APP下载

大豆孢囊线虫抗性遗传标记研究进展

2018-01-24

土壤与作物 2018年2期
关键词:小种线虫抗性

(中国科学院 东北地理与农业生态研究所 黑土区农业生态重点实验室,黑龙江 哈尔滨 150081)

0 引 言

大豆孢囊线虫(SCN,HeteroderaglycinesIchinohe)病害是一种世界性的毁灭性大豆病害,造成美国每年至少15亿美元的损失[1],在我国所有的大豆产区几乎都有该病的报道,严重地块甚至绝产,给我国大豆生产带来严重的经济损失[2]。SCN是一种土传的定居型内寄生线虫,以二龄幼虫在土壤中活动,当寄主植物根存在时,二龄幼虫识别寄主释放的信号并被吸引到植物根尖的伸长区域,然后利用口针刺透细胞壁,其分泌的细胞壁降解酶有助于侵入到维管束。SCN一旦到达维管束,就选择一个取食位点并激活周围其它细胞壁的降解而形成一个独特的取食结构-合胞体,合胞体包含着大约200个融合的根细胞并作为线虫的营养源[3]。线虫经过3次蜕皮发育成雌、雄成虫,交配后的雌虫身体膨大突出于根外,每个雌虫能产几百个卵,当雌虫死后形成一个孢囊,卵仍在孢囊内。土壤中没有寄主存在时,孢囊可以长期保护卵(最长可达30年)抵挡外界的不利环境直到遇到合适的寄主[3-5]。

SCN的遗传特性非常复杂,根据大豆的4个鉴别寄主和一个对照感病寄主对孢囊线虫的反应被划分为16个生理小种[6],后来根据7个鉴别寄主区分为HG类型[3,7]。我国SCN报道的主要有11个生理小种(1-7,9,11,13,14),其中3号是我国的优势小种,主要分布在东北三省和内蒙古自治区;4号小种浸染能力更强;主要分布在黄淮海等产区;6号小种主要发现在黑龙江省[2,8-9]。近来研究表明黄淮地区2号小种已上升为优势小种[10],最新研究发现从山西省分离到一个毒性极高的小种,能够同时侵染鉴别大豆孢囊线虫生理小种和HG Type的所有大豆寄主[11]。

目前SCN主要防治方法是利用高毒高残留的化学农药,这种方法对环境和人畜都会造成危害,选用抗性品种和作物轮作结合是防治大豆孢囊线虫最经济有效的方法。然而,实际生产中轮作受有限土地资源的限制,大豆孢囊线虫的抗性资源非常有限并且抗性单一,同时线虫的表型筛选费时费力,使得抗性品种的应用受限,因此开发鉴定新的抗病育种品种极其迫切。目前,利用鉴定与抗病基因连接的DNA遗传标记是分子辅助抗性育种(Marker-assisted selection,MAS)常用的重要步骤,应用的主要分子标记包括随机扩增多态性DNA(Random amplified polymorphic DNA, RAPD)、限制性片段长度多态性(Restriction fragment length polymorphism, RFLP)、扩增片段长度多态性(Amplified fragment length polymorphism,AFLP)、微卫星(Microsatellites)或者简单序列重复(Simple sequence repeats,SSR)以及单核苷酸多态性(Single Nucleotide Polymorphism,SNP)。DNA标记常被用来构建遗传图谱,结合群体的表型和遗传图谱能够确定控制植物抗病基因的染色体区域。植物的抗病性一般由简单性状(单基因)或者数量性状(多基因)控制,其中由多基因控制的数量性状QTL(Quantitative Trait Loci)标记法一直作为强有力的手段在分子辅助育种中起着重要的作用。分子辅助抗性育种能够降低表型筛选并加速分子育种进程,因此与仅依靠田间表型筛选的传统植物育种相比具有更加有效、可靠及成本低等多项优点。本文概述了大豆孢囊线虫的遗传抗性、抗性基因的分子标记及其在全基因组范围内的关联研究进展,并对其存在的问题进行了探讨和展望。

