APP下载

肾素-血管紧张素系统调节剂对抗肿瘤药的辅助作用综述

2022-03-29徐诣芝张劼杨海燕

中国药房 2022年6期
关键词:靶向治疗调节剂免疫治疗

徐诣芝 张劼 杨海燕

中图分类号 R730.51;R730.53;R969.2 文献标志码 A 文章编号 1001-0408(2022)06-0758-06

DOI 10.6039/j.issn.1001-0408.2022.06.19

摘 要 肾素-血管紧张素系统(RAS)调节剂包括肾素抑制剂、血管紧张素转化酶抑制剂、血管紧张素Ⅱ受体阻滞剂、血管紧张素Ⅱ受体激动剂和血管紧张素1-7等。本文通过检索1992年1月-2021年6月发表的相关文献,就RAS调节剂对抗肿瘤药的辅助作用进行汇总和分析。RAS调节剂可减轻抗肿瘤药的心脏毒性、血液学毒性、周围神经毒性等,并具有肾脏保护作用;其联合化疗药物可促进药物体内递送,联合靶向药物可抑制血管生成并改善旁路激活,联合免疫检查点抑制剂可增强肿瘤免疫反应进而提高抗肿瘤药的疗效。含RAS调节剂和抗肿瘤药的联合治疗模式有望减少抗肿瘤药的副作用、增强其疗效,并改善患者预后。

关键词 肾素-血管紧张素系统;调节剂;恶性肿瘤;靶向治疗;化学治疗;免疫治疗

Review on the adjuvant effects of renin-angiotensin system regulators on antitumor drugs

XU Yizhi1,ZHANG Jie2,YANG Haiyan2(1. Dept. of Hematology, Chongqing General Hospital, Chongqing  400014, China; 2. Dept. of Geriatrics, Chongqing General Hospital, Chongqing 400014, China)

ABSTRACT   The regulators of renin-angiotensin system (RAS) include renin inhibitors, angiotensin converting enzyme inhibitors, angiotensin Ⅱ receptor blockers, angiotensin Ⅱ receptor agonists and angiotensin 1-7. This paper summarizes and analyzes the adjuvant effects of RAS regulators on antitumor drugs by searching the literature published from January 1992 to June 2021. The regulators of RAS can reduce the cardiotoxicity, hematological toxicity and peripheral neurotoxicity of antitumor drugs, and has renal protective effect; the regulators of RAS combined with other chemotherapy drugs show favorable effects on promoting chemotherapeutic drugs delivery, improving anti-angiogenesis and bypass activation of targeted drugs, enhancing tumor immune response of immune checkpoint inhibitors, so as to improve therapeutic efficacy of antitumor drugs. The combination of RAS regulators with antitumor drugs is expected to reduce the side effects of antitumor drugs, enhance its efficacy and improve the prognosis of patients.

KEYWORDS   renin-angiotensin system; regulator; malignant tumor; targeted treatment; chemotherapy; immunotherapy

恶性肿瘤的药物治疗,包括化疗、靶向治疗和免疫治疗,但常因毒副作用不能耐受、疗效不尽人意而导致肿瘤不可控。肾素-血管紧张素系统(renin-angiotensin system,RAS)不仅与恶性肿瘤的发生发展密切相关,其调节剂还可辅助抗肿瘤药起到减毒增效的作用[1]。RAS调节剂包括腎素抑制剂、血管紧张素转化酶抑制剂(angiotension converting enzyme inhibitors,ACEIs)、血管紧张素Ⅱ受体阻滞剂(angiotensin Ⅱ receptor blockers,ARBs)、血管紧张素Ⅱ受体(angiotensin Ⅱ receptor,AT2R)激动剂和血管紧张素1-7(angiotensin 1-7,Ang 1-7)等。

