APP下载

高血压易感基因的分子进化

2014-05-25季林丹钱海霞徐进2

遗传 2014年12期
关键词:易感性等位基因遗传

季林丹,钱海霞,徐进2,

1. 宁波大学医学院生物化学系,宁波 315211;

2. 中国科学院昆明动物研究所遗传资源与进化国家重点实验室, 昆明 650223;

3. 宁波大学医学院预防医学系,宁波 315211

高血压易感基因的分子进化

季林丹1,2,钱海霞3,徐进2,3

1. 宁波大学医学院生物化学系,宁波 315211;

2. 中国科学院昆明动物研究所遗传资源与进化国家重点实验室, 昆明 650223;

3. 宁波大学医学院预防医学系,宁波 315211

利用家系连锁分析、候选基因法及全基因组关联研究均未能有效发现普通人群的高血压易感基因或位点。遗传学研究表明,人类许多疾病易感性的形成与走出非洲时的环境适应性进化密切相关,这为高血压遗传学研究提供了新思路。文章系统综述了高血压易感基因分子进化研究的理论基础和最新进展,介绍了本研究小组运用分子进化思路在中国汉族人群高血压遗传学研究中的发现,对未来的研究方向进行了展望,以期为高血压和其他疾病的遗传学研究提供参考。

高血压;遗传易感性;进化;适应

原发性高血压(Essential hypertension, EH)是一种以血压升高为主要临床表现而病因尚未明确的独立疾病,约占所有高血压的90%~95%。在遗传和环境因素的共同影响下,EH已经成为危害人类健康的世界性公共卫生问题[1,2]。在发达国家,超过1/4的成年人患有高血压;据世界卫生组织估计,到2020年全球高血压患者将超过15亿人[3]。我国曾进行了4次大规模高血压流行病学调查,高血压的患病率从50年代的5.11%增加至2002年的18.8%,并且呈现出明显的低龄化趋势。据卫生部估计,我国高血压患病人数已经超过 2亿,每年高血压的直接医疗费用高达 300亿元人民币,与高血压相关的心脑血管疾病耗费更是达到3000亿元人民币[4]。由此可见,高血压已经严重影响了中国及全球诸多国家的经济发展、社会稳定和居民生活质量。

为了更好地开展高血压及相关心血管疾病的防治工作,国内外研究人员对高血压的遗传病因进行了大量研究。家系研究提示收缩压和舒张压具有较高的遗传度(31%~68%)[5],可是在封闭家系研究中发现的少数“高血压基因”,在普通人群中却很难证实与高血压具有相关性[6]。在家系连锁分析无法取得突破时,研究人员开始采用大样本病例-对照研究对大量的候选基因进行筛选[7],但不同的研究小组往往得到不同的结果,目前尚无被广泛接受的高血压遗传易感位点[8,9]。随着芯片技术的飞速发展,全基因组关联研究(Genome-wide association study, GWAS)广泛地应用于高血压等复杂疾病的遗传学研究。截至2014年5月,已发表20多项与血压性状或高血压相关的GWAS(http://www.genome.gov/gwastudies/)。对国际上主要的几个高血压 GWAS[10~12]进行 meta分析后,得到数个单核苷酸多态性(Single nucleotide polymorphism, SNP)与血压性状或高血压相关,但这些SNP仅仅贡献了1%~2%的遗传度[12~14]。虽然GWAS通过全基因组SNP系统扫描避免了偏倚并减少了假阳性,但多重统计检验及严格的校正也降低了其检出真实信号的效能[15]。以往连锁分析和候选基因法得到的“高血压易感SNP”极少在这些高血压GWAS中被检出,不同GWAS之间的阳性结果也很少有重叠,大样本人群对GWAS结果的验证大部分以失败而告终[9,16,17]。目前商业化的 SNP芯片主要依据高加索人群的遗传多态性进行设计,考虑到不同人群遗传背景的差异,将其直接应用于非洲或亚洲人群时可能存在较大偏倚[18]。利用家系连锁分析、病例-对照候选基因法及 GWAS,依旧不能有效地发现普通人群的高血压易感基因或位点[19,20]。正是这些困难的存在,需要人们对高血压遗传学的研究策略做出调整,尝试从不同的角度开展研究。

1 人类走出非洲与“节俭基因假说”

根据化石、古人类DNA和现代人DNA等证据,解剖学上的现代人(Anatomically modern human, AMH),即智人(Homo sapiens)大约于20万年前起源于非洲[21~23]。大约在10万年前,非洲人从东非走出非洲,随后迁徙至世界各地定居生存[24~26]。在历史迁徙过程中,对不同环境选择压力的广泛适应形成了今天人类的遗传多样性,而这些遗传多样性又与不同人群的表型和疾病易感性差异密切相关[27~35]。随着人类学、流行病学、遗传学等研究领域的不断发展,科研人员开始从分子进化角度对人类的疾病易感性展开研究[36~39]。

1962年,美国密歇根大学的人类遗传学家James V. Neel教授从生物进化的角度对人类肥胖和糖尿病等问题进行了分析,首次提出了“节俭基因假说”(The thrifty gene hypothesis)[40,41]。该假说认为:在采集-狩猎型社会和农业社会初期,人们经常受到食物短缺或饥荒的威胁。人类的祖先为了适应当时食物缺乏的环境,逐渐进化出能有效储存能量的能力,以提高自身生存的机会。经过长期的适应过程,那些能够在进食后较多地将食物能量储存起来的个体因为其较易耐受长期饥饿而存活下来,那些能有效控制能量储存的基因就叫做“节俭基因”。因此,节俭基因在食物贫瘠的时代,对人类的生存和种族繁衍具有重要作用。随着社会经济的发展,食物获取不再困难,甚至出现了过剩的现象,这些曾经有利的节俭基因反而成了肥胖和糖尿病等疾病的易感基因。