1 大豆孢囊线虫的遗传抗性及分子标记

早期的遗传抗性研究表明,大豆对大豆孢囊线虫的抗性是由不同的隐性和显性基因组成的,包括rhg1、rhg2、rhg3[12]、Rhg4[13]和Rhg5[14]。进一步对新的抗性资源的遗传分析表明,SCN抗性是多基因控制的数量性状[15-18]。Concibido等[16]总结了抗不同种SCN-HG类型相关的31个QTLs,这些QTLs被标记到大豆20条染色体中的17条染色体上(2、9和10号染色体除外)。随后来自新的抗性资源的抗性QTL被标记到相同或者不同的染色体上,目前大豆20条染色体都有大豆孢囊线虫的抗性标记[19-25]。

近年来对大豆抗病基因的研究有了突破性进展:一个是图位克隆(Map-based cloning)了抗大豆孢囊线虫病位于8号染色体的抗性基因Rhg4(Peking类型),Rhg4位点的基因编码的丝氨酸羟甲基转移酶(SHMT)与抗性相关[26];另外还发现位于18号染色体的抗SCN 1号小种的rgh1-b(PI88788型大豆)位点包含3个基因,Glyma18g02580(Glyma.18g022400,amino acid transporter)、Glyma18g02590(Glyma.18g022500,soluble NSF attachment protein,α-SNAP)和Glyma18g02610(Glyma.18g022700,wound-induced protein WI12),大小约31 kb,其编码的3种蛋白共同作用防御SCN的侵染[27]。感病机制是由基因的拷贝数决定的,单拷贝存在于感病品种(如感病的Williams82),而多拷贝存在于抗病品种(如Peking含有3个拷贝,PI88788来源的抗性品种含有7~10个拷贝)[27-28]。最新的研究发现rgh1-aPeking类型中的GmSNAP18结合rgh4能够产生抗性,说明Peking类型的GmSNAP18和PI88788类型中的GmSNAP18对SCN的抗性功能不一样[29]。

Kadam等[30]利用美国农业部收集的超过19 000个大豆种质资源的数据库,围绕rhg1和Rhg4位点0.5 Mbp范围内的高通量的单核苷酸多态性SNP标记,对95个大豆种质资源和3个重组自交群体进行评估,分析这些SNP标记是否与SCN抗性相关,结果表明,与rhg1连接的SNP标记能够检测其和SCN抗感相关的拷贝数,连接于Rhg4的SNP标记能够检测Peking基因型的抗性。Jiao等[31]从抗性资源PI437655中鉴定了两个QTL,一个和rhg1位点相连,其抗性基因的拷贝数和PI88788相同,说明PI437655和PI88788可能具有共同的抗性位点;另外一个QTL位于20号染色体,PI88788中不存在,当这两个基因综合起来其抗性比PI88788高。Shi等[32]鉴定了3个SNP标记,其中两个连锁于rhg1位点,一个连锁于Rhg4位点,这3个位点能够区分Peking和PI88788抗性背景。史学晖等[33]针对大豆胞囊线虫主效基因Rhg4(GmSHMT)上的2个SNP位点,开发了简便、经济的CAPS标记(Rhg4-389)和dCAPS标记(Rhg4-1165),并验证了对抗病种质的鉴定效率达到93%~94%。已有研究认为,连接与这些抗病基因的分子标记可用于大豆孢囊线虫的抗病筛选或育种,包括限制片段多态性标记RFLP[16,34]、简单重复序列标记SSR[35-39]和单核苷酸多态性/插入缺失标记(SNP/Insertion and Deletion,SNP/InDel)[30-32,40-46]。