一项纳入了55项研究的荟萃分析显示,ACEIs/ARBs的应用使恶性肿瘤患者的总生存时间(overall survival,OS)和无进展生存时间(progression-free survival,PFS)均显著延长[风险比(hazard ratio,HR)=0.82,95%置信区间(confidence interval,CI)(0.77,0.88),P<0.001;HR=0.74,95%CI(0.66,0.84),P<0.001];亚组分析结果显示,与未使用ACEIs/ARBs者相比,使用ARBs者的OS显著延长[HR=0.80,95%CI(0.67,0.95),P=0.01],而使用ACEIs者的OS略有延长,但差异无统计学意义[HR=0.94,95%CI(0.85,1.04),P=0.27][2]。为了探索RAS调节剂对抗肿瘤药的影响,笔者以“血管紧张素”“化学治疗”“靶向治疗”“免疫治疗”“癌症”“骨髓”“造血”“白血病”“淋巴瘤”“骨髓瘤”“angiotensin”“chemotherapy”“target therapy”“immunotherapy”“cancer”“carcinoma”“neoplasms”“marrow”“hematopoiesis”“leukemia”“lymphoma”“myeloma”等为关键词,在中国知网、万方数据、维普网、PubMed、Embase等数据库中组合查询了1992年1月-2021年6月发表的相关文献849篇,选取其中有效文献49篇,对RAS调节剂对抗肿瘤药的辅助作用进行汇总分析,以探索肿瘤治疗中新的药物联合治疗模式,从而更好地达到减少毒副作用、提高治疗效果、改善疾病预后的目的。

1 RAS调节剂对抗肿瘤药的辅助作用

RAS调节剂对抗肿瘤药的影响,一方面在于其对患者器官的保护作用,可减少抗肿瘤药的毒副作用[3-4];另一方面可能在于其增加了抗肿瘤药的疗效[5],从而起到了减毒增效的作用。

1.1 减少抗肿瘤药的毒副作用

研究发现,RAS调节剂可减轻抗肿瘤药的心脏毒性、血液学毒性和周围神经毒性等常见的毒副作用,有利于标准抗肿瘤治疗方案顺利、足量、按时完成,延长患者OS,提高患者生活质量,并有助于降低医疗成本[3-4]。

1.1.1 减少抗肿瘤药的心脏毒性 局部RAS首先被发现存在于心肌细胞上[6]。已有文献证实,RAS调节剂(如ACEIs、ARBs)不仅可阻断血管紧张素Ⅱ(angiotensin Ⅱ,Ang Ⅱ)的心肌损伤作用,还可促进Ang 1-7的生成,从而起到心脏保护作用[6]。抗肿瘤药心脏毒性的发生机制主要在于药物导致的活性氧(reactive oxygen species,ROS)生成、拓扑异构酶2β诱导的氧化应激均可使心肌细胞受到损伤;或是影响原癌基因人类表皮生长因子受体2(human epidermal growth factor receptor-2,HER2)/HER4信号转导,减少了心脏保护性HER2/HER4异二聚体的形成,最终导致病理性心脏重塑[3-4]。诱发心脏毒性的抗肿瘤药包括HER2抑制剂(如曲妥珠单抗、帕妥珠单抗和拉帕替尼等)和蒽环类、紫杉烷类、氟尿嘧啶类化疗药物等。

RAS在心肌细胞应激反应中发挥着重要作用。Ang Ⅱ可促进氧化应激,影响HER2/HER4信号转导,导致心脏重塑、心肌细胞肥大和纤维化。RAS调节剂可通过改善Ang Ⅱ诱导的病理性心肌重塑来预防抗肿瘤药的心脏毒性[3,5]。大量临床研究发现,在乳腺癌患者使用蒽环类药物和/或曲妥珠单抗治疗期间联合ACEIs/ARBs可减轻心脏毒性,减缓抗肿瘤药介导的左室射血分数下降:MANTICORE 101-breast研究为一项双盲、多中心、随机对照研究,纳入了接受曲妥珠单抗治疗的94例乳腺癌患者,结果发现,与单用曲妥珠单抗治疗比较,联用培哚普利能减缓曲妥珠单抗导致的左室射血分数下降[(-5±5)%vs.(-3±4)%,P=0.001],且培哚普利是维持患者左室射血功能的独立预测因子[7];另一项纳入了468例乳腺癌患者的双盲、多中心、随机对照研究显示,赖诺普利降低了接受蒽环类药物联合曲妥珠单抗治疗的患者心脏毒性的发生率(37%vs. 47%,P=0.011),减少了曲妥珠单抗治疗中断的次数[8];PRADA研究为一项2×2析因、双盲、随机对照研究,纳入了130例无严重并发症的早期乳腺癌成年女性患者,给予坎地沙坦联合曲妥珠单抗和/或蒽环类药物治疗,抗肿瘤治疗后停用坎地沙坦,结果显示,坎地沙坦组患者的左室射血分数下降率显著低于安慰剂组(0.8%vs. 2.6%,P=0.026)[9];近期该研究更新了随访数据(中位随访23个月),结果显示,抗肿瘤治疗期间给予的坎地沙坦并不能阻止抗肿瘤药治疗2年后患者左室射血分数的降低,这可能与坎地沙坦用药时间不足有关[10];一项针对2001-2009年新诊断的6 542例66歲及以上患者的真实世界数据队列研究显示,随访5年内,ACEIs使用者的心脏毒性发生率[HR=0.77,95%CI(0.62,0.95),P<0.05]和全因死亡率[HR=0.79,95%CI(0.70,0.90),P<0.05]均较低[11]。

