APP下载

果实膨大期干旱对冰糖橙果实品质的影响

2020-01-21周铁马小川唐超兰吕壁纹陈沙龙立长肖海卫刘永忠谢深喜卢晓鹏

南方农业学报 2020年10期
关键词:干旱果实品质

周铁 马小川 唐超兰 吕壁纹 陈沙 龙立长 肖海卫 刘永忠 谢深喜 卢晓鹏

摘要:【目的】探究果實膨大期干旱对冰糖橙果实品质的影响,为改善和提高冰糖橙果实品质提供理论依据。【方法】以枳砧冰糖橙为研究对象,于2018年调查湖南省冰糖橙主产区郴州市永兴县及怀化市的麻阳县和洪江市的降水量情况,选取3个取样地灌溉和无灌溉果园开展对比试验;永兴无灌溉果园记为CK正常,永兴有滴灌果园记为灌溉果园(正常+滴灌),麻阳和洪江无灌溉果园记为CK干旱,麻阳和洪江有灌溉果园记为抗旱果园(干旱+滴灌),分析果园不同气候条件及不同水分条件下果实从膨大期至成熟期的纵横径、单果重、可溶性固形物(TSS)、总酸、糖组分和酸组分的差异。【结果】冰糖橙产区降水的时空分布明显不均,2018年冰糖橙果实膨大期7—9月郴州产区雨水较充沛,降水量约364.0 mm;而怀化产区干旱少雨,果实膨大期降水量约217.7 mm,仅占全年降水量的17.2%,直接影响冰糖橙果实的膨大。郴州永兴产区有、无灌溉果园果实都充分膨大,果实多为62~68 mm饱满的中型果,外在品质指标在各时期均无显著差异(P>0.05);怀化产区干旱无灌溉条件下(CK干旱)果实显著减小(P<0.05,下同),大小较抗旱果园下降约20%,果实直径多为55 mm以下,占果实总量的66%~80%。郴州产区果实TSS含量在14.0 oBrix左右,酸含量分别为0.63%和0.68%,固酸比分别为24.0和21.2,果实内在品质无明显差异;怀化产区CK干旱果实TSS含量略微上升、柠檬酸含量显著升高,葡萄糖和果糖快速积累,果实成熟期TSS较抗旱果园上升8.5%~10.2%,柠檬酸升高34.1%~40.9%,固酸比低于抗旱果园26.4%~34.7%,果实品质显著下降。【结论】果实膨大期持续干旱后会对果实品质产生不可逆影响,主要表现为果实变小、产量下降和酸度升高。果实膨大期水分匮乏是制约冰糖橙果实良好品质形成的重要因素,该时期灌溉对提高果实品质和增产增收至关重要。

关键词: 果实膨大期;干旱;果实品质;冰糖橙

中图分类号:S666.4                        文献标志码: A 文章编号:2095-1191(2020)10-2507-08

Effects of drought stress at fruit enlargement stage on fruit quality of Bingtang orange

ZHOU Tie1,2, MA Xiao-chuan1,2, TANG Chao-lan1,2, LYU Bi-wen1,2, CHEN Sha1,2,

LONG Li-chang3, XIAO Hai-wei3, LIU Yong-zhong4, XIE Shen-xi1,2, LU Xiao-peng1,2*

(1College of Horticulture and Landscape, Hunan Agriculture University, Changsha 410128, China; 2National Center of Citrus Improvement Changsha, Changsha  410128, China; 3Hongjiang Agricultural and Rural Bureau, Hongjiang, Hunan 418200, China; 4College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan  43000, China)