2 全基因组关联研究

全基因组关联研究(GWAS)是目前分析人类和动植物复杂性状的有效策略,是在全基因组层面上,通过对大规模群体DNA样本进行全基因组高密度遗传标记 (如SNP)分型,进行全基因组水平的对照分析或相关性分析,进而比较发现影响复杂性状的基因变异的一种方法。这种技术已经成功的应用到模式植物拟南芥[47]、水稻[48]、玉米[49]、大麦[50]和番茄[51]等作物。在大豆上也成功地分析了许多性状,如大豆种子蛋白和油份含量[52-53]、菌核引起的茎腐病[54-55]、根结线虫病[56]和大豆孢囊线虫病[20,24,31,57-60]。

国内外很多学者已通过全基因组关联研究标记了与SCN抗性相关的基因。Li等[57]通过分析比较159份大豆种质资源鉴定了和SCN抗性相关的6个SSR标记;Bao等[61]利用SNP标记筛选了代表明尼苏达大学的大豆育种项目的282份种质资源,鉴定了与rhg1和FGAM1基因相关的第三个位点位于18号染色体的另外一端。Vuong等[24]利用大豆SNP数据库SoySNP50K iSelect BeadChip(http//www.soybase.org)[62]对553份大豆种质进行筛选,鉴定出了位于不同的染色体上的14个位点,包含60个SNP与SCN抗性有关,其中6个位点证实了以前报道的位点,包括rhg1和Rhg4,而这6个位点是建立在双亲杂交分离的群体基础上被标记出来的。利用这些SNP标记,同时也验证了其它性状,例如种皮颜色、花色、茸毛色和茎生长习性。Han等[20]利用SLAF-seq(Specific-Locus Amplified Fragment Sequencing)测序技术,对包括国内的地方品种和外来品种440份大豆种质进行了测序并构建了36 976个SNP标记,同时对这440份大豆种质进行了SCN的抗性筛选和全基因组的关联分析,结果表明19个信号与HG type 0 (race 3)和HG Type 1.2.3.5.7(race 4)的抗性相关,其中8个与rhg1和Rhg4相关,另外8个和已报道的一致,3个是第一次报道。Zhang等[58]鉴定了235份野生大豆对SCN 5号生理小种的抗感性,然后利用大豆SNP数据库SoySNP50K iSelect BeadChip进行了全基因组范围内的筛选,鉴定了10个SNP与抗性相关,其中4个新的QTLs位于18号染色体,2个新的QTLs位于19号染色体。Zhao等[60]利用SLAF-seq对200份不同的大豆资源进行了测序,并得到33 194个SNP标记,通过对大豆孢囊线虫HG Type 2.5.7遗传抗性筛选,发现13个SNP标记分布在5条染色体(7,8,14,15和18)上,其中4个是新报道的SNP标记,同时鉴定了30个与SCN抗性有关的抗性基因。Zhang等[59]对120个大豆品种在全基因组范围内筛选并得到与HG Type 2.5.7抗性有关的13个SNP标记,并定位到7个染色体上,其中10个SNP定位到5个不同的基因组区域。如此多的QTLs与SCN抗性有关,说明了这个数量性状的复杂性,同时也证明了高通量的WGAS-SNP方法是切实可行的。Wan等[63]通过全基因组序列分析大豆孢囊线虫侵染抗感大豆后基因表达的变化,揭示了可能参与调控SCN抗性的基因和防御途径。这些鉴定的QTLs对于大豆孢囊线虫的分子辅助抗病育种都具有重要的利用价值。

