APP下载

不同杀虫剂对烟粉虱两种优势寄生蜂的毒性及风险评估

2020-07-18羊绍武王子辽袁海博王远陈国华张晓明

中国烟草科学 2020年3期
关键词:杀虫剂毒性风险评估

羊绍武 王子辽 袁海博 王远 陈国华 张晓明

摘  要:采用指形管藥膜法分别测定了5种田间常用于防治烟粉虱的杀虫剂对烟粉虱两种优势寄生蜂—丽蚜小蜂和浅黄恩蚜小蜂的毒性,明确不同杀虫剂对丽蚜小蜂和浅黄恩蚜小蜂的安全性,为烟粉虱的综合防治和农药的合理施用提供科学依据。结果显示,22.4%螺虫乙酯对丽蚜小蜂和浅黄恩蚜小蜂的LC50最高,分别为136.465和119.408 mg/L;20%呋虫胺对丽蚜小蜂和浅黄恩蚜小蜂的LC50最低,分别为14.496和9.259 mg/L;相较于浅黄恩蚜小蜂,不同杀虫剂对丽蚜小蜂的LC50相对较高。供试杀虫剂中,22.4%螺虫乙酯和50%氟啶虫胺腈对两种优势寄生蜂的安全系数较高,均为中等风险;10%烯啶虫胺、10%溴氰虫酰胺和20%呋虫胺对两种优势寄生蜂的安全系数较低,均为高风险。22.4%螺虫乙酯、50%氟啶虫胺腈对丽蚜小蜂和浅黄恩蚜小蜂的毒性中等,田间用于防治烟粉虱时,应在保证防治效果的前提下适当降低杀虫剂浓度,减少施药次数,避开在寄生蜂成虫羽化高峰期施药;10%烯啶虫胺、10%溴氰虫酰胺和20%呋虫胺对丽蚜小蜂和浅黄恩蚜小蜂的毒性较高,不应在丽蚜小蜂和浅黄恩蚜小蜂发生期施药。

关键词:丽蚜小蜂;浅黄恩蚜小蜂;杀虫剂;毒性;风险评估

Abstract: To evaluate the safety of different insecticides to two parasitoids Encarsia formosa and Encarsia sophia of Bemisia tabaci, and to provide scientific basis for integrated pest management and rational application of insecticides in B. tabaci control, laboratory toxicity of different insecticides on E. formosa and E. sophia was determined by residual film in glass tube method. Meanwhile, the risk of E. formosa and E. sophia was evaluated in laboratory conditions. The results showed that 22.4% spirotetramat showed the lowest laboratory toxicities on E. formosa and E. sophia during in all of the tested insecticides, with the LC50 being 136.465 mg/L and 119.408 mg/L, respectively. The highest laboratory toxicities to both of this two parasitoids  were from 20% dinotefuran among in all of the tested insecticides, with the LC50 being 14.496 mg/L against E. formosa and 9.259 mg/L against E. sophia, respectively. The LC50 of different kinds of tested insecticides against E. formosa were higher than that against E. sophia. Among which, 22.4% spirotetramat and 50% sulfoxaflor showed medium risk against both E. formosa and E. sophia, 10% nitenpyram, 10% cyantraniliprole and 20% dinotefuran showed high risk to the two parasitoids. 22.4% spirotetramat and 50% sulfoxaflor showed medium risk on E. formosa and E. sophia. The concentration of insecticides and the times of application should be properly reduced on the premise of ensuring the control effect when it was used to control B. tabaci in the field. Meanwhile, the application of these insecticides should be avoided to use during the peak period of adult parasitoid emergence. 10% nitenpyram, 10% cyantraniliprole and 20% dinotefuran had higher risk than the other two insecticides on E. formosa and E. sophia, which should be avoided to use during the active period of E. formosa and E. sophia in B. tabaci control.