Abstract:【Objective】In order to provide reference for improving Bingtang orange(Citrus sinensis Osbeck)  quality, effects of drought at fruit enlargement stage on fruit quality of Bingtang orange was studied. 【Method】Bingtang orange was research object. Precipitation in Hunan Bingtang orange main producing areas Yongxing of Chenzhou, Mayang and Hongjiang of Huaihua, and three irrigated orchards and non-irrigated orchards were sampled to conduct comparison expe-riment. Yongxing irrigated orchard was CKnormal, and drip irrigation orchard in Yongxing was irrigated orchard(normal+drip irrigation), and non-irrigated orchards in Mayang and Hongjiang were CKdrought, irrigated orchards in Mayang and Hongjiang were drought resistance orchard(drought+drip irrigation). Analyze the differences in the horizontal and vertical diameters, single fruit weight, soluble solids(TSS), total acid, sugar component and acid component of the fruit from the enlargement stage to the ripe stage under different climates and water management conditions. 【Result】The regional distribution of precipitation was uneven in Bingtang orange production areas. In 2018, the Bingtang orange fruit enlargement stage was from July to September in Chenzhou production area with abundant rain, with precipitation of about 364.0 mm. However, the Huaihua production area was dry and less rainy. The precipitation during the fruit expansion pe-riod was about 217.7 mm, accounting for only 17.2% of the annual precipitation, which directly affected the enlargement of the Bingtang orange fruit. In Yongxing production area irrigated orchards and non-irrigated orchard, the fruits were fully enlarged, and the fruits were mostly 62-68 mm plump and medium-sized fruits. There was no significant difference in external quality indicators at each stage(P>0.05). In Huaihua production area under drought and non-irrigation conditions(CKdrought), the fruit was significantly reduced(P<0.05,the same below), the size was reduced by about 20% compared with the drought resistance orchard, and the fruit diameter was mostly below 55 mm, accounting for 66%-80% of the total fruit. The TSS content of the fruits in Chenzhou production area was about 14.0 °Brix, the acid contents were 0.63% and 0.68%, and the solid-to-acid ratio were 24.0 and 21.2, respectively. There was no great difference in the internal fruit quality. The TSS content of CKdrought fruits in Huaihua production area increased slightly, and the citric acid content increased significantly. Glucose and fructose accumulated rapidly. TSS during fruit ripening period increased by about 8.5%-10.2% compared with drought resistance orchard, and citric acid increased by about 34.1%-40.9%, the solid-to-acid ratio was about 26.4%-34.7% lower than the drought resistance orchard, and the fruit quality was significantly reduced. 【Conclusion】Continuous drought at fruit enlargement stage damages fruit quality irreversibly including fruit-size and yield decreases and acidity increase. Water deficiency at fruit enlargement stage is an important factor restricting Bingtang orange fruit quality. Reasonable irrigation at Bingtang orange enlargement stage helps improvement in fruit quality and yield.

Key words: fruit enlargement stage; drought; fruit quality; Bingtang orange

Foundation item: National Key Research and Development Program(2019YFD1000100); National Natural Science Foundation of China(31872044); National Citrus Industry Technology System Project(CARS-26); Hunan Natural Science Foundation (2018JJ3232)

0 引言

【研究意义】冰糖橙(Citrus sinensis Osbeck)又名冰糖柑,原产湖南洪江市原黔阳县,因其果实甜脆多汁、化渣、无核或极少核、可溶性固形物含量高、风味好等成为我国特色地方甜橙品种之一(吴倩等,2017)。2018年我国冰糖橙栽培总面积约5.37万ha,总产量约99.5万t,其中湖南省的栽培面积和总产量分别约占全国的82.7%和90.8%。怀化市的洪江市和麻阳县、郴州市的永兴县是湖南省内冰糖橙主产区,2018年3个主产市(县)的总产量约占湖南省总产量的81.1%,约占全国总产量的74.0%。水分是影响柑橘果实品质的重要因素(熊江等,2014),我国南方地区降水不均(周双燕,2011),每年7—9月的季节性干旱规律明显,季节性干旱期恰逢冰糖橙果实膨大期,此时高温干旱对果实产量和品质影响极大。因此,探究冰糖橙果实膨大期干旱后果实品质的变化特点,明确果实膨大期干旱胁迫对冰糖橙品质的主要影响,对生产中通过水分管理调控冰糖橙果实品质具有重要意义。【前人研究进展】水分与果实品质的形成密切相关,干旱胁迫影响柑橘果实外在品质的形成,表现为果实膨大受阻、产量降低。Hutton等(2007)研究表明在伏令夏橙果实膨大期延长灌溉间隔,土壤水分亏缺加剧,果实体积显著减小;周静(2008)的研究結果进一步显示,土壤水分匮乏直接导致柑橘减产30%~50%;在克里曼丁果实膨大期(7—9月)进行干旱胁迫,显著抑制果实的膨大而降低产量,果实体积与干旱程度、发育时间呈负相关(Ballester et al.,2011);陈瑛等(2017)研究认为,当土壤相对含水量低于45%时脐橙单果重较对照显著降低26%~29%。干旱胁迫引起柑橘果实内在品质改变,表现为轻度干旱胁迫可提高果实可溶性糖含量、改善果实品质,但重度干旱胁迫下植物正常的水分代谢、光合作用受到抑制从而影响同化物质的积累,果实中可滴定酸含量增加,内在品质受到显著影响(García-Tejero et al.,2010);潘斌等(2019)研究表明,温州蜜柑在果实膨大期干旱,果实中柠檬酸降解受到严重阻碍,使果实中柠檬酸含量显著升高,是导致果实品质下降的重要因素。【本研究切入点】冰糖橙产区较严重的季节性干旱频繁发生,果实膨大期的季节性干旱影响果实产量和品质的问题日益突出。前人研究多集中于宽皮柑橘的盆栽干旱试验,而针对冰糖橙的研究尚少。【拟解决的关键问题】基于南方柑橘产区7—9月季节性干旱规律性发生的特点,对比分析2018年湖南怀化冰糖橙产区连续3个月干旱而郴州产区未遭遇干旱条件下的果实品质差异,探寻冰糖橙果实膨大期干旱后果实品质下降的具体原因,以期为改善和提高冰糖橙果实品质提供理论依据。