3 存在的问题及展望

目前大多数抗性品种的抗性仅来源于PI88788、Peking和PI437654基因型背景,这些基因型皆来自国内,它们是3号SCN生理小种的主要抗性资源(www.soybean.org)[16-17,41]。美国中北部在上世纪90年代培育的80%的抗病品种的抗性主要来自PI88788基因型[64]。但是,长期单一抗性品种的种植导致田间大豆孢囊线虫毒性小种发生变化,使得这些抗性品种的抗性减弱甚至丧失[23,65]。例如,我国东北培育的大豆抗线虫品种(抗线1-13号)的抗性来自北京小黑豆Peking的基因型,主要是抗大豆孢囊线虫3号生理小种。随着抗线大豆品种应用年限的增加,一些地区的SCN生理小种发生了变异。研究发现,连续种植抗3号生理小种13年后,抗3号生理小种的品种抗性明显减弱甚至丧失,3号小种转变成毒性更强的4号或者14号小种[66]。从没有进行长期连作的大豆田间采集土样进行室内检测,发现3号优势小种也转变成毒性强的4号或者14号生理小种[67-68],多位科学家对东北种质资源抗性进行筛选,结果发现东北商业大豆品种对发生变化的SCN优势小种的抗性资源非常有限[9,69-71],抗SCN多个生理小种的大豆品种更是缺乏。因此培育多抗品种是长期有效防治大豆孢囊线虫的重要手段,是生产中的急需。但因SCN遗传的复杂性,首先明确对大豆孢囊线虫每个生理小种的抗性遗传规律是进一步培育多抗品种的关键步骤。

因传统育种培育多抗品种需要周期长,品种的更新在时间上跟不上线虫生理小种的变化,而利用分子标记的分子辅助育种不仅降低表型筛选所需的人力、物力和时间,还能加快育种代数并提高优良性状的导入(Introgression breeding);进一步对鉴定的这些与抗性相关的QTLs之间的互作机制进行研究,不仅能够有效地利用这些抗性资源,而且能够加快大豆孢囊线虫多抗品种的培育,同时为生物的遗传进化提供理论依据。

参考文献(References):

[1] WRATHER J A,KOENNING S R.Estimates of disease effects on soybean yields in the United States 2003 to 2005[J].Journal of Nematology,2006,38(2): 173-180.

[2] 段玉玺.植物线虫学[M].北京: 科学出版社,2011.

DUAN Y X.Plant nematodes[M].Beijing:Science Press,2011.

[3] NIBLACK T L,LAMBERT K N,TYLKA G L.A model plant pathogen from the kingdom Animalia:Heteroderaglycines,the soybean cyst nematode[J].Annual Review of Phytopathology,2006,44:283-303.

[4] HUSSEY R S,GRUNDLER F M.Nematode parasitism of plants[M]//In:PERRY R N,WRIGHT J,eds.Physiology and biochemistry of free-living and plant parasitic nematodes.England: CAB International Press,1998: 213-243.

[5] MICHUM M G,BAUM T J.Genomics of the soybean cyst nematode-soybean interaction[M]//In:STACEY G,eds.Genetics and genomics of soybean.New York: Springer,NY,2008: 321-341.

[6] RIGGS R D,SCHMITT D P.Complete characterization of the race scheme forHeteroderaglycines[J].Journal of Nematology,1988,20(3): 392-395.

[7] NIBLACK T L,ARELLI P R,NOEL G R,et al.A revised classification scheme for genetically diverse populations ofHeteroderaglycines[J].Journal of Nematology,2002,34(4): 279-288.

[8] 董丽民,许艳丽,李春杰,等.黑龙江省大豆胞囊线虫胞囊密度和生理小种鉴定[J].中国油料作物学报,2008,30(1): 108-111.

DONG L M,XU Y L,LI C J,et al.Cyst density and subspeicies identification of soybean cyst nematode in Heilongjiang province[J].Chinese Journal of Oil Crop Sciences,2008,30(1):108-111.

[9] 孔祥超,李红梅,耿 甜,等.大豆种质资源对大豆孢囊线虫3号和4号生理小种的抗性鉴定[J].植物保护,2012,38(1): 146-150.

KONG X C,LI H M,GENG T,et al.Resistance evaluation of soybean varieties and germplasms to the races No.3 and No.4 of soybean cyst nematodeHeteroderaglycines[J].Plant Protection,2012,38(1): 146-150.

[10] 练 云,王金社,李海朝,等.黄淮大豆主产区大豆孢囊线虫生理小种分布调查[J].作物学报,2016,42(10):1479-1486.

LIAN Y,WANG J S,LI H C,et al.Race distribution of soybean cyst nematode in the main soybean producing area of Huang-Huai Rivers Valley[J].Acta Agronomica Sinica,2016,42(10):1479-1486.