Keywords: Encarsia formosa; Encarsia sophia; insecticide; toxicity; risk evaluation

烟粉虱(Bemisia tabaci),隶属半翅目(Hemiptera)、粉虱科(Aleyrodidae),其个体微小,生物型多样,是一种世界范围内为害的杂食性害虫[1]。作为烟草上的一种重要害虫,烟粉虱主要以成虫和若虫群集在叶背面吸取植物汁液,使叶片褪绿变黄,其分泌的蜜露还会诱发煤污病,影响烟叶品质[2];烟粉虱还是多种烟草病毒的传播者,例如烟草曲茎病毒(TbCSV),烟草环斑病毒(TRSV),烟草曲叶病毒(TLCV)等,是导致部分地区烟草质量下降的原因之一[3]。生物防治是利用天敌控制有害生物种群数量的一种方法,因其对环境友好,且可长期有效地控制目标害虫,已逐渐成为防治烟粉虱的主要手段之一[4-5]。烟粉虱的寄生性天敌种类繁多、资源丰富,仅恩蚜小蜂属(Encarsia)中就有47种寄生蜂可寄生烟粉虱[6],且恩蚜小蜂属寄生蜂对寄主专一性强,已成为目前应用于生物防治中最成功的寄生性天敌[7]。浅黄恩蚜小蜂(Encarsia sophia)和丽蚜小蜂(Encarsia formosa)均隶属于膜翅目(Hymenoptera),蚜小蜂科(Aphelinidae),是恩蚜小蜂属中烟粉虱的优势寄生蜂[8-9]。这两种寄生蜂分布广泛,对田间烟粉虱具有較好的控制效果[10-11]。

在烟粉虱的综合防治中,化学防治仍然占有主导地位[12],近年来常用于防治烟粉虱且效果较好的杀虫剂包括烯啶虫胺,螺虫乙酯,溴氰虫酰胺,氟啶虫胺腈,呋虫胺等[13-16]。烯啶虫胺和呋虫胺属于烟碱类杀虫剂[17-18]。氟啶虫胺腈是新进入市场的第四代新烟碱类杀虫剂[19-20],该类杀虫剂的靶标为烟碱型突触后膜乙酰胆碱受体(nAChRs),主要作用于昆虫中枢神经系统[21]。螺虫乙酯是一种新型的对哺乳动物毒性较低的四羧酸衍生物杀虫剂,用于防治多种害虫[22-23],主要影响昆虫的蜕皮过程,并降低产卵能力[24]。溴氰虫酰胺是DuPont公司继氯虫苯甲酰胺之后成功开发的第二代鱼尼丁受体抑制剂类杀虫剂[25]。这些杀虫剂都能较好地防治烟粉虱[17,26-29]。但是,杀虫剂的不合理使用能导致烟粉虱产生抗性,同时也会对田间天敌昆虫产生不利影响。袁锐等[30]在6种新烟碱类杀虫剂对凹唇壁蜂(Osmia excavata)的毒性及风险评估中指出,氟啶虫胺腈和呋虫胺对凹唇壁蜂为中等风险。张唯伟等[31]在常用杀虫剂对螟黄赤眼蜂(Trichogramma chilonis)的影响中指出,溴氰虫酰胺和烯啶虫胺对螟黄赤眼蜂的毒性较强,应谨慎使用。因此,当使用杀虫剂防治田间害虫时,田间的天敌昆虫不可避免地也会暴露于其中,对天敌昆虫的杀伤作用不容忽视。

本研究选择生产上常用于防治烟粉虱的杀虫剂:氟啶虫胺腈、呋虫胺、溴氰虫酰胺、螺虫乙酯、烯啶虫胺,采用指形管药膜法分别测定不同杀虫剂对丽蚜小蜂和浅黄恩蚜小蜂成虫的毒性及风险等级,为更好地协调烟粉虱化学防治与生物防治提供科学依据。

1  材料与方法

1.1  试验材料

1.1.1  供试昆虫  供试昆虫为烟粉虱优势寄生蜂丽蚜小蜂和浅黄恩蚜小蜂,于2019年7—8月采集于云南省昆明市富民县的蜀葵(Althaea rosea),采集后于实验室内饲养。寄主昆虫为烟粉虱,用棉花饲养。收集被丽蚜小蜂和浅黄恩蚜小蜂寄生的烟粉虱若虫于人工气候箱(上海博讯实业有限公司,BIC-300)内饲养,设置温度25 ℃,湿度60%~70%,光照强度60%,光周期为L:D=14:10。用吸虫管收集羽化24 h内的丽蚜小蜂和浅黄恩蚜小蜂成虫供试验使用。