除了临床和真实世界数据研究,临床前实验也在不断探索RAS调节剂减少抗肿瘤药心脏毒性的剂量、组合和应用模式:Olorundare等[12]开展的一项动物实验研究结果表明,单用赖诺普利、缬沙坦或者两药联用均可逆转曲妥珠单抗致心脏损伤相关实验室和病理指标的变化;一项动物实验还发现,除了ACEIs和ARBs,肾素抑制剂阿利吉仑对他克莫司所致大鼠心脏毒性也具有对抗作用[13]。然而,肾素抑制剂虽可更高效地减少Ang Ⅱ的生成,但也可同时减少Ang 1-7的生成,故其对心脏的保护作用可能有限[13]。这方面的研究报道少,且近年无进一步的基础研究及临床数据,尚待进一步验证。

1.1.2 促进化疗后骨髓抑制的恢复 在造血系统亦发现骨髓RAS的存在,其能参与并调控原始和成熟血细胞的生成[14]。有研究指出,活性肽Ang Ⅱ促进了骨髓、脐血造血祖细胞向红系祖细胞的分化及扩增,外源性给予Ang Ⅱ能促进小鼠体内造血干细胞(hematopoietic stem cell,HSC)的增殖和分化[15]。活性肽Ang 1-7除了通过激活Mas受体而具有对抗调节Ang Ⅱ病理作用的能力外,还能够模拟Ang Ⅱ而发挥促进HSC分化的作用[16]。当化疗药物引起骨髓抑制时,HSC的Mas受体表达会明显增高,Ang 1-7可与之结合,并通过激活Janus激酶2(Janus kinase 2,JAK2)来增加化疗后骨髓中髓系细胞、巨核细胞和红系祖细胞的浓度;且Ang 1-7与重组人粒细胞集落刺激因子(recombinant human granulocyte colony stimulating factor,rhG-CSF)、重组人促红细胞生成素(recombinant human erythropoietin,rhEPO)等重组人造血因子有协同作用,能促进化疗后患者骨髓抑制的恢复[16]。一项针对卵巢癌的Ⅱb期临床研究结果表明,患者经吉西他滨+铂类双药化疗后再皮下注射Ang 1-7 100 mg/kg,可降低化疗后血小板减少的发生率及严重程度[17]。Nle3-Ang 1-7是用正亮氨酸替代Ang 1-7第3位缬氨酸所得的Ang 1-7类似物,其外用时可显示出比Ang 1-7更强的促进伤口愈合的能力[18]。为了提高临床用药的便利性,Gaffney等[19]以吉西他滨诱导的骨髓抑制模型小鼠为对象,比较了由β-环糊精制成的Ang 1-7、Nle3-Ang 1-7口服制剂与Ang 1-7、Nle3-Ang 1-7皮下注射剂对小鼠骨髓抑制的恢复能力,结果显示,两者效果相当。

1.1.3 减少抗肿瘤药的周围神经毒性 虽然RAS在大脑中的功能目前尚未完全清楚,但越来越多的研究表明该系统与神经性疼痛有关[20]。在与疼痛传递、调节和感知的大脑相关区域(如丘脑和下丘脑核、蓝斑、中央杏仁核和孤束核)中均发现了AT1R和AT2R的存在[21-22]。RAS调节剂可为接受具有周围神经毒性化疗药物治疗的患者提供神经保护作用[23]。一项基于紫杉醇致痛觉过敏大鼠模型的基础研究显示,氯沙坦可通过抑制背根神经节炎症介质的表达来减轻化疗引起的神经性疼痛[24]。在长春新碱致机械性异常性疼痛的小鼠模型研究中,坎地沙坦和AT2R激动剂被证实均可促进小鼠的触觉敏感性完全恢复正常,但其中只有AT2R激动剂显示出针对长春新碱致神经元损伤的神经保护作用[25]。Bessaguet等[26]的研究显示,坎地沙坦预防功能性感觉神经病变的作用可能来源于其减弱AT1R介导的肾素释放负反馈,从而增强了Ang Ⅱ-AT2R的信号转导,进而增强了AT2R激动后的神经保护作用。笔者推测,AT2R激动剂在减少抗肿瘤药周围神经毒性方面的疗效比其他RAS调节剂更佳,但尚需更多研究进行验证。