2 “走出非洲”的环境温度适应与高血压易感性

在非洲炎热的环境中,人体主要通过大量出汗来维持体温恒定,当时的非洲人出汗量最高时可达2 L/h[42]。大量出汗导致钠盐流失,而在非洲热带气候中钠盐的供给又非常少。因此,机体需要极力阻止钠盐的流失以维持正常的生理功能。热带环境中生活的人类及其他灵长类动物均有很强的钠盐亲和性,为这个假说提供了很好的证据。大量出汗还会造成夜间血容量不足,从而导致动脉张力和心肌收缩增强以维持正常的血液供应[43]。因此,那些能增强钠盐保留及动脉、心肌收缩性的基因变异能帮助早期非洲人适应当地炎热的气候环境。

大约在10万年前,我们的祖先从东非出发,经过几万年的迁徙,在世界各地繁衍生息。在走出非洲的过程中,气温和环境湿度也发生了巨大的变化,人体的气候环境适应需求也发生改变,如适应寒冷气候人群的需求从散热逐步转变为保暖[44],不需要过多的钠潴留,血管反应性也开始降低[45]。因此,在走出非洲的过程中,钠盐亲和力及动脉、心肌收缩性的选择压力也发生变化以适应当地的生存气候环境。随着近代工业发展和交通便利,出现了频繁的大规模地域间移民。适应世代居住环境并相对稳定的遗传背景与移民后新的生活环境之间的矛盾将可能导致诸多疾病的产生,而不同的钠盐亲和力与血管反应性也可能造成不同人群在同一生活环境中高血压的易感性差异。如美国第3次全国健康与营养调查发现:在现有美国居民中,与欧洲移民后代相比,非洲移民的后代更容易发生高血压,而且发病趋于低龄化,病情更严重[46,47]。因此,Young等[29]提出人群间不同的高血压易感性可能与人类走出非洲时经历了不同气候进化选择的遗传背景相关。

为了验证这个观点,3个研究小组分别对AGT、CYP3A5和 GNB3等与血压调控密切相关的基因进行了自然选择分析。与高钠盐亲和力密切相关的AGT-6A、CYP3A5*1和GNB3 825T等祖先等位基因频率与纬度均存在显著的负相关性。这些祖先等位基因在赤道附近的非洲人群中具有较高的频率;而走出非洲后,能降低钠盐亲和力的衍生等位基因的频率显著增高[29,48,49]。对AGT-6G和GNB3 825C这两个衍生等位基因的邻近序列分析发现,它们两侧存在广泛的连锁不平衡和较少的单倍型[29,48]。这些证据都证明了这3个多态位点中能降低钠盐亲和性的衍生等位基因频率在环境正选择作用下逐渐升高,以适应走出非洲后相对寒冷的生存环境。适应古老环境并且相对稳定的遗传背景很难在进化尺度上很短的时间内(比如近代的人群迁徙、定居)重新快速适应移民后的新环境,从而使得人群的遗传背景与生活环境产生了偏差。因此,在近代人类移居到寒冷环境时,能降低钠盐亲和性的衍生等位基因受到正选择,而那些适应了炎热气候的祖先等位基因就可能成了“有害”的高血压遗传易感位点[50]。虽然这方面研究目前仅涉及上述 3个基因,但为高血压的遗传学研究提供了新的思路。

3 中国人群环境温度适应与高血压易感性研究

中国科学院昆明动物研究所张亚平院士领导的研究小组和复旦大学金力院士领导的研究小组分别通过线粒体DNA、Y染色体和全基因组遗传多态性研究,发现走出非洲的现代人类祖先约于 1.8~6万年前首先扩散到东南亚大陆,随后向北方扩张和迁移,因此中华民族起源于南方[24,51~54]。我国的高血压流行病学调查显示,北方地区的患病率要高于南方,中部地区居中[4]。上述流行病学调查数据及东亚人群的南方起源和史前北迁历史提示我国不同地区人群高血压的易感性差异也很可能与气候环境密切相关。相较于全球人群,中国人群遗传背景相对均一,但人群居住地域广阔、居住地气候环境复杂多样,因此通过分子进化研究很有可能发现中国人群高血压的真正致病基因及易感位点。

本研究小组从CEPH-HGDP数据库中获取了肾素-血管紧张素-醛固酮系统(Renin-angiotensin-aldosterone system, RAAS)的 AGT、ACE、AGTR1、AGTR2、CYP11B2和REN等6个基因共241个SNP,进行环境因素的Pearson关联分析、多元线性回归分析和进化分析(FST、iHS),发现有5个SNP在亚洲人群中与环境温度适应相关,且均位于AGTR1基因。通过大样本中国汉族人群的原发性高血压病例-对照研究,发现其中的2个SNP与高血压的易感性密切相关。如图1所示,该项研究中发现的与温度适应相关且增加高血压患病风险的SNP1的C等位基因和SNP2的A等位基因在非洲人群中都是高频等位基因,而在欧洲和亚洲人群中则是低频等位基因,这也说明了在近代人类移居到寒冷环境时,那些适应了炎热气候的祖先等位基因就可能成了“有害”的高血压遗传易感位点。目前本研究小组正从全基因组水平筛选受环境温度选择的 SNP,并明确其与高血压的相关性及作用机理。

图1 环境温度与高血压易感等位基因频率的相关性与高血压易感性密切相关的AGTR1基因SNP1 C和SNP2 A等位基因频率与环境温度存在显著的正相关性。

该项研究中,RAAS基因受环境温度进化选择的所有 SNP均落在编码 1型血管紧张素 II受体的AGTR1基因上,且其中两个SNP与高血压相关并非偶然。血管紧张素受体主要有4种类型,其中在人体中以1型受体(Angiotensin type 1 receptor, AT1)和2型受体(AT2)为主。人体内参与血压调控主要是AT1,它的激活可引起血管收缩、肾小管重吸收钠增加和心脏收缩能力增强[55,56]。正是血管紧张素受体在血压调控中的重要作用,血管紧张素受体拮抗剂已成为血管紧张素转换酶抑制剂后的最新一代的治疗高血压临床用药[57]。血管紧张素受体在高血压病理生理过程中的重要作用与本研究的结果相互印证,既说明AGTR1基因很可能是原发性高血压的易感基因,也说明从分子进化角度来研究高血压的遗传易感性具有重要的意义。