1.1.2  供试药剂  选择防治烟粉虱常用且毒杀效果较好的5种不同类型的杀虫剂,杀虫剂信息如表1所示。

1.2  试验方法

1.2.1  供试药剂对丽蚜小蜂和浅黄恩蚜小蜂成蜂的毒性  采用玻璃管药膜法,将换算后的杀虫剂加清水进行溶解稀释,然后进行预试验,根据结果,将本试验所用药剂的浓度范围确定为10%~90%的校正死亡率浓度范围。在此范围内将供试药剂的母液稀释成5个不同的梯度浓度,以清水作为试验对照,每个浓度值均设置3个重复。将稀释好的药剂倒满指形管(直径3 cm,高6 cm),使指形管内壁充分接触药液,停留10 s后倒掉药液,然后将指形管在室温下垂直悬挂晾干,使之内壁形成药膜。将羽化24 h内的丽蚜小蜂和浅黄恩蚜小蜂成虫移入有药膜的指形管,每个指形管分别移入10头,待其在有药膜的管内自由爬行1 h后转移至干净无药的指形管,封住管口并饲喂10%的蜂蜜水。将各处理放置于人工气候箱中饲养(温度25 ℃,湿度60%~70%,光照强度60%,光周期为光照14 h,黑暗10 h),24 h后检查并记录各药剂、各浓度处理下丽蚜小蜂和浅黄恩蚜小蜂成虫存活情况,观察时轻拍指形管管壁,用细毛笔轻触虫体,2次不动则记录为死亡[32-33]。

1.2.2  供试药剂对丽蚜小蜂和浅黄恩蚜小蜂的风险等级  根据《化学农药环境安全性评价实验准则》[34],安全系数等于杀虫剂对丽蚜小蜂和浅黄恩蚜小蜂的LC50值(mg/L)与其田间最高推荐使用浓度(mg/L)的比值。其中,LC50为半数致死用量,指引起丽蚜小蜂和浅黄恩蚜小蜂50%死亡率的杀虫剂剂量。农药对丽蚜小蜂和浅黄恩蚜小蜂的风险等级用安全系数来表示:安全系数>5为低风险,5≥安全系数>0.5为中等风险,0.5≥安全系数>0.05为高风险,安全系数≤0.05为极高风险[35]。

1.3  数据处理

数据分析使用SPSS 20.0,计算各药剂对丽蚜小蜂和浅黄恩蚜小蜂的毒力回归方程、致死中浓度值(LC50)和95%置信区间。

2  结  果

2.1  不同药剂对丽蚜小蜂和浅黄恩蚜小蜂的毒性

不同杀虫剂对丽蚜小蜂和浅黄恩蚜小蜂成虫的毒性如表2所示。在所用杀虫剂中,呋虫胺对丽蚜小蜂和浅黄恩蚜小蜂成虫的LC50最低,说明丽蚜小蜂和浅黄恩蚜小蜂成虫对呋虫胺最为敏感。其次为溴氰虫酰胺、烯啶虫胺和氟啶虫胺腈。螺虫乙酯对丽蚜小蜂和浅黄恩蚜小蜂成虫的LC50最高。相较于浅黄恩蚜小蜂,所用杀虫剂对丽蚜小蜂的LC50相对较高。

2.2  不同药剂对丽蚜小蜂和浅黄恩蚜小蜂的风险评价

不同杀虫剂对丽蚜小蜂和浅黄恩蚜小蜂成虫的风险等级如表3所示。螺虫乙酯和氟啶虫胺腈对丽蚜小蜂和浅黄恩蚜小蜂成虫的安全系数较高,对两种优势种寄生蜂的风险等级均为中等风险。烯啶虫胺、溴氰虫酰胺和呋虫胺对丽蚜小蜂和浅黄恩蚜小蜂成虫的安全系数较低,对两种优势种寄生蜂的风险等级均为高风险,在丽蚜小蜂和浅黄恩蚜小蜂活动期应避免使用。

