殖酸组成的溶解性有机物(通常称为黄色物质)。由于不同类型污染物具有特定的吸收波长,而不同的污染物浓度又会对入射辐射产生不同强度的吸收和散射,最终导致传感器接收到的不同水体的辐射信号表现出不同的反射特性。遥感技术正是基于这一性质,通过分析不同水质参数浓度与吸收特征之间的定量关系进行建模、反演。目前借助遥感手段可反演的表层水体理化指标包括叶绿素a、悬浮物、有色可溶性有机物、总磷、总氮、透明度和水温等。

大型深水水库的理化指标(温度、溶解氧等)往往存在分层的现象,而这种分层结构将影响水体中物质的转换与传输过程。因此,开展对水库水体分层结构的研究,将进一步促进对温室气体产生和排放过程的理解,结合遥感技术对表层水体理化性质的监测与观测获得的水体温度、溶解氧、溶解二氧化碳等参数的分层特征,建立库区水体理化参数的三维空间分布模型,可更有效地分析产生温室气体排放强度时空变化的原因。

对水库建设前排放水平的追溯

国际上对水库温室气体排放的认识均是来源于近年来少数学者对少数水库开展少数观测工作获得的初步结论,而多数水库此时已完成建设并蓄水运行,往往缺少在水库建设前相同区域内的温室气体排放观测,缺少温室气体排放的本底水平,因此难以分析和估算因水库建设所导致的温室气体净排放量,从而无法客观评价水库建设导致温室气体排放所产生的环境影响。

遥感技术经历了长时期的发展后,已经形成了多平台、多时相的连续对地观测体系,积累了较长时间序列的多源遥感数据。以现阶段开展库区温室气体排放通量观测所获得的不同环境条件下库区消落区以及水体的温室气体排放因子以及遥感技术对库区陆域、消落区以及水环境的监测结果为参考,借助积累的遥感时间序列数据,对水库建设前库区范围内不同土地利用以及水体的温室气体排放水平进行回溯,进而对因水库建设导致的温室气体净排放量进行估算。

结语

水库温室气体排放是一个复杂的生态学过程,受库区陆地和水体环境异质性的影响,其排放存在明显时空变化,而遥感作为一种可实现时空连续表达的观测手段,在水库温室气体研究中起着重要的作用,与生态学观测方法对温室气体产生与排放各个过程的理解形成互补。

目前,遥感技术是进行地表陆面过程和参数动态监测的重要手段,在水库温室气体研究中,遥感技术可通过对水库库区碳流失过程的监测,精确估算碳物质来源;通过对库区水环境的监测,刻画温室气体产生环境的异质性;通过以遥感积累的历史数据,追溯水库建设前的排放水平,实现对水库温室气体排放在时间与空间尺度上的外推,最终实现对水库精确估算水库温室气体排放量及净排放量的目的,降低生态学统计方法中的不确定性。另一方面,通过分析产生温室气体排放时空差异的原因,从碳物质来源、水环境条件等角度探索减少温室气体排放的可行性手段,为制定水库的生态调度方案提供依据。

猜你喜欢

库区温室植被
江垭库区鱼类群落组成和资源量评估
基于植被复绿技术的孔植试验及应用
现代温室羊肚菌栽培技术
湖南省大中型水库库区管理工作实践与探索——以皂市水库为例
浅析库区移民集中安置点规划设计中需注意的问题
苍松温室 苍松灌溉
苍松温室 苍松灌溉
与生命赛跑的“沙漠植被之王”——梭梭
可以避免一个温室化的地球吗?
绿色植被在溯溪旅游中的应用