1 材料与方法

1. 1 试验材料

以枳砧冰糖橙为研究对象,于2018年在湖南省主产冰糖橙的郴州市永兴县(东经113°06′、北纬26°07′)、怀化市麻阳县(东经109°47′、北纬27°45′)和洪江市(东经109°37′、北纬27°07′)3个地区同时取样(麻阳和洪江两个产区地理位置相近,故有关数值综合在一起为一个范围)。

1. 2 试验设计

2018年7—9月郴州市降雨充沛,怀化市持续高温干旱,两个地区分别选取树龄相近、栽培环境相似的灌溉和无灌溉果园对比开展试验。永兴无灌溉果园记为CK正常,永兴有灌溉果园记为灌溉果园(正常+滴灌),麻阳和洪江无灌溉果园记为CK干旱,麻阳和洪江有灌溉果园记为抗旱果园(干旱+滴灌)。取样自果实膨大期2018年9月17日开始,每隔20 d取样一次至果实成熟采收。每个果园选取3株长势一致的植株,在每株树冠四周分别选取5个大小均一、无病虫害的果实。果实采收后拍照并放置于4和-20 ℃冰箱保存,分别用于测定果实主要外观品质和内在品质。

1. 3 测定指标及方法

1. 3. 1 气象数据 郴州市气象数据由ZL6微型气象仪监测,监测点位于郴州市宜章县;怀化市气象数据由怀化市气象局提供,监测点位于怀化市洪江市。

1. 3. 2 果实外在品质测定 用百分之一精度的天平称量每个果实的质量(g),计算平均单果质量;用精度0.02 mm游标卡尺分别测量和记录果实纵、横径(mm),5个果实为一组,3次重复。果实直径统计时,于果实成熟期在CK正常果园、抗旱果园(干旱+滴灌)随机选取6株大小基本一致的果树,每株分别在树冠四周随机选取果实,共测量50个果实的横径。根据湖南省冰糖橙综合分级标准,依据果实横径将冰糖橙果实分为4种等级(李娜等,2016):小型果为55~61 mm ,中型果为62~68 mm,大型果为69~75 mm ,横径<55 mm和>75 mm为加工果(分级时所测横径值均取整数)。依次计算各等级所占比例。

1. 3. 3 果实内在品质测定 用ATAGO(爱拓,日本)PAL-BX/ACID F5糖酸一体机测定果实的可溶性固形物(TSS,oBrix)和酸含量(%),每次试验随机选取3个果实混合测定,进行3次生物学重复。