3  讨  论

不同种类寄生蜂对杀虫剂的敏感程度不同[36-37]。本研究结果表明,所用杀虫剂对丽蚜小蜂的LC50均略高于浅黄恩蚜小蜂,说明相比于丽蚜小蜂,浅黄恩蚜小蜂对供试杀虫剂更为敏感。

研究结果表明,螺虫乙酯、氟啶虫胺腈对丽蚜小蜂和浅黄恩蚜小蜂的风险等级均为中等风险,田间用于防治烟粉虱时,应在保证防治效果的前提下,适当降低杀虫剂浓度和施药次数。袁锐等[30]在6种新烟碱类杀虫剂对凹唇壁蜂的毒性及风险评估中指出,氟啶虫胺腈对凹唇壁蜂为中等风险,结果与本研究一致。DANGI等[38]在螺虫乙酯对点蜂缘蝽(Riptortus pedestris)及其卵寄生蜂的毒性中指出,螺虫乙酯对Gryon japonicum和卵跳小蜂(Ooencyrtus nezarae)的毒性较小,可作为防治点蜂缘蝽的备选杀虫剂。结果与本研究存在一定差异。该研究得出螺虫乙酯对两种寄生蜂的毒性较小的结论,是与螺虫乙酯对害虫更大的毒性相比较而言,并且该研究仅针对杀虫剂对天敌昆虫的直接致死作用,未注意杀虫剂的亚致死浓度更有可能影响寄生蜂的控害能力。本研究通过测定不同杀虫剂对丽蚜小蜂和浅黄恩蚜小蜂的毒性,目的是为了明确杀虫剂对两种寄生蜂的亚致死浓度,为后续亚致死浓度杀虫剂对这两种优势寄生蜂控害效果的影響相关研究奠定重要基础。烯啶虫胺、溴氰虫酰胺、呋虫胺对丽蚜小蜂和浅黄恩蚜小蜂的风险等级均为高风险,田间用于防治烟粉虱时,应避开田间寄生蜂主要活动期。李钊等[39]在23种农药对松毛虫赤眼蜂(Trichogramma dendrolimi)的急性毒性及安全性评价中指出,烯啶虫胺对松毛虫赤眼蜂成蜂风险性较高,在田间放蜂期应避免使用。卢晶晶等[40]测定了4种鱼尼丁受体杀虫剂对半闭弯尾姬蜂(Diadegma semiclausum)的毒性,指出溴氰虫酰胺对半闭弯尾姬蜂的毒性较大,可显著降低成蜂的成活率。程沈航等[41]评价了不同杀虫剂对管式肿腿蜂的风险,研究指出,呋虫胺对管式肿腿蜂为高风险。以上研究结果均与本研究一致。

本研究仅测定了不同杀虫剂对丽蚜小蜂与浅黄恩蚜小蜂的室内风险,但田间通常为多种杀虫剂或杀虫剂、杀菌剂复合作用,其对烟粉虱优势寄生蜂的毒性与风险还不明确,还需进一步研究。另一方面,杀虫剂对寄生蜂除了直接致死作用外,亚致死浓度杀虫剂还会对寄生蜂的寿命、寄主定位能力及生殖能力等方面造成影响,从而影响寄生蜂对害虫的控制能力[42-43],KO等[44]在研究防治稻飞虱常用杀虫剂对赤眼蜂的毒性时指出,烯啶虫胺处理赤眼蜂卵期,可显著降低赤眼蜂的寄生率且延长其幼虫的发育时间。本研究所用杀虫剂对丽蚜小蜂和浅黄恩蚜小蜂的生物学特性和寄生能力是否有影响还需要进一步明确,以期真正地协调好烟粉虱化学防治与生物防治工作的开展,更好地保护利用天敌昆虫。

4  结  论

试验结果表明,22.4%螺虫乙酯、50%氟啶虫胺腈对丽蚜小蜂和浅黄恩蚜小蜂的毒性中等,田间用于防治烟粉虱时,应在保证防治效果的前提下适当降低杀虫剂浓度,减少施药次数,避开在寄生蜂成虫羽化高峰期施药;10%烯啶虫胺、10%溴氰虫酰胺和20%呋虫胺对丽蚜小蜂和浅黄恩蚜小蜂的毒性较高,不应在丽蚜小蜂和浅黄恩蚜小蜂发生期施药。

参考文献

[1]ZHANG P J, WEI J N, ZHAO C, et al. Airborne host–plant    manipulation by whiteflies via an inducible blend of plant volatiles [J]. Proceedings of the National Academy of Sciences, 2019, 116(15): 7387-7396.