4 展 望

不同的气候环境(温度、湿度、降水等)对居住人群产生了不同选择压力。而近代频繁的国际间移民,使得遗传背景与居住环境之间产生偏差从而导致了疾病的易感性差异。类似的进化研究思路已经在人类体型大小、皮肤色素沉着和代谢疾病的研究中得到了很好的证实和应用[37,58~60]。由此可见,从进化选择角度来探索高血压的遗传易感性可能为高血压遗传学研究提供了新的切入点。

此外,疾病易感等位基因的地理分布或流行性显得尤为重要。通过探索这些疾病易感基因(或位点)的群体遗传学、分子进化史等,如不同地域人群中的等位基因频率、等位基因的亚群体分化、群体历史,和邻近位点的连锁不平衡等信息对于理解这些疾病易感基因的起源和人类进化历史非常重要。因而,从疾病易感基因(或位点)的分子起源角度来研究临床疾病可能为今后的研究提供一种新的、行之有效的思路。

[1] The Lancet. Hypertension: an urgent need for global control and prevention. Lancet, 2014, 383(9932): 1861.

[2] James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, Lackland DT, LeFevre ML, MacKenzie TD, Ogedegbe O, Smith SC Jr, Svetkey LP, Taler SJ, Townsend RR, Wright JT Jr, Narva AS, Ortiz E. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA, 2014, 311(5): 507-520.

[3] Padmanabhan S, Newton-Cheh C, Dominiczak AF. Genetic basis of blood pressure and hypertension. Trends Genet, 2012, 28(8): 397-408.

[4] 《中国高血压防治指南》修订委员会. 中国高血压防治指南(2010 年修订版). 北京: 人民卫生出版社, 2012.

[5] van Rijn MJ, Schut AF, Aulchenko YS, Deinum J, Sayed-Tabatabaei FA, Yazdanpanah M, Isaacs A, Axenovich TI, Zorkoltseva IV, Zillikens MC, Pols HA, Witteman JC, Oostra BA, van Duijn CM. Heritability of blood pressure traits and the genetic contribution to blood pressure variance explained by four blood-pressure-related genes. J Hypertens, 2007, 25(3): 565-570.

[6] Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell, 2001, 104(4): 545-556.

[7] Basson J, Simino J, Rao DC. Between candidate genes and whole genomes: time for alternative approaches in blood pressure genetics. Curr Hypertens Rep, 2012, 14(1): 46-61.

[8] Kraja AT, Hunt SC, Rao DC, Dávila-Román VG, Arnett DK, Province MA. Genetics of hypertension and cardiovascular disease and their interconnected pathways: lessons from large studies. Curr Hypertens Rep, 2011, 13(1): 46-54.

[9] Ji LD, Zhang LN, Xu J. Genome-wide association studies of hypertension: Achievements, difficulties and strategies. World J Hypertens, 2011, 1(1): 10-14.

[10] Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, Glazer NL, Morrison AC, Johnson AD, Aspelund T, Aulchenko Y, Lumley T, Köttgen A, Vasan RS, Rivadeneira F, Eiriksdottir G, Guo XQ, Arking DE, Mitchell GF, Mattace-Raso FU, Smith AV, Taylor K, Scharpf RB, Hwang SJ, Sijbrands EJ, Bis J, Harris TB,Ganesh SK, O'Donnell CJ, Hofman A, Rotter JI, Coresh J, Benjamin EJ, Uitterlinden AG, Heiss G, Fox CS, Witteman JC, Boerwinkle E, Wang TJ, Gudnason V, Larson MG, Chakravarti A, Psaty BM, van Duijn CM. Genome-wide association study of blood pressure and hypertension. Nat Genet, 2009, 41(6): 677-687.

[11] Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, Najjar SS, Zhao JH, Heath SC, Eyheramendy S, Papadakis K, Voight BF, Scott LJ, Zhang F, Farrall M, Tanaka T, Wallace C, Chambers JC, Khaw KT, Nilsson P, van der Harst P, Polidoro S, Grobbee DE, Onland-Moret NC, Bots ML, Wain LV, Elliott KS, Teumer A, Luan J, Lucas G, Kuusisto J, Burton PR, Hadley D, McArdle WL, Brown M, Dominiczak A, Newhouse SJ, Samani NJ, Webster J, Zeggini E, Beckmann JS, Bergmann S, Lim N, Song K, Vollenweider P, Waeber G, Waterworth DM, Yuan X, Groop L, Orho-Melander M, Allione A, Di Gregorio A, Guarrera S, Panico S, Ricceri F, Romanazzi V, Sacerdote C, Vineis P, Barroso I, Sandhu MS, Luben RN, Crawford GJ, Jousilahti P, Perola M, Boehnke M, Bonnycastle LL, Collins FS, Jackson AU, Mohlke KL, Stringham HM, Valle TT, Willer CJ, Bergman RN, Morken MA, Döring A, Gieger C, Illig T, Meitinger T, Org E, Pfeufer A, Wichmann HE, Kathiresan S, Marrugat J, O'Donnell CJ, Schwartz SM, Siscovick DS, Subirana I, Freimer NB, Hartikainen AL, McCarthy MI, O'Reilly PF, Peltonen L, Pouta A, de Jong PE, Snieder H, van Gilst WH, Clarke R, Goel A, Hamsten A, Peden JF, Seedorf U, Syvanen AC, Tognoni G, Lakatta EG, Sanna S, Scheet P, Schlessinger D, Scuteri A, Dorr M, Ernst F, Felix SB, Homuth G, Lorbeer R, Reffelmann T, Rettig R, Volker U, Galan P, Gut IG, Hercberg S, Lathrop GM, Zelenika D, Deloukas P, Soranzo N, Williams FM, Zhai GJ, Salomaa V, Laakso M, Elosua R, Forouhi NG, Völzke H, Uiterwaal CS, van der Schouw YT, Numans ME, Matullo G, Navis G, Berglund G, Bingham SA, Kooner JS, Connell JM, Bandinelli S, Ferrucci L, Watkins H, Spector TD, Tuomilehto J, Altshuler D, Strachan DP, Laan M, Meneton P, Wareham NJ, Uda M, Jarvelin MR, Mooser V, Melander O, Loos RJ, Elliott P, Abecasis GR, Caulfield M, Munroe PB. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet, 2009, 41(6): 666-676.