用岛津LC-20AT型高效液相色谱仪测定果实中的糖组分(蔗糖、果糖和葡萄糖)和酸组分的含量(柠檬酸和苹果酸)。每个处理选取5个新鲜果实,各切取一半,去除果皮和种子后用搅拌机捣碎,称取3 g置于50 mL离心管中,加入10 mL超纯水于70 ℃水浴30 min,以10000 r/min离心8 min,然后取上清于25 mL容量瓶中,水浴30 min,残渣重复提取1次,离心后合并入25 mL容量瓶并用超纯水定容。每次试验进行3次生物学重复。

糖组分测定:采用RID示差检测系统,氨基酸柱(4.6 mm×250 mm,5 μm)、柱温35 ℃、流动相(V乙腈∶V超纯水=0.8∶0.2)、总流速1 mL/min,测定时间20 min,进样量20 μL。酸组分测定:采用紫外检测系统,检测波长210 nm、C18柱(4.6 mm×250 mm,5 μm)、柱温17 ℃、流动相(V甲醇∶V磷酸二氢钾=0.024∶0.576,磷酸缓冲液的pH调至2.5左右)、总流速0.6 mL/min,测定时间20 min,进样量8 μL。

1. 4 统计分析

利用Excel 2013、Sigma Plot 10.0对试验数据进行统计分析;利用SPSS 23.0独立样本T检验进行显著性方差分析。

2 结果与分析

2. 1 果实膨大期干旱严重年份湖南省不同冰糖橙产区降水量比较

由图1可知,湖南省降水时空分布不均现象明显。2018年怀化地区全年总降水量为1265.7 mm,其中,冰糖橙幼果期的5—6月降水总量为439.9 mm,占全年降水量的34.8%,果实膨大期的7—9月持续3个月干旱,降水总量为217.7 mm,仅占全年降水量的17.2%,较5—6月降水少222.2 mm。冰糖橙果实膨大期水分供应的多寡直接与果实大小形成相关,7—9月郴州地区降水总量为364.0 mm,较怀化地区多146.3 mm。冰糖橙果实成熟期10—11月郴州地区降水总量为226.2 mm,较怀化地区降水量少96.0 mm。

2. 2 果实膨大期干旱对冰糖橙果实外在品质的影响

由表1和图2可看出,在果实膨大期降水丰沛的永兴产区,CK正常果园和灌溉果园(正常+滴灌)果实都充分膨大,两类果园外在品质指标在各时期均无显著差异(P>0.05,下同)。在果实膨大期降水少的麻阳和洪江产区,抗旱果园(干旱+滴灌)的冰糖橙果实膨大充分,在果实成熟期其平均单果重分别为147.5和128.2 g,显著高于CK干旱果园的86.1和72.7 g(P<0.05,下同);CK干旱的果實发育缓慢,但果形基本不变,果形指数维持在1.05~1.08,与抗旱果园无明显差别。

由表2可知,在永兴产区,CK正常果园果实中横径为55~75 mm的小、中和大型果冰糖橙果实占当年该果园总产量的95%,主要集中在55~68 mm的中、小型果,55 mm以下冰糖橙果实仅占5%,无75 mm以上果实;灌溉果园55~75 mm的小、中和大型果占当年该果园总产量的88%,以62~75 mm的中、大型果实居多,75 mm以上果实占11%,55 mm以下加工果占1%。在麻阳产区,CK干旱果园55~75 mm的小、中和大型果仅34%,无68 mm以上大果,55 mm以下果实达66%;而抗旱果园55~75 mm的小、中和大型果占89%,55 mm以下加工果仅有8%。在洪江产区,CK干旱果园55~75 mm的小、中和大型果仅占20%,同样无68 mm以上果实,而55 mm以下的加工果比例达80%;抗旱果园情况极大改善,55~75 mm的小、中和大型果占95%,55 mm以下加工果仅占5%。可见,果实膨大期干旱直接影响冰糖橙果实大小的形成。

2. 3 果实膨大期干旱对冰糖橙果实中TSS和酸含量的影响

由图3可知,随着果实成熟冰糖橙TSS含量逐渐升高,酸含量先升高后降低。在永兴产区,CK正常果园与灌溉果园的TSS和酸含量在多数时期无显著差异,果实成熟期CK正常果园和灌溉果园的TSS分别为14.2和14.3 oBrix,酸含量分别为0.63%和0.68%,固酸比分别为24.0和21.2,果实内在品质无明显差异;在麻阳和洪江产区,果实成熟期CK干旱果园的TSS和酸含量显著高于抗旱果园,TSS含量较抗旱果园上升8.5%~10.2%,酸含量升高38.1%~46.2%,但抗旱果园的固酸比显著高于CK干旱果园26.3%~34.7%。由此,干旱胁迫导致TSS和酸含量上升。