1.1.4 具有肾脏保护作用 抗血管生成药常有引发蛋白尿的副作用,而ACEIs/ARBs具有改善蛋白尿、保护肾脏的作用。Nihei等[27]通过回顾性分析2008-2014年在11家医院接受抗血管生成药贝伐珠单抗治疗的非小细胞肺癌患者的临床资料发现,ACEIs/ARBs使用者的蛋白尿发生率显著低于未使用者(P=0.037)。

1.2 增强抗肿瘤药的疗效

越来越多的临床前研究证实,RAS参与了恶性肿瘤的发生和进展,这促使学者们就RAS调节剂对抗肿瘤药的增效作用进行了研究[28]。

1.2.1 RAS调节剂联合化疗药物 Zhao等[29]回顾性分析了2010-2014年在美国马萨诸塞州总医院和布莱根妇女医院接受化疗的ⅢC/Ⅳ期卵巢癌患者的临床资料,结果显示,ACEIs/ARBs的使用与死亡风险显著降低相关[HR=0.55,95%CI(0.36,0.95),P=0.004],且与服用其他抗高血压药组患者相比,ACEIs/ARBs组患者的OS延长了30个月。该研究团队进一步通过动物实验发现,氯沙坦通过使肿瘤基质正常化来改善静脉注射紫杉醇以及腹腔注射多柔比星的体内递送,进而增强了化疗疗效,减少了卵巢癌模型动物体内的腹水。Murphy等[30]进行了一项单臂Ⅱ期临床试验,纳入了49例未曾治疗且不可行切除术的局部晚期胰腺癌患者,其中39例接受了8周期的FOLFIRINOX方案(氟尿嘧啶+亚叶酸+奥沙利铂+伊立替康)联合氯沙坦治疗,继之给予放化疗,这种全新辅助治疗的方式起到了肿瘤降期的作用,使患者手术完全切除率达到了61%,提示新辅助治疗与氯沙坦联合应用可提高抗肿瘤疗效。Kasi等[31]回顾性分析了114例转移性胰腺癌患者的临床数据,发现氯沙坦联合化疗患者与单纯化疗患者在OS、PFS、客观缓解率(objective response rate,ORR)、疾病控制率(disease control rate,DCR)方面均無明显差异;对接受FOLFIRINOX方案化疗的患者进行的亚组分析结果显示,氯沙坦联合化疗组患者的PFS较单纯化疗组更长,但差异无统计学意义(350 d vs. 101 d,P=0.060 4),其原因可能是样本量较小,故尚需进行样本量更大的队列研究以验证氯沙坦和FOLFIRINOX方案在局部晚期恶性肿瘤新辅助治疗中的益处是否也适用于转移性恶性肿瘤。

1.2.2 RAS调节剂联合小分子靶向药物 鉴于RAS调节剂在血管内皮生长因子(vascular endothelial growth factor,VEGF)通路和血管生成中的独立作用,既往临床研究多集中在RAS调节剂联合抗血管生成靶向药物的作用上[32-35]。ACEIs/ARBs与抗血管生成药(如培唑帕尼、舒尼替尼)联用是否能改善转移性肾癌患者的预后尚有争议。Izzedine等[32]展开的回顾性分析纳入了2004-2013年接受舒尼替尼一线治疗的213例转移性肾癌患者(中位随访时间为3.6年),发现ACEIs/ARBs使用者较未使用ACEIs/ARBs者拥有更长的OS[HR=0.40,95%CI(0.24,0.66),P<0.001]和PFS[HR=0.55,95%CI(0.35,0.86),P=0.009]。McKay等[33]对4 736例Ⅱ、Ⅲ期肾癌患者进行了汇总分析,其中1 487例患者接受了ACEIs/ARBs治疗,其OS相较于未使用ACEIs/ARBs者有明显获益(31.12个月vs. 21.94个月,P<0.000 1)。但Sorich等[34]在对两项共计1 545例接受培唑帕尼或舒尼替尼治疗的Ⅲ期转移性肾癌患者的随机对照试验的汇总分析中并未观察到基线ACEIs/ARBs使用与OS[HR=0.97,95%CI(0.80,1.18),P=0.80]或PFS[HR=0.88,95%CI(0.73,1.06),P=0.17]相关。一项回顾性分析研究了343例一线接受舒尼替尼或帕唑帕尼治疗的肾癌患者的临床数据,发现ACEIs/ARBs的使用未能显著改善患者的OS或PFS[35]。此外,RAS调节剂对鼻咽癌、肝癌、肺癌等恶性肿瘤均有抑制作用,其机制涉及对促分裂原活化的蛋白激酶(mitogenactivated protein kinase,MAPK)、磷脂酰肌醇-3-激酶(phosphoinositide 3-kinase,PI3K)/蛋白激酶B(protein kinase B,PKB)等多条信号通路的抑制作用[36-39]。而MAPK、PI3K/PKB等旁路激活是小分子靶向药物耐药的重要机制之一[40-42]。可见,RAS调节剂联合小分子靶向药物可能通过抑制多通路的旁路激活而降低小分子靶向药物的耐药性。