[2]李萌,李小娟,梁栋,等. 烟粉虱MED隐种对不同烟草品种的适合度比较[J]. 中国烟草科学,2018,39(2):63-68.

LI M, LI X J, LIANG D, et al. Fitness of whitefly Bemisia tabaci MED on different tobacco cultivars[J]. Chinese Tobacco Science, 2018, 39(2): 63-68.

[3]任学祥,王东,王杰,等. 药剂混配对B型烟粉虱药效及烟草安全性评价[J]. 中国烟草科学,2011,32(2):48-51,65.

REN X X, WANG D, WANG J, et al. The toxicity and efficacy of pyridaben, acetamiprid and their mixtures to Bemisia tabaci (Gennadius) biotype B and safety evaluation to tobacco[J]. Chinese Tobacco Science, 2011, 32(2): 48-51, 65.

[4]夏鹏亮. 恩施烟区烟蚜田间发生规律及生态控制方法研究[D]. 重庆,西南大学,2014.

XIA P L. The research on the occurrence rules and ecological control methods of Myzus persicae (Sulzer) (Hemiptera: Aphididae) in Enshi [D]. Chongqing: Southwest University, 2014.

[5]XU H Y, YANG N W, WAN F H. Field cage evaluation of interspecific interaction of two aphelinid parasitoids and biocontrol effect on Bemisia tabaci (Hemiptera: Aleyrodidae) Middle East-Asia Minor 1 [J]. Entomological Science, 2015, 18(2): 237-244.

[6]竇文珺,羊绍武,柳青,等. 我国烟粉虱主要捕食和寄生性天敌控制能力研究进展[J]. 环境昆虫学报,2020,42(2):342-354.

DOU W J, YANG S W, LIU Q, et al. Progress in the control of predatory and parasitic natural enemies of Bemisia tabaci in China [J]. Journal of Environmental Entomology, 2020, 42(2): 342-354.

[7]LIU T X. Life history of Eretmocerus melanoscutus (Hymenoptera: Aphelinidae) parasitizing nymphs of Bemisia tabaci biotype B (Homoptera: Aleyrodidae) [J]. Biological Control, 2007, 42(1): 77-85.

[8]HUANG J, POLASZEK A. A revision of the Chinese species of Encarsia forster: parasitoids of whiteflies, scales and aphids[J]. Journal of Nature History, 1998, 32(12): 1825-1966.

[9]ZHANG, X M, YANG, N W, WAN, F H, et al. Density and seasonal dynamics of Bemisia tabaci (Gennadius) mediterranean on common crops and weeds around cotton fields in northern China[J]. Journal of Integrative Agriculture, 2014, 13(10): 2211-2220.

[10]ZANG L S, LIU T X. Host-feeding of three parasitoid species on Bemisia tabaci biotype B and implications for whitefly biological control[J]. Entomologia Experimentalis et Applicata, 2008, 127(1): 55-63.

[11]张晓明,徐海云,杨念婉,等. 两种蚜小蜂对烟粉虱MED隐种的田间笼罩控效评价[J]. 植物保护学报,2018,45(6):1281-1288.

ZHANG X M, XU H Y, YANG N W, et al. Field cage evaluation of the biocontrol effect of two aphelinid parasitoids on Bemisia tabaci Mediterranean (Hemiptera: Aleyrodidae)[J]. Journal of Plant Protection, 2018, 45(6): 1281-1288.

[12]刘馨,张友军,吴青君,等. 噻虫嗪对丽蚜小蜂寄生烟粉虱的影响[J]. 植物保护学报,2016,43(1):123-128.