[12] Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, Smith AV, Tobin MD, Verwoert GC, Hwang SJ, Pihur V, Vollenweider P, O'Reilly PF, Amin N, Bragg-Gresham JL, Teumer A, Glazer NL, Launer L, Zhao JH, Aulchenko Y, Heath S, Sober S, Parsa A, Luan J, Arora P, Dehghan A, Zhang F, Lucas G, Hicks AA, Jackson AU, Peden JF, Tanaka T, Wild SH, Rudan I, Igl W, Milaneschi Y, Parker AN, Fava C, Chambers JC, Fox ER, Kumari M, Go MJ, van der Harst P, Kao WH, Sjogren M, Vinay DG, Alexander M, Tabara Y, Shaw-Hawkins S, Whincup PH, Liu Y, Shi G, Kuusisto J, Tayo B, Seielstad M, Sim X, Nguyen KD, Lehtimaki T, Matullo G, Wu Y, Gaunt TR, Onland-Moret NC, Cooper MN, Platou CG, Org E, Hardy R, Dahgam S, Palmen J, Vitart V, Braund PS, Kuznetsova T, Uiterwaal CS, Adeyemo A, Palmas W, Campbell H, Ludwig B, Tomaszewski M, Tzoulaki I, Palmer ND, Aspelund T, Garcia M, Chang YP, O'Connell JR, Steinle NI, Grobbee DE, Arking DE, Kardia SL, Morrison AC, Hernandez D, Najjar S, McArdle WL, Hadley D, Brown MJ, Connell JM, Hingorani AD, Day IN, Lawlor DA, Beilby JP, Lawrence RW, Clarke R, Hopewell JC, Ongen H, Dreisbach AW, Li Y, Young JH, Bis JC, Kahonen M, Viikari J, Adair LS, Lee NR, Chen MH, Olden M, Pattaro C, Bolton JA, Kottgen A, Bergmann S, Mooser V, Chaturvedi N, Frayling TM, Islam M, Jafar TH, Erdmann J, Kulkarni SR, Bornstein SR, Grassler J, Groop L, Voight BF, Kettunen J, Howard P, Taylor A, Guarrera S, Ricceri F, Emilsson V, Plump A, Barroso I, Khaw KT, Weder AB, Hunt SC, Sun YV, Bergman RN, Collins FS, Bonnycastle LL, Scott LJ, Stringham HM, Peltonen L, Perola M, Vartiainen E, Brand SM, Staessen JA, Wang TJ, Burton PR, Artigas MS, Dong Y, Snieder H, Wang X, Zhu H, Lohman KK, Rudock ME, Heckbert SR, Smith NL, Wiggins KL, Doumatey A, Shriner D, Veldre G, Viigimaa M, Kinra S, Prabhakaran D, Tripathy V, Langefeld CD, Rosengren A, Thelle DS, Corsi AM, Singleton A, Forrester T, Hilton G, McKenzie CA, Salako T, Iwai N, Kita Y, Ogihara T, Ohkubo T, Okamura T, Ueshima H, Umemura S, Eyheramendy S, Meitinger T, Wichmann HE, Cho YS, Kim HL, Lee JY, Scott J, Sehmi JS, Zhang W, Hedblad B, Nilsson P, Smith GD, Wong A, Narisu N, Stancakova A, Raffel LJ, Yao J, Kathiresan S, O'Donnell CJ, Schwartz SM, Ikram MA, Longstreth WT, Jr., Mosley TH, Seshadri S, Shrine NR, Wain LV, Morken MA, Swift AJ, Laitinen J, Prokopenko I, Zitting P, Cooper JA, Humphries SE, Danesh J, Rasheed A, Goel A, Hamsten A, Watkins H, Bakker SJ, van Gilst WH, Janipalli CS, Mani KR, Yajnik CS, Hofman A, Mattace-Raso FU, Oostra BA, Demirkan A, Isaacs A, Rivadeneira F, Lakatta EG, Orru M, Scuteri A, Ala-Korpela M, Kangas AJ, Lyytikainen LP, Soininen P, Tukiainen T, Wurtz P, Ong RT, Dorr M, Kroemer HK, Volker U, Volzke H, Galan P, Hercberg S, Lathrop M, Zelenika D, Deloukas P, Mangino M, Spector TD, Zhai G, Meschia JF, Nalls MA, Sharma P, Terzic J, Kumar MV,Denniff M, Zukowska-Szczechowska E, Wagenknecht LE, Fowkes FG, Charchar FJ, Schwarz PE, Hayward C, Guo X, Rotimi C, Bots ML, Brand E, Samani NJ, Polasek O, Talmud PJ, Nyberg F, Kuh D, Laan M, Hveem K, Palmer LJ, van der Schouw YT, Casas JP, Mohlke KL, Vineis P, Raitakari O, Ganesh SK, Wong TY, Tai ES, Cooper RS, Laakso M, Rao DC, Harris TB, Morris RW, Dominiczak AF, Kivimaki M, Marmot MG, Miki T, Saleheen D, Chandak GR, Coresh J, Navis G, Salomaa V, Han BG, Zhu X, Kooner JS, Melander O, Ridker PM, Bandinelli S, Gyllensten UB, Wright AF, Wilson JF, Ferrucci L, Farrall M, Tuomilehto J, Pramstaller PP, Elosua R, Soranzo N, Sijbrands EJ, Altshuler D, Loos RJ, Shuldiner AR, Gieger C, Meneton P, Uitterlinden AG, Wareham NJ, Gudnason V, Rotter JI, Rettig R, Uda M, Strachan DP, Witteman JC, Hartikainen