1.2.3 RAS調节剂联合免疫检查点抑制剂 免疫检查点抑制剂包括细胞毒性T淋巴细胞相关抗原4(cytoto- xic T lymphocyte-associated antigen-4,CTLA-4)单抗和程序性死亡蛋白1(programmed death-1,PD-1)单抗/程序性死亡蛋白1配体(programmed death ligand-1,PD-L1)单抗等,可通过恢复或激活T细胞功能来发挥抗肿瘤的作用[43]。不同瘤种的肿瘤细胞对免疫检查点抑制剂的反应不一,如何通过联合治疗来增强免疫反应性是目前的研究热点[43]。大量研究证实,组织局部的Ang Ⅱ具有促进成纤维细胞增殖的作用[44-46]。成纤维细胞是一种重要的基质细胞,在肿瘤微环境中可被激活形成癌相关成纤维细胞(cancer-associated fibroblasts,CAFs),后者有助于肿瘤细胞免疫抑制微环境的形成[45]。外源性给予Ang 1-7可抑制骨髓间充质干细胞向成纤维细胞等基质细胞分化[47]。RAS调节剂可通过减少CAFs和细胞外基质来调节免疫细胞并改善细胞缺氧状态,从而增强肿瘤免疫反应[48-49]。一项纳入了299例胰腺导管腺癌术后患者的回顾性研究结果显示,长期使用ACEIs/ARBs者与未使用者相比具有更长的OS,而这种作用与ACEIs/ARBs影响肿瘤细胞的免疫微环境有关[50]。Xie等[51]使用以4T1乳腺癌细胞构建的小鼠肿瘤模型进行研究,发现坎地沙坦可通过阻断Ang Ⅱ信号转导来提高PD-1/CTLA-4单抗的疗效;坎地沙坦联合PD-1/CTLA-4单抗在同源BALB/c小鼠的CT26结肠肿瘤模型中也取得了类似效果,使得模型小鼠的OS明显延长。RAS调节剂联合免疫检查点抑制剂可能是一种潜在有效的治疗模式,但尚需进一步的临床试验证实。

2 结语

综上所述,RAS调节剂联合抗肿瘤药能起到减毒增效的作用,可能是一种潜在有效的抗肿瘤治疗模式。RAS调节剂能减轻抗肿瘤药的心脏毒性、血液学毒性、周围神经毒性等,并具有肾脏保护作用,其机制可能在于其可减轻氧化应激、抑制炎症介质从而保护心肌、减轻神经性疼痛,并能激活JAK2通路从而刺激骨髓造血恢复等。下一步研究可从机制出发,比较不同RAS调节剂对不同器官保护效力的差异,优化化疗药物与RAS调节剂的不同联合方案,从而针对性减少某些化疗药物特异的毒副作用。从理论上分析,RAS调节剂可通过使肿瘤基质正常化来促进化疗药物体内递送、增强靶向药物的抗血管生成作用、提高肿瘤的免疫原性,从而增强化疗药物、靶向药物和免疫检查点抑制剂的疗效;但目前RAS调节剂联合靶向药物是否增效尚有争议,联合免疫检查点抑制剂的益处尚停留在基础研究水平,还需大样本的临床研究进一步证实。

参考文献

[ 1 ] JIANG H R,TAI Z G,CHEN Z J,et al. Clinical applicability of renin-angiotensin system inhibitors in cancer treatment[J]. Am J Cancer Res,2021,11(2):318-336.

[ 2 ] SUN H,LI T,ZHUANG R Y,et al. Do renin-angiotensin system inhibitors influence the recurrence,metastasis,and survival in cancer patients:evidence from a meta-analysis including 55 studies[J]. Medicine(Baltimore),2017,96(13):e6394.