[11] LIAN Y,GUO J,LI H,et al.A new race(X12) of soybean cyst nematode in China[J].Journal of Nematology,2017,49(3):321-326.

[12] CALDWELL B E,BRIM C A,ROSS J P.Inheritance of resistance of soybeans to the cyst nematode,Heteroderaglycines[J].Agronomy Journal,1960,52(11): 635-636.

[13] MATSON A L,WILLIAMS L F.Evidence of a fourth gene for resistance to the soybean cyst nematode[J].Crop Science,1965,5(5): 477.

[14] RAO-ARELLI A P.Inheritance of resistance toHeteroderaglycinesrace 3 in soybean accessions[J].Plant Disease,1994,78(9): 898-900.

[15] ANAND S C,RAO-ARELLI A P.Genetic analyses of soybean genotypes resistant to soybean cyst nematode race 5[J].Crop Science,1989,29(5): 1181-1184.

[16] CONCIBIDO V C,DIERS B W,ARELLI P R.A decade of QTL mapping for cyst nematode resistance in soybean[J].Crop Science,2004,44(4): 1121-1131.

[17] CONCIBIDO V C,LANGE D A,DENNY R L,et al.Genome mapping of soybean cyst nematode resistance genes in ‘Peking’,PI 90763,and PI88788 using DNA markers[J].Crop Science,1997,37(1): 258-264.

[18] HARTWIG E E.Breeding productive soybean cultivars resistant to the soybean cyst nematode for the southern United States[J].Plant Disease,1981,65(4): 303-307.

[19] ARELLI P R,CONCIBIDO V C,YOUNG L D.QTLs associated with resistance in soybean PI567516C to synthetic nematode population infecting cv.Hartwig[J].Journal of Crop Science and Biotechnology,2010,13(3): 163-167.

[20] HAN Y P,ZHAO X,CAO G L,et al.Genetic characteristics of soybean resistance to HG type 0 and HG type 1.2.3.5.7 of the cyst nematode analyzed by genome-wide association mapping[J].BMC Genomics,2015,16: 598.

[21] KIM K S,VUONG T D,QIU D,et al.Advancements in breeding,genetics,and genomics for resistance to three nematode species in soybean[J].Theoretical and Applied Genetics,2016,129(12): 2295-2311.

[22] VUONG T D,SLEPER D A,SHANNON J G,et al.Confirmation of quantitative trait loci for resistance to multiple-HG types of soybean cyst nematode(HeteroderaglycinesIchinohe)[J].Euphytica,2011,181(1): 101-113.

[23] VUONG T D,SLEPER D A,SHANNON J G,et al.Novel quantitative trait loci for broad-based resistance to soybean cyst nematode(HeteroderaglycinesIchinohe) in soybean PI 567516C[J].Theoretical and Applied Genetics,2010,121(7): 1253-1266.

[24] VUONG T D,SONAH H,MEINHARDT C G,et al.Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean[J].BMC Genomics,2015,16: 593.

[25] WINTER S M,SHELP B J,ANDERSON T R,et al.QTL associated with horizontal resistance to soybean cyst nematode inGlycinesojaPI464925B[J].Theoretical and Applied Genetics,2007,114(3):461-472.

[26] LIU S M,KANDOTH P K,WARREN S D,et al.A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens[J].Nature,2012,492(7428): 256-260.

[27] COOK D E,LEE T G,GUO X L,et al.Copy number variation of multiple genes atrhg1 mediates nematode resistance in soybean[J].Science,2012,338(6111): 1206-1209.

[28] COOK D E,BAYLESS A M,WANG K,et al.Distinct copy number,coding sequence,and locus methylation patters underlieRhg1-mediated soybean resistance to soybean cyst nematode[J].Plant Physiology,2014,165(2): 630-647.