2. 4 果实膨大期干旱对冰糖橙果实中糖酸组分的影响

由表3可知,永兴产区的CK正常果园和灌溉果园水分充足,果实中各糖组分仅在10月7日存在显著性差异,且果实中以蔗糖含量较高;麻阳产区在10月27日之前果实中蔗糖含量较高,之后蔗糖含量上升缓慢,而果糖和葡萄糖含量上升较多,其含量在成熟期超过蔗糖,且该趋势在CK干旱果园比抗旱果园表现更明显,麻阳产区不同水分管理的果园,CK干旱果园果实成熟期葡萄糖含量显著高于灌溉果园,但两类果园的蔗糖含量在各时期无显著差异;洪江产区CK干旱果园在10月7日之前其果实中蔗糖含量较高,之后果糖和葡萄糖快速积累,蔗糖积累缓慢,而灌溉条件下,10月27日之前果实中蔗糖含量较高,之后果糖和葡萄糖上升较多。

由表4可知,柠檬酸是柑橘果实中主要的酸,干旱后果实中柠檬酸含量显著上升。正常灌溉下的果园果实柠檬酸含量均表现出先升高后降低的变化趋势,水分充沛的永兴产区CK正常果园与灌溉果园的柠檬酸含量无显著差异,而麻阳和洪江产区多数时期CK干旱果园的柠檬酸含量显著高于抗旱果园,果实成熟期柠檬酸升高34.1%~40.9%。苹果酸含量上,CK干旱果园也在多数时期高于抗旱果园。

3 讨论

我国南方柑橘产区夏秋干旱现象频繁,严重干旱影响果实产量和品质的情况时常发生。谷洪波和刘芷妤(2015)研究了湖南省近22年气象的普遍规律,得出湖南省降雨主要集中在4—6月,而农作物需水高峰的7—9月降水少蒸发量大。湖南省冰糖橙产区也表现明显的上述雨水分配规律,2018年湘西柑橘产区7—9月连续3个月严重干旱是近几年干旱较严重的一次,而湘南地区雨水相对较充足,导致不同产区果实产量和品质差异巨大。7—9月是柑橘果实的迅速膨大期,单果重与7—9月的总降水量呈正相关(孙系巍等,2015)。2018年7—9月永兴产区降水充足而麻阳和洪江产区干旱严重,是导致永兴有无灌溉条件下果实大小无差异,且总体果实大小大于麻阳和洪江产区的关键原因。水分胁迫对外在品质的影响表现为干旱条件下果实与叶片争夺水分,由于叶片汁液浓度高于果汁浓度,果实因得不到足够的水分而使果实膨大受阻(谢远玉等,2009)。麻阳和洪江受7—9月自然降水匮乏的影响,无灌溉条件下果实明显偏小,当年产量骤减造成损失较大,表明灌溉特别是果实膨大期灌溉尤为重要。

TSS、酸和固酸比是衡量果实内在品质优劣的重要指标(肖南等,2019),冰糖橙是低酸柑橘类型,其品质形成对环境变化敏感。与其他柑橘类果实类似,冰糖橙果实发育过程中TSS呈逐渐升高的趋势,酸呈现出先升高后降低的趋势(曾柏全,2003)。在枇杷(杨再强等,2007)、梨(南鑫,2014)和苹果(王元基,2017)等果树上的研究结果均表明,干旱胁迫对果实内在品质的影响表现为TSS和酸含量的上升。Pérez-Pérez等(2004)在葡萄柚上的研究表明,果实膨大期干旱引起果实内在品质改变,其中可滴定酸含量的增加比例远超过TSS;Navarro等(2009)在果实膨大期(6—10月)对克里曼丁橘进行亏水灌溉,发现干旱胁迫促进了果实内葡萄糖和果糖含量的增加,但蔗糖显著降低使得总糖含量减少。本研究中,冰糖橙在果实膨大期遭遇干旱后果实中TSS含量略微升高约8.5%~10.2%,其中果糖和葡萄糖快速积累而含量显著上升,蔗糖积累缓慢,但酸含量显著升高约38.1%~46.2%,表明干旱胁迫后冰糖橙果实酸含量显著升高是内在品质变化的主要特点。