[ 3 ] PINTER M,KWANTEN W J,JAIN R K. Renin-angiotensin system inhibitors to mitigate cancer treatment-related adverse events[J]. Clin Cancer Res,2018,24(16):3803- 3812.

[ 4 ] TRAPANI D,ZAGAMI P,NICOLÒ E,et al. Management of cardiac toxicity induced by chemotherapy[J]. J Clin Med,2020,9(9):E2885.

[ 5 ] RADIN D P,KREBS A,MAQSUDLU A,et al. Our ACE in the HOLE:justifying the use of angiotensin-converting enzyme inhibitors as adjuvants to standard chemothe-     rapy[J]. Anticancer Res,2018,38(1):45-49.

[ 6 ] PACKER M,MCMURRAY J J V. Importance of endogenous compensatory vasoactive peptides in broadening the effects of inhibitors of the renin-angiotensin system for the treatment of heart failure[J]. Lancet,2017,389(10081):1831-1840.

[ 7 ] PITUSKIN E,MACKEY J R,KOSHMAN S,et al. Multidisciplinary approach to novel therapies in cardio-onco- logy research(MANTICORE 101-breast):arandomized trial for the prevention of trastuzumab-associated cardioto- xicity[J]. J Clin Oncol,2017,35(8):870-877.

[ 8 ] GUGLIN M,KRISCHER J,TAMURA R,et al. Rando- mized trial of lisinopril versus carvedilol to prevent trastuzumab cardiotoxicity in patients with breast cancer[J]. J Am Coll Cardiol,2019,73(22):2859-2868.

[ 9 ] GULATI G,HECK S L,REE A H,et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy(PRADA):a 2×2 factorial,randomized,placebo-controlled,double-blind clinical trial of candesartan and metoprolol[J]. Eur Heart J,2016,37(21):1671-1680.

[10] HECKSL,MECINAJ A,REE AH,et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy(PRADA):extended follow-up of a 2×2 factorial,randomized,placebo-controlled,double-blind clinical trial of candesartan and metoprolol[J]. Circulation,2021,143(25):2431-2440.

[11] WITTAYANUKORN S,QIAN JJ,WESTRICK S C,et al. Prevention of trastuzumab and anthracycline-induced cardiotoxicity using angiotensin-converting enzyme inhibitors or β-blockers in older adults with breast cancer[J]. Am J Clin Oncol,2018,41(9):909-918.

[12] OLORUNDARE O E,ADENEYE A A,AKINSOLA A O,et al. Therapeutic potentials of selected antihypertensive agents and their fixed-dose combinations against trastuzumab-mediated cardiotoxicity[J]. Front Pharmacol,2020,11:610331.

[13] AL-HARBI N O,IMAM F,NADEEM A,et al. Protection against tacrolimus-induced cardiotoxicity in rats by olme- sartan and aliskiren[J]. Toxicol Mech Methods,2014,24(9):697-702.

[14] RODGERS KE,DIZEREGA G S. Contribution of the local RAS to hematopoietic function:anovel therapeutic target[J]. Front Endocrinol(Lausanne),2013,4:157.

[15] KIM S,ZINGLER M,HARRISON J K,et al. Angiotensin Ⅱ regulation of proliferation,differentiation,and engraftment of hematopoietic stem cells[J]. Hypertension,2016,67(3):574-584.

[16] RODGERS K E,ESPINOZA T B,RODA N,et al. Angiotensin-(1-7) synergizes with colony-stimulating factors in hematopoietic recovery[J]. Cancer Chemother Pharmacol,2013,72(6):1235-1245.

[17] PHAM H,SCHWARTZ B M,DELMORE J E,et al. Pharmacodynamic stimulation of thrombogenesis by angiotensin(1-7)in recurrent ovarian cancer patients receiving gemcitabine and platinum-based chemotherapy[J]. Cancer Chemother Pharmacol,2013,71(4):965-972.

[18] RODGERS K E,ESPINOZA T,FELIX J,et al. Acceleration of healing,reduction of fibrotic scar,and normalization of tissue architecture by an angiotensin analogue,NorLeu3-A(1-7)[J]. PlastReconstr Surg,2003,111(3):1195-1206.

[19] GAFFNEY K,WEINBERG M,SOTO M,et al. Development of angiotensin Ⅱ(1-7) analog as an oral therapeutic for the treatment of chemotherapy-induced myelosuppression[J]. Haematologica,2018,103(12):e567-e570.