LIU X, ZHANG Y J, WU Q J, et al. Effects of thiamethoxam on the parasitism of Encarsia formosa Gahan against Bemisia tabaci Gennadius [J]. Journal of Plant Protection, 2016, 43 (1): 123-128.

[13]张丹,张万民,洪晓燕,等. 几种药剂对番茄烟粉虱防效研究[J]. 辽宁农业科学,2017(1):66-68.

ZHANG D, ZHANG W M, HONG X Y, et al. Control effect of several chemicals on tomato Bemisia tabaci[J]. Liaoning Agricultural Sciences, 2017 (1): 66-68.

[14]郭磊,黄新意,梁延坡,等. 海南烟粉虱田间种群隐种鉴定及对溴氰虫酰胺和氟吡呋喃酮的敏感性检测[J]. 昆虫学报,2018,61(2):209-217.

GUO L, HUANG X Y, LIANG Y P, et al. Identification of cryptic species and detection of the susceptibility to cyantraniliprole and flupyradifurone of field populations of Bemisia tabaci (Hemiptera: Aleyrodidae) in Hainan, southern China[J]. Acta Entomologica Sinica, 2018, 61(2): 209-217.

[15]靳改龙,周成松,张以和,等. 8种不同类型杀虫剂对MED烟粉虱隐种的防治效果及其残留检测[J]. 植物保护,2018,44(3):207-213.

JIN G L, ZHOU C S, ZHANG Y H, et al. Control effects and residues of eight insecticides with different mode of action against Bemisia tabaci MED cryptic species in greenhouse [J]. Plant Protection, 2018, 44(3): 207-213.

[16]趙帅锋,洪志慧,余红伟,等. 5种杀虫剂防治辣椒田烟粉虱的效果试验[J]. 浙江农业科学,2018,59(2):296,299.

ZHAO S F, HONG Z H, YU H W, et al. Effect of five insecticides on control of Bemisia tabaci in pepper fields[J]. Journal of Zhejiang Agricultural Sciences, 2018, 59(2): 296, 299.

[17]郭雅洁,梁沛,高希武. 烯啶虫胺、毒死蜱和高效氯氰菊酯对烟粉虱地中海隐种hsp70 mRNA的诱导表达[J]. 昆虫学报,2013,56(1):29-38.

GUO J Y, LIANG P, GAO X W. Induced expression of hsp70 mRNA by nitenpyram, chlorpyrifos and beta-cypermethrin in Bemisia tabaci Mediterranean (Hemiptera: Aleyodidae) [J]. Acta Entomologica Sinica, 2013, 56(1): 29-38.

[18]葛会林,谢德芳,郑雪虹,等. 呋虫胺及其代谢物在水稻生态系统中的残留检测与消解动态[J]. 农药学学报,2019,21(2):211-218.

GE H L, XIE D F, ZHENG X H, et al. Residues determination and dissipation dynamics of dinotefuran and its metabolites in rice ecosystem[J]. Chinese Journal of Pesticide Science, 2019, 21(2): 211-218.

[19]SIVITER H, BROWN MARK J F, LEADBETER E. Sulfoxaflor exposure reduces bumblebee reproductive success[J]. Nature, 2018, 561(7721): 109-112.

[20]WANG Z H, GONG Y J, CHEN J C, et al. Laboratory selection for resistance to sulfoxaflor and fitness costs in the green peach aphid Myzus persicae[J]. Journal of Asia-Pacific Entomology, 2018, 21(1): 408-412.

[21]卢海博,魏东,龚学臣,等. 新烟碱类杀虫剂在苹果果实不同部位中的残留[J]. 农药学学报,2019,21(4):500-505.

LU H B, WEI D, GONG X C, et al. Residues of neonicotinoids insecticides in different parts of apple fruits[J]. Chinese Journal of Pesticide Science, 2019, 21(4): 500-505.

[22]SHIRLEY A M, NOE J P, NYCZEPIR A P, et al. Effect of spirotetramat and fluensulfone on population densities of Mesocriconema xenoplax and Meloidogyne incognita on peach[J]. Journal of Nematology, 2019, 51(12): 1-10.