7—9月正值冰糖橙果实膨大期,该阶段的季节性干旱对果实品质的形成有重要影响。果实内在品质受多种气象因子影响(吴方方等,2018),其中6—11月总降水量是影响柑橘果实中可滴定酸含量的主要气象因子(文涛等,2001;孙系巍等,2015)。李娜等(2016)连续8年对冰糖橙果实的糖酸含量分析表明,麻阳产区冰糖橙果实的TSS为10.3~13.4 °Brix,酸以0.4%作为冰糖橙酸度分级的酸与不酸分界点。本研究中麻阳冰糖橙干旱后TSS达14.1 °Brix而酸达0.58%,该酸度已远超大多数消费者的可接受程度;怀化冰糖橙产区7—9月的果实膨大期持续干旱导致冰糖橙果实酸度剧烈升高,即使在10—11月降水量增加,干旱果园(CK干旱)果实中酸的下降速率仍显著低于灌溉果园导致成熟果实酸度升高。果实在不同生育阶段承受干旱胁迫的反应特点表现不一,果实细胞分裂对干旱胁迫具有很强的忍受能力,果实成熟期适当控水能显著提升果实品质(崔宁博等,2009),但果实细胞膨大期严重干旱极易对果实产量和品质产生不可逆的影响(肖玉明等,2014;Navarro et al.,2015)。因此,果实膨大期超过一定时间的持续干旱胁迫对冰糖橙果实品质,尤其是果实酸度加重的影响不可逆,冰糖橙产区水分管理应主要集中在果实膨大期的管理。

4 结论

冰糖橙果实膨大期易发生季节性干旱,持续干旱后会对果实品质产生不可逆影响,主要表现为果实变小、产量下降和酸度升高。果实膨大期水分匮乏是制约冰糖橙果实良好品质形成的重要因素,该时期灌溉对提高果实品质及增产增收至关重要。

参考文献:

陈瑛,邹颖,杨文,李就好. 2017. 不同调亏处理对脐橙果实生长和品质的影响[J]. 节水灌溉,(9): 38-42. [Chen Y,Zou Y,Yang W,Li J H. 2017. Effect of regulated deficit irrigation on navel oranges growth and quality[J]. Water Saving Irrigation,(9): 38-42.]

崔宁博,杜太生,李忠亭,王密侠,郭军. 2009. 不同生育期调亏灌溉对温室梨枣品质的影响[J]. 农业工程学报,25(7): 32-38. [Cui N B,Du T S,Li Z T,Wang M X,Guo J. 2009. Effects of regulated deficit irrigation at different growth stages on greenhouse pear-jujube quality[J]. Transac-tions of the Chinese Society of Agricultural Engineering,25(7): 32-38.]

谷洪波,刘芷妤. 2015. 湖南农业干旱灾害的时空分布、社会经济影响及形成机理探究[J]. 山西农业大学学报(社会科学版),14(11): 1081-1085. [Gu H B,Liu Z Y. 2015. On the distribution,socio-economic impact and formation mechanism of agricultural drought disaster in Hunan[J]. Journal of Shanxi Agricultural University(Social Science Edition),14(11): 1081-1085.]

李娜,楊星星,戴素明,李荣华,姜航,罗跃雄,亚历山德拉·金蒂来,邓子牛. 2016. 冰糖橙果实品质无损伤在线检测分级技术的建立与应用[J]. 中国农业科学,49(1): 132-141. [Li N,Yang X X,Dai S M,Li R H,Jiang H,Luo Y X,Alessandra G,Deng Z N. 2016. Establishment of non-destructive system for fruit quality grading of ‘Bingtang sweet orange and its application on packing line[J]. Scientia Agricultura Sinica,49(1): 132-141.]