AL, Beckmann JS, Boerwinkle E, Vasan RS, Boehnke M, Larson MG, Jarvelin MR, Psaty BM, Abecasis GR, Chakravarti A, Elliott P, van Duijn CM, Newton-Cheh C, Levy D, Caulfield MJ, Johnson T, Tang H, Knowles J, Hlatky M, Fortmann S, Assimes TL, Quertermous T, Go A, Iribarren C, Absher D, Risch N, Myers R, Sidney S, Ziegler A, Schillert A, Bickel C, Sinning C, Rupprecht HJ, Lackner K, Wild P, Schnabel R, Blankenberg S, Zeller T, Munzel T, Perret C, Cambien F, Tiret L, Nicaud V, Proust C, Uitterlinden A, van Duijn C, Whitteman J, Cupples LA, Demissie-Banjaw S, Ramachandran V, Smith A, Folsom A, Morrison A, Chen IY, Bis J, Volcik K, Rice K, Taylor KD, Marciante K, Smith N, Glazer N, Heckbert S, Harris T, Lumley T, Kong A, Thorleifsson G, Thorgeirsson G, Holm H, Gulcher JR, Stefansson K, Andersen K, Gretarsdottir S, Thorsteinsdottir U, Preuss M, Schreiber S, Konig IR, Lieb W, Hengstenberg C, Schunkert H, Fischer M, Grosshennig A, Medack A, Stark K, Linsel-Nitschke P, Bruse P, Aherrahrou Z, Peters A, Loley C, Willenborg C, Nahrstedt J, Freyer J, Gulde S, Doering A, Meisinger C, Klopp N, Illig T, Meinitzer A, Tomaschitz A, Halperin E, Dobnig H, Scharnagl H, Kleber M, Laaksonen R, Pilz S, Grammer TB, Stojakovic T, Renner W, Marz W, Bohm BO, Winkelmann BR, Winkler K, Hoffmann MM, Siscovick DS, Musunuru K, Barbalic M, Guiducci C, Burtt N, Gabriel SB, Stewart AF, Wells GA, Chen L, Jarinova O, Roberts R, McPherson R, Dandona S, Pichard AD, Rader DJ, Devaney J, Lindsay JM, Kent KM, Qu L, Satler L, Burnett MS, Li M, Reilly MP, Wilensky R, Waksman R, Epstein S, Matthai W, Knouff CW, Waterworth DM, Hakonarson HH, Walker MC, Hall AS, Balmforth AJ, Wright BJ, Nelson C, Thompson JR, Ball SG, Felix JF, Demissie S, Loehr LR, Rosamond WD, Folsom AR, Benjamin E, Aulchenko YS, Haritunians T, Couper D, Murabito J, Wang YA, Stricker BH, Gottdiener JS, Chang PP, Willerson JT, Boger CA, Fuchsberger C, Gao X, Yang Q, Schmidt H, Ketkar S, Pare G, Atkinson EJ, Lohman K, Cornelis MC, Probst-Hensch NM, Kronenberg F, Tonjes A, Eiriksdottir G, Launer LJ, Rampersaud E, Mitchell BD, Struchalin M, Cavalieri M, Giallauria F, Metter J, de Boer J, Siscovick D, Zillikens MC, Feitosa M, Province M, de Andrade M, Turner ST, Wild PS, Schnabel RB, Wilde S, Munzel TF, Leak TS, Koenig W, Zgaga L, Zemunik T, Kolcic I, Minelli C, Hu FB, Johansson A, Zaboli G, Ellinghaus D, Imboden M, Nitsch D, Brandstatter A, Kollerits B, Kedenko L, Magi R, Stumvoll M, Kovacs P, Boban M, Campbell S, Endlich K, Nauck M, Badola S, Curhan GC, Franke A, Rochat T, Paulweber B, Wang W, Schmidt R, Shlipak MG, Borecki I, Kramer BK, Gyllensten U, Hastie N, Heid IM, Fox CS, Felix SB, Watzinger N, Homuth G, Aragam J, Zweiker R, Lind L, Rodeheffer RJ, Greiser KH, Deckers JW, Stritzke J, Lackner KJ, Ingelsson E, Kullo I, Haerting J, Reffelmann T, Redfield MM, Werdan K, Mitchell GF, Arnett DK, Blettner M, Friedrich N, Benjamin EJ, Lord GM, Gale DP, Wass MN, Ahmadi KR, Beckmann J, Bilo HJ, Cook HT, Cotlarciuc I, Davey Smith G, de Silva R, Deng G, Devuyst O, Dikkeschei LD, Dimkovic N, Dockrell M, Dominiczak A, Ebrahim S, Eggermann T, Floege J, Forouhi NG, Gansevoort RT, Han X, Homan van der Heide JJ, Hepkema BG, Hernandez-Fuentes M, Hypponen E, de Jong PE, Kleefstra N, Lagou V, Lapsley M, Luttropp K, Marechal C, Nordfors L, Penninx BW, Perucha E, Pouta A, Roderick PJ, Ruokonen A, Sanna S, Schalling M, Schlessinger D, Schlieper G, Seelen MA, Smit JH, Stenvinkel P, Sternberg MJ, Swaminathan R, Ubink-Veltmaat LJ, Wallace C, Waterworth D, Zerres K, Waeber G, Maxwell PH, McCarthy MI, Lightstone L. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature, 2011, 478(7367): 103-109.