[29] LIU S M,KANDOTH P K,LAKHSSASSI N,et al.The soybeanGmSNAP18 gene underlies two types of resistance to soybean cyst nematode[J].Nature Communication,2017,8: 14822.

[30] KADAM S,VUONG T D,QIU D,et al.Genomic-assisted phylogenetic analysis and marker development for next generation soybean cyst nematode resistance breeding[J].Plant Science,2016,242: 342-350.

[31] JIAO Y Q,VUONG T D,LIU Y,et al.Identification and evaluation of quantitative trait loci underlying resistance to multiple HG types of soybean cyst nematode in soybean PI 437655[J].Theoretical and Applied Genetics,2015,128(1):15-23.

[32] SHI Z,LIU S M,NOE J,et al.SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance[J].BMC Genomics,2015,16: 314.

[33] 史学晖,李英慧,于佰双,等.大豆胞囊线虫主效抗病基因Rhg4(GmSHMT)的CAPS/dCAPS标记开发和利用[J].作物学报,2015,41(10): 1463-1471.

SHI X H,LI Y H,YU B S,et al.Development and utilization of CAPS/dCAPS markers based on the SNPs lying in soybean cyst nematode resistant genesRhg4[J].Acta Agronomica Sinica,2015,41(10): 1463-1471.

[34] QIU B X,ARELLI P R,SLEPER D A.RFLP markers associated with soybean cyst nematode resistance and seed composition in a ‘Peking’ x ‘Essex’ population[J].Theoretical and Applied Genetics,1999,98(3-4): 356-364.

[35] 张姗姗,李英慧,李金英,等.优良品系中品03-5373系谱的遗传解析及抗大豆胞囊线虫病相关标记鉴定[J].作物学报,2013,39(10):1746-1753.

ZHANG S S,LI Y H,LI J Y,et al.Genetic dissection of elite line Zhongpin 03-5373 pedigree and identification of candidate markers related to resistance to soybean cyst nematode[J].Acta Agronomica Sinica,2013,39(10): 1746-1753.

[36] CARTERJR T E,KOENNING S R,BURTON J W,et al.Registration of ‘N7003CN’ maturity-Group-VII soybean with high yield and resistance to race 2(HG type 1.2.5.7-) soybean cyst nematode[J].Journal of Plant Registrations,2011,5(3): 309-317.

[37] CHEN Y W,WANG D C,ARELLI P,et al.Molecular marker diversity of SCN-resistant sources in soybean[J].Genome,2006,49(8): 938-949.

[38] MEKSEM K,RUBEN E,HYTEN D L,et al.High-throughput genotyping for a polymorphism linked to soybean cyst nematode resistance geneRhg4 by using Taqman(TM) probes[J].Molecular Breeding,2001,7(1): 63-71.

[39] SUZUKI C,TANAKA Y,TAKEUCHI T,et al.Genetic relationships of soybean cyst nematode resistance originated inGedenshirazuand PI84751 onRhg1 andRhg4 loci[J].Breeding Science,2012,61(5): 602-607.

[40] ABDELMAJID K M,RAMOS L,HYTEN D L,et al.Quantitative trait loci(QTL) that underlie SCN resistance in soybean[Glycinemax(L.) Merr.] PI438489B by ‘Hamilton’ recombinant inbred line(RIL) population[J].Atlas Journal of Plant Biology,2014,1(3): 29-38.

[41] LI Y H,ZHANG C,GAO Z S,et al.Development of SNP markers and haplotype analysis of the candidate gene forrhg1,which confers resistance to soybean cyst nematode in soybean[J].Molecular Breeding,2009,24(1): 63-76.

[42] LI Y H,REIF J C,JACKSON S A,et al.Detecting SNPs underlying domestication-related traits in soybean[J].BMC Plant Biology,2014,14: 251.

[43] LI Y H,GUO N,ZHAO J M,et al.Different responses of soybean cyst nematode resistance between two RIL populations derived from Peking×7605 under two ecological sites[J].Journal of Genetics,2016,95(4):975-982.