南鑫. 2014. 库尔勒香梨果实不同发育期光合作用特性及不同水分条件下果实品质研究[D]. 乌鲁木齐: 新疆农业大学. [Nan X. 2014. The research of photosynthesis cha-racteristics in different developmental stages and fruit qua-lity under different moisture of Korla fragrant pear[D]. Urumqi: Xinjiang Agricultural University.]

潘斌,李菲菲,文斌,熊江,马小川,唐超兰,刘恋,李泽航,卢晓鹏,谢深喜. 2019. 不同果实发育期干旱胁迫对温州蜜柑果实品质形成的影响[J]. 果树学报,36(6): 729-737. [Pan B,Li F F,Wen B,Xiong J,Ma X C,Tang C L,Liu L,Li Z H,Lu X P,Xie S X. 2019. Effects of drought stress at different development stages on fruit quality formation in Satsuma Mandarin[J]. Journal of Fruit Science,36(6): 729-737.]

孫系巍,汤丹,李峰,龙桂友,邓子牛,李娜. 2015. 主要气象因子对冰糖橙果实品质的影响[J]. 湖南农业科学,(5): 77-80. [Sun X W,Tang D,Li F,Long G Y,Deng Z N,Li N. 2015. Effects of main meteorological factors on fruit quality of Bingtang sweet orange[J]. Hunan Agricultural Sciences,(5): 77-80.]

王元基. 2017. 干旱对苹果品质的影响及其与糖代谢的关系[D]. 杨凌: 西北农林科技大学. [Wang Y J. 2017. Effects of drought on apple quality and its relationship with sugar metabolism[D]. Yangling: Northwest A & F University.]

文涛,熊庆娥,曾伟光,刘远鹏. 2001. 气候因子与脐橙果实糖、酸含量的灰色关联度分析[J]. 四川农业大学学报,19(3): 225-227. [Wen T,Xiong Q E,Zeng W G,Liu Y P. 2001. The gray system analysis of climatic factors to the organic acid and sugar content of navel orange(Ci-trus sinesis Osbeck) Fruit[J]. Journal of Sichuan Agricultural University,19(3): 225-227.]

吴方方,管建丰,蒋小林,徐强,陶瑶,周景和,毛祥青. 2018. 气象因子对广丰马家柚果实品质的影响[J]. 中国南方果树,47(4): 48-50. [Wu F F,Guan J F,Jiang X L,Xu Q,Tao Y,Zhou J H,Mao X Q. 2018. Effect of meteorological factors on fruit quality of Guangfeng Majia pomelo[J]. South China Fruits,47(4): 48-50.]

吴倩,付威宾,胡成,谢深喜,熊江,张子木,马小川,卢晓鹏. 2017. 麻阳冰糖橙果园营养状况与果实品质状况分析[J]. 中国农学通报,33(6): 97-103. [Wu Q,Fu W B,Hu C,Xie S X,Xiong J,Zhang Z M,Ma X C,Lu X P. 2017. The relationship between orchard nutrient status and quality of Bingtang sweet orange in Mayang County[J]. Chinese Agricultural Science Bulletin,33(6): 97-103.]

肖南,银秋玲,刘艳珍,蔡桂华. 2019. 贺州市不同脐橙果肉品质的评价与比较[J]. 江西农业学报,31(5):91-95. [Xiao N,Yin Q L,Liu Y Z,Cai G H. 2019. Evaluation and comparison of sarcocarp quality of different navel oran-ges in Hezhou City[J]. Acta Agriculturae Jiangxi,31(5): 91-95.]

肖玉明,卢晓鹏,黄成能,熊江,李静,谢深喜. 2014. 水分胁迫对温州蜜柑果实品质及柠檬酸代谢相关基因表达的影响[J]. 湖南农业大学学报(自然科学版),40(3): 281-287. [Xiao Y M,Lu X P,Huang C N,Xiong J,Li J,Xie S X. 2014. Effects of water stress on the fruit quality of citrate and the expression of genes related to metabolism of citric acid[J]. Journal of Hunan Agricultural University(Natural Sciences),40(3): 281-287.]

谢远玉,赖晓桦,陈颖,郭萌生,赖华荣,严翔. 2009. 柑橘果实生长与生态气象条件的关系[J]. 华中农业大学学报,28(2): 222-225. [Xie Y Y,Lai X H ,Chen Y,Guo M S,Lai H R,Yan X. 2009. Relationship between  the fruits growth of citrus and the eco-meteorologicai condition[J]. Journal of Huazhong Agricultural University,28(2): 222-225.]