[23]ZHANG J, QIAN L, WANG C, et al. Dysregulation of endocrine disruption, apoptosis and the transgenerational toxicity induced by spirotetramat[J]. Chemosphere, 2019, 240: 124900.

[24]ERNST B, ELBERT A, FISCHER R, et al. Movento, an innovative ambimobile insecticide for sucking insect pest control in agriculture: Biological profile and field performance[J]. Crop Protection, 2009, 28(10): 838-844.

[25]何发林,姜兴印,尚佃龙,等. 溴氰虫酰胺胁迫对小地老虎保护酶和解毒酶活性的诱导效应[J]. 植物保护,2019,45(2):90-96,102.

HE F L, JIANG X Y, SHANG D L, et al, Induction of the protective and detoxification enzymes by cyantraniliprole in Agrotis ipsilon[J]. Plant Protection, 2019, 45(2): 90-96, 102.

[26]MUHAMMAD B, ALI H S, MUSHTAQ A S, et al. Cross-resistance, inheritance and stability of resistance to acetamiprid in cotton whitefly, Bemisia tabaci Genn (Hemiptera: Aleyrodidae) [J]. Crop Protection, 2011, 30(6): 705-712.

[27]MENG X Q, ZHU C C, FENG Y, et al. Computational insights into the different resistance mechanism of imidacloprid versus dinotefuran in Bemisia tabaci[J]. Journal of Agricultural and Food Chemistry, 2016, 64(6): 1231-1238.

[28]GERALD B W, MONICA B O, KENNETH W B, et al. Characterization of a nicotinic acetylcholine receptor binding site for sulfoxaflor, a new sulfoximine insecticide for the control of sap-feeding insect pests[J]. Pesticide Biochemistry and Physiology, 2017, 143: 90-94.

[29]WANG R, ZHANG W, CHE W N, et al. Lethal and sublethal effects of cyantraniliprole, a new anthranilic diamide insecticide, on Bemisia tabaci (Hemiptera: Aleyrodidae) MED[J]. Crop Protection, 2017, 91: 108-113.

[30]袁锐,李丽莉,李超,等. 六种新烟碱类杀虫剂对凹唇壁蜂的毒性及风险评估[J]. 昆虫学报,2018,61(8):950-956.

YUAN R, LI L L, LI C, et al. Toxicity and hazard assessment of six neonicotinoid insecticides on Osmia excavata (Hymenoptera: Megachilidae) [J]. Acta Entomologica Sinica, 2018, 61(8): 950-956.

[31]张唯伟,董怡,张传清,等. 稻田常用农药对螟黄赤眼蜂的影响[J]. 热带生物学报,2019,10(3):283-287.

ZHANG W W, DONG Y, ZHANG C Q, et al. Effects of common insecticides on Trichogramma chilonis in paddy fields [J]. Journal of Tropical Biology, 2019, 10(3): 283-287.

[32]申修贤,黄纯杨,于晓飞,等. 5种生物农药对烟蚜和食蚜瘿蚊的毒力测定及安全性评价[J]. 中国烟草科学,2020,41(1):56-61,66.

SHEN X X, HUANG C Y, YU X F, et al. Safety evaluation and toxicity determination of 5 biopesticides to Myzus persicae (sulzer) and Aphidoletes aphidimyza(rondani)[J]. Chinese Tobacco Science, 2020, 41(1): 56-61, 66.

[33]張晓明,柳青,李宜儒,等. 六种常见杀虫剂对西花蓟马和花蓟马的毒力测定[J]. 环境昆虫学报,2018,40(1):215-223.

ZHANG X M, LIU Q, LI Y R, et al. Toxicity of six current commonly used pesticides on Frankliniella occidentalis and Frankliniella intonsa [J]. Journal of Environmental Entomology, 2018, 40 (1): 215-223.

[34]蔡道基,杨佩芝,龚瑞忠. 化学农药环境安全性评价实验准则[S]. 北京:国家环境保护局,1989.