[44] 南海洋,李英慧,常汝镇,等.基于大豆胞囊线虫病抗性候选基因rhg1的InDel标记开发与鉴定[J].作物学报,2009,35(7): 1236-1243.

NAN H Y,LI Y H,CHANG R Z,et al.Development and identification of InDel markers based onrhg1 Gene for resistance to soybean cyst nematode(HeteroderaglycinesIchinohe)[J].Acta Agronomica Sinica,2009,35(7):1236-1243.

[45] 马岩松,刘鑫磊,栾晓燕,等.大豆胞囊线虫病抗性基因相关分子标记对杂交后代抗性的鉴定效率[J].大豆科学,2014,33(2):173-178.

MA Y S,LIU X L,LUAN X Y,et al.Identification efficiency about resistance to soybean cyst nematode with relative molecular markers in hybrid progeny[J].Soybean Science,2014,33(2): 173-178.

[46] 刘 波,李英慧,于佰双,等.中品03-5373对大豆胞囊线虫3号生理小种免疫抗性的遗传解析[J].作物学报,2015,41(1):15-21.

LIU B,LI Y H,YU B S,et al.Genetic analysis of immunity to soybean cyst nematode race 3 in elite line Zhongpin 03-5373[J].Acta Agronomica Sinica,2015,41(1):15-21.

[47] ATWELL S,HUANG Y S,VILHJLMSSON B J,et al.Genome-wide association study of 107 phenotypes inArabidopsisthalianainbred lines[J].Nature,2010,465(7298): 627-631.

[48] HUANG X H,WEI X H,SANG T,et al.Genome-wide association studies of 14 agronomic traits in rice landraces[J].Natural Genetics,2010,42(11): 961-967.

[49] LI H,PENG Z Y,YANG X H,et al.Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels[J].Natural Genetics,2012,45(1): 43-50.

[50] STRACKE S,HASENEYER G,VEYRIERAS J-B,et al.Association mapping reveals gene action and interactions in the determination of flowering time in barley[J].Theoretical and Applied Genetics,2009,118(2): 259-273.

[51] SAUVAGE C,SEGURA V,BAUCHET G,et al.Genome wide association in tomato reveals 44 candidate loci for fruit metabolic traits[J].Plant Physiology,2014,165(3): 1120-1132.

[52] HWANG E Y,SONG Q J,JIA G F,et al.A genome-wide association study of seed protein and oil content in soybean[J].BMC Genomics,2014,15:1.

[53] SONAH H,O′DONOUGHUE L,COBER E,et al.Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soybean[J].Plant Biotechnology Journal,2015,13(2):211-221.

[54] SONAH H,BASTIEN M,IQUIRA E,et al.An improved genotyping by sequencing(GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping[J].PLoS One,2013,8(1):e54603.

[55] BASTIEN M,SONAH H,BELZILE F.Genome wide association mapping ofSclerotiniasclerotiorumresistance in soybean with a genotyping by sequencing approach[J].The Plant Genome,2014,7: 1.

[56] XU X Y,ZENG L,TAO Y,et al.Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(33): 13469-13474.

[57] LI Y H,SMULDERS M J M,CHANG R Z,et al.Genetic diversity and association mapping in a collection of selected Chinese soybean accessions based on SSR marker analysis[J].Conservation Genetics,2011,12(5):1145-1157.

[58] ZHANG H Y,LI C Y,DAVIS E L,et al.Genome-wide association study of resistance to soybean cyst nematode(Heteroderaglycines)HG Type 2.5.7 in wild soybean(Glycinesoja)[J].Frontiers in Plant Science,2016,7: 1214.

[59] ZHANG J,WEN Z X,LI W,et al.Genome-wide association study for soybean cyst nematode resistance in Chinese elite soybean cultivars[J].Molecular Breeding,2017,37: 60.

[60] ZHAO X,TENG W L,LI Y H,et al.Loci and candidate genes conferring resistance to soybean cyst nematode HG Type 2.5.7[J].BMC Genomics,2017,18(1): 462.