熊江,卢晓鹏,李静,肖玉明,曹雄军,谢深喜. 2014. 水分胁迫对果实品质的影响研究进展[J]. 湖南农业科学,(18): 56-60. [Xiong J,Lu X P,Li J,Xiao Y M,Cao X J,Xie S X. 2014. Research progress in effects of water stress on fruit quality[J]. Hunan Agricultural Sciences,(18): 56-60.]

杨再强,谢以萍,张旭东,王立新. 2007. 水分胁迫对枇杷果实发育阶段的光合特性和果实品质的影响[J]. 灌溉排水学报,26(6): 89-92. [Yang Z Q,Xie Y P,Zhang D X,Wang L X. 2007. Effects of water stress on photosynthetic characteristics in fruit development stage and fruit qualities of loquat[J]. Journal of Irrigation and Drainage,26(6): 89-92.]

曾柏全. 2003. 冰糖脐橙的主要性状及遗传分析研究[D]. 长沙: 湖南农业大学. [Zeng B Q. 2003. Study on the agronmic characters and genetic analysis of Bingtang navel orange[D]. Changsha: Hunan Agricultural University.]

周靜. 2008. 红壤水分条件对柑橘生理生态要素影响及其作用机理研究[D]. 南京: 南京农业大学. [Zhou J. 2008. The effects of water content in red soil on ecophysiology of citrus and its mechanisms[D]. Nanjing: Nanjing Agricultural University.]

周双燕. 2011. 重庆北碚柑橘旱情预警模型构建及应用[D]. 雅安: 四川农业大学. [Zhou S Y. 2011. Establishment and application of citrus drought forecasting model in Chongqing Beibei[D]. Yaan:Sichuan Agricultural University.]

Ballester C,Castel J,Intrigliolo D S,Castel J R. 2011. Response of Clementina de Nules citrus trees to summer deficit irrigation. Yield components and fruit composition[J]. Agricultural Water Management,98(6): 1027-1032. doi: 10.1016/j.agwat.2011.01.011.

García-Tejero I,Romero-Vicente R,Jiménez-Bocanegra J A,Martínez-García G,Durán-Zuazo V H,Muriel-Fernández J L. 2010. Response of citrus trees to deficit irrigation during different phenological periods in relation to yield,fruit quality,and water productivity[J]. Agricultural Water Management,97(5): 689-699. doi: 10.1016/j.agwat. 2009.12.012.

Hutton R J,Landsbergg J,Sutton B G. 2007. Timing irrigation to suit citrus phenology: A means of reducing water use without compromising fruit yield and quality[J]. Australian Journal of Experimental Agriculture,47(1): 71-80. doi: 10.1071/EA05233.

Navarro J M,Botía P,Pérez-Pérez J G. 2015. Influence of deficit irrigation timing on the fruit quality of grapefruit(Citrus paradisi Mac.)[J]. Food Chemistry,175: 329-336. doi: 10.1016/j.foodchem.2014.11.152.

Navarro J M,Pérez-Pérez J G,Romero P,Botía P. 2009. Ana-lysis of the changes in quality in mandarin fruit,produced by deficit irrigation treatments[J]. Food Chemistry,119(4): 1591-1596. doi: 10.1016/j.foodchem.2009.09.048.

Pérez-Pérez J G,Robles García J M,Botía P. 2014. Effects of deficit irrigation in different fruit growth stages on ‘Star Ruby grapefruit trees in semi-arid conditions[J]. Agricultural Water Management,133: 44-54. doi: 10.1016/j.agwat.2013.11.002.

(责任编辑 邓慧灵)

猜你喜欢

干旱果实品质
基于距平的白城地区干旱时间分布特征分析
临夏地区干旱特征及干湿气候区划
避雨栽培对宿迁地区早熟桃生长发育及果实品质的影响
‘魁金’和‘金水杏’不同发育时期果实品质变化研究
夏季高温干旱时节高山蔬菜种植管理策略
基于多源卫星遥感的长江流域旱情监测研究
基于SPI指数的农作物生长期干旱时间变化研究