[20] BALOGH M,AGUILAR C,NGUYEN N T,et al. Angiotensin receptors and neuropathic pain[J]. Pain Rep,2021,6(1):e869.

[21] PREMER C,LAMONDIN C,MITZEY A,et al. Immunohistochemical localization of AT1a,AT1b,and AT2 angiotensin Ⅱ receptor subtypes in therat adrenal,pituitary,and brain with a perspective commentary[J]. Int J Hypertens,2013,2013:175428.

[22] DE KLOET A D,WANG L,LUDIN J A,et al. Reporter mouse strain provides a novel look at angiotensin type-2 receptor distribution in the central nervous system[J]. Brain Struct Funct,2016,221(2):891-912.

[23] ROLDAN C J,SONG J,ENGLE M P,et al. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers modulate the function of myelinated fibers after chemotherapy:aquantitative sensory testing study[J]. Pain Physician,2017,20(4):281-292.

[24] KIM E,HWANG S H,KIM H K,et al. Losartan,an angiotensin Ⅱ type 1 receptor antagonist,alleviates mechanical hyperalgesia in a rat model of chemotherapy-induced neuropathicpain by inhibiting inflammatory cytokines in the dorsal root Ganglia[J]. Mol Neurobiol,2019,56(11):7408-7419.

[25] BESSAGUET F,DANIGO A,BOUCHENAKI H,et al. Neuroprotective effect of angiotensin Ⅱ type 2 receptor stimulation in vincristine-induced mechanical allody- nia[J]. Pain,2018,159(12):2538-2546.

[26] BESSAGUET F,DANIGO A,MAGY L,et al. Candesartan prevents resiniferatoxin-induced sensory small-fiber neuropathy in mice by promoting angiotensin Ⅱ-mediated AT2 receptor stimulation[J]. Neuropharmacology,2017,126:142-150.

[27] NIHEI S,SATO J,HARADA T,et al. Antiproteinuric effects of renin-angiotensin inhibitors in lung cancer patients receiving bevacizumab[J]. Cancer Chemother Pharmacol,2018,81(6):1051-1059.

[28] YANG J,YANG X,GAO L,et al. The role of the renin-angiotensin system inhibitors in malignancy:a review[J]. Am J Cancer Res,2021,11(3):884-897.

[29] ZHAO Y X,CAO J H,MELAMED A,et al. Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the tumor stroma[J]. Proc Natl Acad Sci USA,2019,116(6):2210-2219.

[30] MURPHY J E,WO J Y,RYAN D P,et al. Total neoadjuvant therapy with FOLFIRINOX in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer:a phase 2 clinical trial[J]. JAMA Oncol,2019,5(7):1020-1027.

[31] KASI A,ALLEN J,MEHTA K,et al. Association of losartan with outcomes in metastatic pancreatic cancer patients treated with chemotherapy[J]. J Clin Transl Res,2021,7(2):257-262.

[32] IZZEDINE H,DEROSA L,LE TEUFF G,et al. Hypertension and angiotensin system inhibitors:impact on outcome in sunitinib-treated patients for metastatic renal cell carcinoma[J]. Ann Oncol,2015,26(6):1128-1133.

[33] MCKAY R R,RODRIGUEZ G E,LIN X,et al. Angiotensin system inhibitors and survival outcomes in patients with metastatic renal cell carcinoma[J]. Clin Cancer Res,2015,21(11):2471-2479.

[34] SORICH M J,KICHENADASSE G,ROWLAND A,et al. Angiotensin system inhibitors and survival in patients with metastatic renal cell carcinoma treated with VEGF- targeted therapy:a pooled secondary analysis of clinical trials[J]. Int J Cancer,2016,138(9):2293-2299.

[35] FIALA O,OSTAŠOV P,ROZSYPALOVÁ A,et al. Impact of concomitant cardiovascular medication on survival of metastatic renal cell carcinoma patients treated with sunitinib or pazopanib in the first line[J]. Target Oncol,2021,16(5):643-652.

[36] LIN Y T,WANG H C,TSAI M H,et al. Angiotensin Ⅱ receptor blockers valsartan and losartan improve survival rate clinically and suppress tumor growth via apoptosis related to PI3K/AKT signaling in nasopharyngeal carci-   noma[J]. Cancer,2021,127(10):1606-1619.

[37] LIN Y T,WANG H C,CHUANG H C,et al. Pre-treatment with angiotensin-(1-7) inhibits tumor growth via autophagy by downregulating PI3K/Akt/mTOR signaling in human nasopharyngeal carcinoma xenografts[J]. J Mol Med(Berl),2018,96(12):1407-1418.