[61] BAO Y,VUONG T,MEINHARDT C,et al.Potential of association mapping and genomic selection to explore PI 88788 derived soybean cyst nematode resistance[J].The Plant Genome,2014,7: 3.

[62] SONG Q J,HYTEN D L,JIA G F,et al.Development and evaluation of SoySNP50K,a high-density genotyping array for soybean[J].PLoS ONE,2013,8(1):e54985.

[63] WAN J R,VUONG T,JIAO Y Q,et al.Whole-genome gene expression profiling revealed genes and pathways potentially involved in regulating interactions of soybean with cyst nematode(HeteroderaglycinesIchinohe)[J].BMC Genomics,2015,16: 148.

[64] DIERS B W,ARELLI P.Management of parasitic nematodes of soybean through genetic resistance[C]//In:KAUFFMAN H E,eds.Proceedings of World Soybean Research Conference,6th.4-7 August,1999.Chicago,IL,USA:Superior Printing,Champaign,IL,1999:300-306.

[65] MITCHUM M G,WRATHER J A,HEINZ R D,et al.Variability in distribution and virulence phenotypes ofHeteroderaglycinesin Missouri during 2005[J].Plant Disease,2007,91(11):1473-1476.

[66] 田中艳,高国金,周长军,等.大豆胞囊线虫生理小种变异的研究[J].大豆科学,2007,26(2):291-293.

TIAN Z Y,GAO G J,ZHOU C J,et al.Study on the variation of soybean cyst nematode[J].Soybean Science,2007,26(2):290-292.

[67] 陈 双,潘凤娟,周长军,等.黑龙江省安达地区大豆孢囊线虫生理小种遗传分化现象[J].土壤与作物,2015,4(1): 42-47.

CHEN S,PAN F J,ZHOU C J,et al.Genetic variation of soybean cyst nematode races in Anda area of Heilongjiang province[J].Soils and Crops,2015,4(1):42-47.

[68] HUA C,LI C,HU Y,et al.Identification of HG Types of soybean cyst nematodeHeteroderaglycinesand resistance screening on soybean genotypes in northeast China[J].Journal of Nematology,2018,in press.

[69] 曹广禄,赵 雪,王 强,等.大豆种质资源对胞囊线虫病1号、3号和4号生理小种的抗性鉴定[J].大豆科学,2014,33(4): 563-565.

CAO G L,ZHAO X,WANG Q,et al.Resistance evaluation of soybean germplasm to races 1,3 and 4 of soybean cyst nematode(Heteroderagiycines)[J].Soybean Science,2014,33(4): 563-565.

[70] 李明姝,孙星邈.大豆种质资源对大豆胞囊线虫3号生理小种的抗性鉴定[J].农业与技术,2013,33(12): 17-18.

LI M Z,SUN X M.Resistance identification of soybean germplasm resources to race 3 of soybean cyst nemtode[J].Agriculture and Technology,2013,33(12):17-18.

[71] 于佰双.黑龙江省主要大豆抗源对胞囊线虫的抗病特性及线虫防治体系研究[D].沈阳:沈阳农业大学,2009.

YU B S.Resistance of main soybean germplasm to SNC and management to SNC in Heilongjiang Province[D].Shenyang: Shenyang Agricultural University,2009.

猜你喜欢

小种线虫抗性
不忘初心,回归经典!养虾至暗时刻,海茂坚定高抗苗,携抗性更强“普利茂”回来了
夏季蔬菜换茬期线虫防治要注意
亚洲玉米螟对Cry1Ac蛋白抗性适合度代价
山西省古交市大豆胞囊线虫新小种X12分布调查
冻干益生菌微胶囊保护剂及抗性研究
一个控制超强电离辐射抗性开关基因的研究进展
我国松树体内线虫种类及其分布
年际间干旱对晚疫病菌生理小种复杂性的影响
朝鲜孢囊线虫——浙江省孢囊线虫新记录种
中国马铃薯晚疫病菌生理小种研究进展