[13] Kelly TN, Takeuchi F, Tabara Y, Edwards TL, Kim YJ, Chen P, Li HX, Wu Y, Yang CF, Zhang YH, Gu DF, Katsuya T, Ohkubo T, Gao YT, Go MJ, Teo YY, Lu L, Lee NR, Chang LC, Peng H, Zhao Q, Nakashima E, Kita Y, Shu XO, Kim NH, Tai ES, Wang YQ, Adair LS, Chen CH, Zhang SH, Li CW, Nabika T, Umemura S, Cai QY, Cho YS, Wong TY, Zhu JW, Wu JY, Gao X, Hixson JE, Cai H, Lee J, Cheng CY, Rao DC, Xiang YB, Cho MC, Han BG, Wang AL, Tsai FJ, Mohlke K, Lin X, Ikram MK, Lee JY, Zheng W, Tetsuro M, Kato N, He J. Genome-wide association study meta-analysis reveals transethnic replication ofmean arterial and pulse pressure loci. Hypertension, 2013, 62(5): 853-859.

[14] Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, Sim X, Tay WT, Chen CH, Zhang Y, Yamamoto K, Katsuya T, Yokota M, Kim YJ, Ong RT, Nabika T, Gu D, Chang LC, Kokubo Y, Huang W, Ohnaka K, Yamori Y, Nakashima E, Jaquish CE, Lee JY, Seielstad M, Isono M, Hixson JE, Chen YT, Miki T, Zhou XY, Sugiyama T, Jeon JP, Liu JJ, Takayanagi R, Kim SS, Aung T, Sung YJ, Zhang XG, Wong TY, Han BG, Kobayashi S, Ogihara T, Zhu DL, Iwai N, Wu JY, Teo YY, Tai ES, Cho YS, He J. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet, 2011, 43(6): 531-538.

[15] Evangelou E, Ioannidis JPA. Meta-analysis methods for genome-wide association studies and beyond. Nat Rev Genet, 2013, 14(6): 379-389.

[16] Ehret GB. Genome-wide association studies: contribution of genomics to understanding blood pressure and essential hypertension. Curr Hypertens Rep, 2010, 12(1): 17-25.

[17] Xu J, Ji LD, Zhang LN, Dong CZ, Fei LJ, Hua S, Tsai JY, Zhang YP. Lack of association between STK39 and hypertension in the Chinese population. J Hum Hypertens, 2013, 27(5): 294-297.

[18] Franceschini N, Fox E, Zhang ZG, Edwards TL, Nalls MA, Sung YJ, Tayo BO, Sun YV, Gottesman O, Adeyemo A, Johnson AD, Young JH, Rice K, Duan Q, Chen F, Li Y, Tang H, Fornage M, Keene KL, Andrews JS, Smith JA, Faul JD, Zhang GF, Guo W, Liu Y, Murray SS, Musani SK, Srinivasan S, Velez Edwards DR, Wang HM, Becker LC, Bovet P, Bochud M, Broeckel U, Burnier M, Carty C, Chasman DI, Ehret G, Chen WM, Chen G, Chen W, Ding JZ, Dreisbach AW, Evans MK, Guo XQ, Garcia ME, Jensen R, Keller MF, Lettre G, Lotay V, Martin LW, Moore JH, Morrison AC, Mosley TH, Ogunniyi A, Palmas W, Papanicolaou G, Penman A, Polak JF, Ridker PM, Salako B, Singleton AB, Shriner D, Taylor KD, Vasan R, Wiggins K, Williams SM, Yanek LR, Zhao W, Zonderman AB, Becker DM, Berenson G, Boerwinkle E, Bottinger E, Cushman M, Eaton C, Nyberg F, Heiss G, Hirschhron JN, Howard VJ, Karczewsk KJ, Lanktree MB, Liu K, Liu YM, Loos R, Margolis K, Snyder M, Asian Genetic Epidemiology Network C, Psaty BM, Schork NJ, Weir DR, Rotimi CN, Sale MM, Harris T, Kardia SLR, Hunt SC, Arnett D, Redline S, Cooper RS, Risch NJ, Rao DC, Rotter JI, Chakravarti A, Reiner AP, Levy D, Keating BJ, Zhu XF. Genome-wide association analysis of bloodpressure traits in African-ancestry individuals reveals common associated genes in African and non-African populations. Am J Hum Genet, 2013, 93(3): 545-554.

[19] Wang XL, Prins BP, Sõber S, Laan M, Snieder H. Beyond genome-wide association studies: new strategies for identifying genetic determinants of hypertension. Curr Hypertens Rep, 2011, 13(6): 442-451.

[20] Simino J, Rao DC, Freedman BI. Novel findings and future directions on the genetics of hypertension. Curr Opin Nephrol Hypertens, 2012, 21(5): 500-507.

[21] Cavalli-Sforza LL, Feldman MW. The application of molecular genetic approaches to the study of human evolution. Nat Genet, 2003, 33(Suppl.3): 266-275.

[22] McDougall I, Brown FH, Fleagle JG. Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature, 2005, 433(7027): 733-736.

[23] McEvoy BP, Powell JE, Goddard ME, Visscher PM. Human population dispersal "Out of Africa" estimated from linkage disequilibrium and allele frequencies of SNPs. Genome Res, 2011, 21(6): 821-829.

[24] Ke YH, Su B, Song XF, Lu DR, Chen LF, Li HY, Qi CJ, Marzuki S, Deka R, Underhill P, Xiao CJ, Shriver M, Lell J, Wallace D, Wells RS, Seielstad M, Oefner P, Zhu DL, Jin JZ, Huang W, Chakraborty R, Chen Z, Jin L. African origin of modern humans in East Asia: a tale of 12,000 Y chromosomes. Science, 2001, 292(5519): 1151-1153.