CAI D J, YANG P Z, GONG R Z. Test guidelines on environmental safety assessment for chemical pesticides [S]. Beijing: State Bureau of Environment Protection, 1989.

[35]曾广,郅军锐,张昌容,等. 七种杀虫剂对烟蚜和南方小花蝽的毒力测定[J]. 中国烟草科学,2018,39(3):59-65.

ZENG G, ZHI J Y, ZHANG C R, et al. Toxicity determination of 7 pesticides to Myzus Persicae (Sulzer) and Orius Similis Zheng[J]. Chinese Tobacco Science, 2018, 39(3): 59-65.

[36]GEISLER C S, CUNHA N S, MARTINS L N, et al. Toxicity of bacterial isolates on adults of Zaprionus indianus (Diptera: Drosophilidae) and parasitoids Trichopria anastrephae (Hymenoptera: Diapriidae) and Pachycrepoideus vindemmiae (Hymenoptera: Pteromalidae) [J]. Journal of Economic Entomology, 2019, 112(6): 2817-2823.

[37]BELOTI V H, ALVES G R, MORAL R A, et al. Acute toxicity of fresh and aged residues of pesticides to the parasitoid Tamarixia radiata and to the HLB-Bacteria vector Diaphorina citri[J]. Neotropical Entomology, 2018, 47(3): 403-411.

[38]DANGI N, LIM U T. Relative toxicity of spirotetramat to Riptortus pedestris (Hemiptera: Alydidae) and its egg parasitoids[J]. Journal of Economic Entomology, 2017, 110(5): 2016-2021.

[39]李钊,张杰,武玉国,等. 23种农药对松毛虫赤眼蜂的急性毒性及安全性评价[J]. 环境昆虫学报,2018,40(1):224-230.

LI Z, ZHANG J, WU Y G, et al. Toxicity and safety evaluation of 23 pesticides on Trichogramma dendrolimi[J]. Journal of Environmental Entomology, 2018, 40(1): 224-230.

[40]盧晶晶,贾变桃,安颢敏,等. 4种鱼尼丁受体杀虫剂对小菜蛾及半闭弯尾姬蜂的选择毒力[J]. 山西农业大学学报(自然科学版),2019,39(4):58-62.

LU J J, JIA B T, AN H M, et al. Selective toxicities of four ryanodine receptor insecticides to Plutella xylostella and Diadegma semiclausum [J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2019, 39(4): 58-62.

[41]程沈航,薛明明,隋婧怡,等. 7 种农药对管氏肿腿蜂的毒性及初级风险评价[J]. 生态毒理学报,2017,12(4):270-278.

CHENG S H, XUE M M, SUI J Y, et al. Toxicity and risk assessment of seven pesticides to parasitic wasp (Scleroderma guani) [J]. Asian Journal of Ecotoxicology, 2017, 12(4): 270-278.

[42]SUGIYAMA K, KATAYAMA H, SAITO T. Effect of insecticides on the mortalities of three whitefly parasitoid species, Eretmocerus mundus, Eretmocerus eremicus and Encarsia formosa (Hymenoptera: Aphelinidae) [J]. Applied Entomology and Zoology, 2011, 46(3): 311-317.

[43]DROBNJAKOVI? T, MAR?I? D, PRIJOVI? M, et al. Sublethal effects of NeemAzal- T/S botanical insecticide on Dutch and Serbian populations of Encarsia formosa (Hymenoptera: Aphelinidae) [J]. Biocontrol Science and Technology, 2017, 28(1): 1-19.

[44]KO K, LIU Y D, HOU M L, et al. Toxicity of insecticides targeting rice planthoppers to adult and immature stages of Trichogramma chilonis (Hymenoptera: Trichogrammatidae) [J]. Journal of Economic Entomology, 2015, 108(1): 69-76.

猜你喜欢

杀虫剂毒性风险评估
跟踪导练(一)3
小心,蘑菇有毒
毒性中药宜久煎
五色梅的古今论述
我国养老保险基金投资运营的风险评估
现代风险导向审计局限性及其对策研究
正确杀虫 避免污染
杀虫剂也是有毒的
杀虫剂,别乱喷
中小企业财务管理问题研究