[38] QI R,LEI C G,BAI Y X,et al. The AT1/Raf/ERK1/2 signaling pathway is involved in angiotensin Ⅱ-enhanced proliferation of hepatic carcinoma cells[J]. Neoplasma,2019,66(1):83-91.

[39] NI L,FENG Y,WAN H Y,et al. Angiotensin-(1-7) in- hibits the migration and invasion of A549 human lung    adenocarcinoma cells through inactivation of the PI3K/Akt and MAPK signaling pathways[J]. Oncol Rep,2012,27(3):783-790.

[40] DUTTA A,HUTCHISON R E,MOHI G. Hmga2 promotes the development of myelofibrosis in Jak2V617F knockin mice by enhancing TGF-β1 and Cxcl12 pathways[J]. Blood,2017,130(7):920-932.

[41] STIVALA S,CODILUPI T,BRKIC S,et al. Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms[J]. J Clin Invest,2019,129(4):1596-1611.

[42] MEYER S C. Mechanisms of resistance to JAK2 inhibitors in myeloproliferative neoplasms[J]. Hematol Oncol Clin North Am,2017,31(4):627-642.

[43] SALMANINEJAD A,VALILOU S F,SHABGAH A G,et al. PD-1/PD-L1 pathway:basic biology and role in cancer immunotherapy[J]. J Cell Physiol,2019,234(10):16824- 16837.

[44] SYSOEVA V Y,AGEEVA L V,TYURIN-KUZMIN P A,et al. Local angiotensin Ⅱ promotes adipogenic differentia- tion of human adipose tissue mesenchymal stem cells through type 2 angiotensin receptor[J]. Stem Cell Res,2017,25:115-122.

[45] GASIŪNIENĖ M,PETKUS G,MATUZEVIČIUS D,et al. Angiotensin Ⅱ and TGF-β1 induce alterations in human amniotic fluid-derived mesenchymal stem cells leading to cardiomyogenic differentiation initiation[J]. Int J Stem Cells,2019,12(2):251-264.

[46] JIANG X,WU F,XU Y,et al. A novel role of angiotensin Ⅱ in epidermal cell lineage determination:angiotensin Ⅱpromotes the differentiation of mesenchymal stem cells&nbsp; into keratinocytes through the p38 MAPK,JNK and JAK2 signalling pathways[J]. Exp Dermatol,2019,28(1):59- 65.

[47] PAPINSKA A M,MORDWINKIN N M,MEEKS C J,et al. Angiotensin-(1-7)administration benefits cardiac,renal and progenitor cell function in db/db mice[J]. Br J Pharmacol,2015,172(18):4443-4453.

[48] PINTER M,JAIN R K. Targeting the renin-angiotensin system to improve cancer treatment:implications for immunotherapy[J]. Sci Transl Med,2017,9(410):eaan5616.

[49] VALLEJO-ARDILA D L,FIFIS T,BURRELL L M,et al. Renin-angiotensin inhibitors reprogram tumor immune microenvironment:a comprehensive view of the influences on anti-tumor immunity[J]. Oncotarget,2018,9(84):35500-35511.

[50] LIU H,NAXEROVA K,PINTER M,et al. Use of angiotensin system inhibitors is associated with immune activation and longer survival in nonmetastatic pancreatic ductal adenocarcinoma[J]. Clin Cancer Res,2017,23(19):5959-5969.

[51] XIE G Z,CHENG T,LIN J,et al. Local angiotensin Ⅱ contributes to tumor resistance to checkpoint immunothe- rapy[J]. J Immunother Cancer,2018,6(1):88.

(收稿日期:2021-08-19 修回日期:2022-02-28)

(編辑:胡晓霖)

猜你喜欢

靶向治疗调节剂免疫治疗
自身免疫性脑炎免疫治疗进展
免疫治疗:无效必改,效不更方
植物生长调节剂在作物生产中存在的问题及解决办法
中国迎来肿瘤免疫治疗时代
靶向吲哚胺2,3—双加氧酶IDO的肿瘤免疫治疗小分子抑制剂研发进展
CT引导下射频消融联合靶向治疗对中晚期非小细胞肺癌患者免疫功能的影响
靶向治疗对复发性耐药性卵巢癌的治疗价值分析
转移性结直肠癌二线治疗的研究进展
非小细胞肺癌靶向治疗的护理分析
2015中国植保市场生长调节剂畅销品牌产品