[25] Bowler JM, Johnston H, Olley JM, Prescott JR, Roberts RG, Shawcross W, Spooner NA. New ages for human occupation and climatic change at Lake Mungo, Australia. Nature, 2003, 421(6925): 837-840.

[26] Pitulko VV, Nikolsky PA, Girya EY, Basilyan AE, Tumskoy VE, Koulakov SA, Astakhov SN, Pavlova EY, Anisimov MA. The Yana RHS site: humans in the Arctic before the last glacial maximum. Science, 2004, 303(5654): 52-56.

[27] Fumagalli M, Pozzoli U, Cagliani R, Comi GP, Riva S, Clerici M, Bresolin N, Sironi M. Parasites represent a major selective force for interleukin genes and shape the genetic predisposition to autoimmune conditions. J Exp Med, 2009, 206(6): 1395-1408.

[28] Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC, Silverman JS, Powell K, Mortensen HM, Hirbo JB, Osman M, Ibrahim M, Omar SA, Lema G, Nyambo TB, Ghori J, Bumpstead S, Pritchard JK, Wray GA, Deloukas P. Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet, 2007, 39(1): 31-40.

[29] Young JH, Chang YP, Kim JDO, Chretien JP, Klag MJ, Levine MA, Ruff CB, Wang NY, Chakravarti A. Differential susceptibility to hypertension is due to selection duringthe out-of-Africa expansion. PLoS Genet, 2005, 1(6): e82.

[30] Cagliani R, Sironi M. Pathogen-driven selection in the human genome. Int J Evol Biol, 2013, 2013: 204240.

[31] Ranciaro A, Campbell MC, Hirbo JB, Ko WY, Froment A, Anagnostou P, Kotze MJ, Ibrahim M, Nyambo T, Omar SA, Tishkoff SA. Genetic origins of lactase persistence and the spread of pastoralism in Africa. Am J Hum Genet, 2014, 94(4): 496-510.

[32] Jablonski NG, Chaplin G. Human skin pigmentation, migration and disease susceptibility. Philos Trans R Soc Lond B Biol Sci, 2012, 367(1590): 785-792.

[33] Jobling MA. The impact of recent events on human genetic diversity. Philos Trans R Soc Lond B Biol Sci, 2012, 367(1590): 793-799.

[34] McGraw J, Waller D. Cytochrome P450 variations in different ethnic populations. Expert Opin Drug Metab Toxicol, 2012, 8(3): 371-382.

[35] Casanova JL, Abel L, Quintana-Murci L. Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu Rev Immunol, 2011, 29: 447-491.

[36] Jobling M, Hollox E, Hurles M, Kivisild T, Tyler-Smith C. Human evolutionary genetics (2nd edition). New York: Garland Science, 2013.

[37] Canfield VA, Berg A, Peckins S, Wentzel SM, Ang KC, Oppenheimer S, Cheng KC. Molecular phylogeography of a human autosomal skin color locus under natural selection. G3 (Bethesda), 2013, 3(11): 2059-2067.

[38] Wallace DC, Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb Perspect Biol, 2013, 5(11): a021220.

[39] Quintana-Murci L, Clark AG. Population genetic tools for dissecting innate immunity in humans. Nat Rev Immunol, 2013, 13(4): 280-293.

[40] Neel JV. Diabetes mellitus: a "thrifty" genotype rendered detrimental by "progress"? Am J Hum Genet, 1962, 14(4): 353-362.

[41] Neel JV, Weder AB, Julius S. Type II diabetes, essential hypertension, and obesity as "syndromes of impaired genetic homeostasis": the "thrifty genotype" hypothesis enters the 21st century. Perspect Biol Med, 1998, 42(1): 44-74.

[42] Ladell WSS. Terrestrial animals in humid heat: Man. In: Dill DB, Adolph EF, Wilber CG (eds). Handbook of physiology, section 4: Adaption to the environment. Washington DC: American Physiological Society, 1964, 625-659.

[43] Sawka MN, Montain SJ, Latzka WA. Hydration effects on thermoregulation and performance in the heat. Comp Biochem Physiol A Mol Integr Physiol, 2001, 128(4): 679-690.

[44] Makinen TM. Different types of cold adaptation in humans. Front Biosci (Schol Ed), 2010, 2: 1047-1067.

[45] Stein CM, Lang CC, Singh I, He HB, Wood AJJ. Increased vascular adrenergic vasoconstriction and decreased vasodilation in blacks. Additive mechanisms leading to enhanced vascular reactivity. Hypertension, 2000, 36(6): 945-951.

[46] Burt VL, Whelton P, Roccella EJ, Brown C, Cutler JA, Higgins M, Horan MJ, Labarthe D. Prevalence of hypertension in the US adult population. Results from the Third National Health and Nutrition Examination Survey, 1988-1991. Hypertension, 1995, 25(3): 305-313.

[47] Tu WZ, Pratt JH. A consideration of genetic mechanisms behind the development of hypertension in blacks. Curr Hypertens Rep, 2013, 15(2): 108-113.

[48] Nakajima T, Wooding S, Sakagami T, Emi M, Tokunaga K, Tamiya G, Ishigami T, Umemura S, Munkhbat B, Jin F, Guan-Jun J, Hayasaka I, Ishida T, Saitou N, Pavelka K, Lalouel JM, Jorde LB, Inoue I. Natural selection and population history in the human angiotensinogen gene (AGT): 736 complete AGT sequences in chromosomes from around the world. Am J Hum Genet, 2004, 74(5): 898-916.

[49] Thompson EE, Kuttab-Boulos H, Witonsky D, Yang L, Roe BA, Di Rienzo A. CYP3A variation and the evolution of salt-sensitivity variants. Am J Hum Genet, 2004, 75(6): 1059-1069.

[50] Weder AB. Evolution and hypertension. Hypertension, 2007, 49(2): 260-265.

[51] Su B, Xiao JH, Underhill P, Deka R, Zhang WL, Akey J, Huang W, Shen D, Lu DR, Luo JC, Chu JY, Tan JZ, Shen PD, Davis R, Cavalli-Sforza L, Chakraborty R, Xiong MM, Du RF, Oefner P, Chen Z, Jin L. Y-Chromosome evidence for a northward migration of modern humans into Eastern Asia during the last Ice Age. Am J Hum Genet, 1999, 65(6): 1718-1724.

[52] Kong QP, Yao YG, Sun C, Bandelt HJ, Zhu CL, Zhang YP. Phylogeny of east Asian mitochondrial DNA lineages inferred from complete sequences. Am J Hum Genet, 2003, 73(3): 671-676.

[53] Yao YG, Kong QP, Bandelt HJ, Kivisild T, Zhang YP. Phylogeographic differentiation of mitochondrial DNA in Han Chinese. Am J Hum Genet, 2002, 70(3): 635-651.

[54] Abdulla MA, Ahmed I, Assawamakin A, Bhak J, Brahmachari SK, Calacal GC, Chaurasia A, Chen CH, Chen J, Chen YT, Chu J, Cutiongco-de la Paz EM, De Ungria MC, Delfin FC, Edo J, Fuchareon S, Ghang H,Gojobori T, Han J, Ho SF, Hoh BP, Huang W, Inoko H, Jha P, Jinam TA, Jin L, Jung J, Kangwanpong D, Kampuansai J, Kennedy GC, Khurana P, Kim HL, Kim K, Kim S, Kim WY, Kimm K, Kimura R, Koike T, Kulawonganunchai S, Kumar V, Lai PS, Lee JY, Lee S, Liu ET, Majumder PP, Mandapati KK, Marzuki S, Mitchell W, Mukerji M, Naritomi K, Ngamphiw C, Niikawa N, Nishida N, Oh B, Oh S, Ohashi J, Oka A, Ong R, Padilla CD, Palittapongarnpim P, Perdigon HB, Phipps ME, Png E, Sakaki Y, Salvador JM, Sandraling Y, Scaria V, Seielstad M, Sidek MR, Sinha A, Srikummool M, Sudoyo H, Sugano S, Suryadi H, Suzuki Y, Tabbada KA, Tan A, Tokunaga K, Tongsima S, Villamor LP, Wang E, Wang Y, Wang H, Wu JY, Xiao H, Xu S, Yang JO, Shugart YY, Yoo HS, Yuan W, Zhao G, Zilfalil BA. Mapping human genetic diversity in Asia. Science, 2009, 326(5959): 1541-1545.

[55] Horiuchi M, Iwanami J, Mogi M. Regulation of angiotensin II receptors beyond the classical pathway. Clin Sci (Lond), 2012, 123(4): 193-203.

[56] Savoia C, Volpe M. Angiotensin receptor modulation and cardiovascular remodeling. J Renin Angiotensin Aldosterone Syst, 2011, 12(3): 381-384.

[57] de la Sierra A, Barrios V. Blood pressure control with angiotensin receptor blocker-based three-drug combinations: key trials. Adv Ther, 2012, 29(5): 401-415.

[58] Ji LD, Xu J, Zhang YP. Environmental adaptation studies in human populations (in Chinese). Chin Sci Bull (Chin Ver), 2012, 57(2-3): 112-119.

[59] Jeong C, Di Rienzo A. Adaptations to local environments in modern human populations. Curr Opin Genet Dev, 2014, 29: 1-8.

[60] Ji LD, Qiu YQ, Xu J, Irwin DM, Tam SC, Tang NL, Zhang YP. Genetic adaptation of the hypoxia-inducible factor pathway to oxygen pressure among eurasian human populations. Mol Biol Evol, 2012, 29(11): 3359-3370.

(责任编委: 赵彦艳)

The evolutionary study of susceptibility genes for essential hypertension

Lindan Ji1,2, Haixia Qian3, Jin Xu2,3

1. Department of Biochemistry, School of Medicine, Ningbo University, Ningbo 315211, China;
2. State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
3. Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo 315211, China

Genetic studies, including familial linkage analysis, candidate gene approach and genome-wide association study, to some extent, have failed in detecting confirmative susceptibility genes/loci for essential hypertension (EH) in the general population. Previous genetic studies have suggested that differential susceptibility to many metabolic diseases is due to different environmental adaptation patterns during the out-of-Africa expansion, which provides a new strategy for the genetic study of EH. In this review, we introduce the principle and the latest progress of evolutionary study of susceptibility genes for EH. Furthermore, our recent evolutionary screening for EH susceptible genes/loci in Chinese Han population is also summarized. This review is expected to provide useful information for future genetic studies of EH and many other diseases.

essential hypertension; genetic susceptibility; evolution; adaptation

2014-08-20;

2014-09-15

国家自然科学基金项目(编号:81402747)和浙江省自然科学基金项目(编号:LQ13C060001)资助

季林丹,博士后,讲师,研究方向:分子进化与疾病遗传学。E-mail: jilindan@nbu.edu.cn

徐进,副教授,硕士生导师,研究方向:分子进化与疾病遗传学。E-mail: xujin1@nbu.edu.cn

10.3724/SP.J.1005.2014.1195

时间: 2014-9-24 14:08:02

URL: http://www.cnki.net/kcms/detail/11.1913.R.20140926.1342.003.html

猜你喜欢

易感性等位基因遗传
非遗传承
NRG1-ErbB4基因多态性与局灶性癫痫易感性的关系
亲子鉴定中男性个体Amelogenin基因座异常1例
广东汉族人群Penta D基因座off-ladder稀有等位基因分析
贵州汉族人群23个STR基因座的OL等位基因研究
还有什么会遗传?
还有什么会遗传
还有什么会遗传?
WHOHLA命名委员会命名的新等位基因HLA-A*24∶327序列分析及确认
CD14启动子-260C/T基因多态性与胃癌易感性的Meta分析