APP下载

SCD基因与猪脂肪酸代谢(综述)

2019-12-23蔡刚志华再东毕延震陈彬

江苏农业科学 2019年20期
关键词:代谢基因功能猪肉

蔡刚志 华再东 毕延震 陈彬

摘要:硬脂酰辅酶A去饱和酶(stearoyl-CoA desaturase,SCD)是催化饱和脂肪酸(SFAs)形成单不饱和脂肪酸(MUFAs)的限速酶,在猪等大多数动物中已鉴定出2种SCD亚型(SCD1和SCD5)。这2个亚型的组织表达和作用方式存在差异,其中SCD1主要在脂肪组织中表达,其活性受单核苷酸多态性(SNP)、miRNA、DNA甲基化等因素调控;SCD5主要在脑组织中表达,与神经细胞的增殖和分化密切相关,但SCD5在脑外组织的功能尚未阐明,具有广泛的研究前景。因此,深入研究SCD的基因功能和调控机制对改善猪肉的脂肪酸组成、提高猪肉品质具有重要意义。

关键词:SCD基因;限速酶;猪肉;脂肪酸;代谢;基因功能;调控机制

中图分类号: Q54;Q786 文献标志码: A

文章编号:1002-1302(2019)20-0024-05

脂肪组织是动物代谢中重要的產能和储能组织,与糖和蛋白质相比,脂肪具有产能高、占体积小的优势。甘油三酯是含量最为丰富的一类脂肪,多为含16个或18个碳原子的饱和脂肪酸(SFAs)及不饱和脂肪酸(UFAs),SFAs与UFAs尤其是硬脂酸与油酸的不同比例能调节细胞膜流动性和信号转导,进而影响细胞的生长和分化。 膳食中UFAs与SFAs的比例应大于0.434[1],摄入过量SFAs易导致脂质代谢紊乱,增加患慢性疾病的风险[2],相反UFAs对人体健康有益。 硬脂酰辅酶A去饱和酶(SCD)是催化SFAs形成MUFAs的限速酶(图1),特别是棕榈酰辅酶A(16 ∶0)和硬脂酰辅酶A(18 ∶0)形成棕榈油酸酯(16 ∶1)和油酸(18 ∶1),是一个脂肪酸代谢控制的重要靶点。现已鉴别出5种SCD亚型,其中SCD1与SCD5在人[3]、猪[4]、牛、鸡等大多数动物中均有发现,这2种亚型显示出相似的δ9去饱和酶活性[5];SCD2、SCD3、SCD4在小鼠中被鉴定,其中SCD2也在大鼠、裂殖酵母、秀丽隐杆线虫中发现,大多数非啮齿动物基因组不包含SCD2基因,而是在脑组织中有SCD5表达。 目前在猪上只发现SCD1(基因登录号为396670)与SCD5(基因登录号为100135661)2种SCD亚型,这2个亚型共享66.3%的核酸同一性(cds区)和61.7%的氨基酸同一性。由于MUFAs在细胞代谢过程中被大量利用,SCD作为合成MUFAs的限速酶[6]影响细胞分化[7]、癌症[8-10]和肥胖[11-12]等生理变量,研究SCD对改善家畜脂肪酸组成以及治疗人类能量代谢和肥胖疾病具有重要意义[13]。

位于内质网(ER)上的硬脂酰辅酶A去饱和酶(SCD),催化饱和脂肪酸(SFAs)在第9、第10位碳原子之间引入双键去饱和形成单不饱和脂肪酸(MUFAs),单不饱和脂肪酸是构成膜磷脂(membrane phospholipid)、胆固醇(cholesterol)及甘油酯(triglyceride)的基本元件。

1 SCD基因

Bai 等结晶并解析了小鼠SCD1的蛋白质结构,小鼠SCD1呈现一种折叠结构,由胞浆覆盖的4个跨膜螺旋以及用于侧向基底进出产物的合理通道组成。结合硬脂酰辅酶A的酰基链被包裹在胞质结构域的通道中,通道的几何形状和结合的酰基链的构象为去饱和反应的区域选择性和立体专一性提供了结构基础[14],4个α-螺旋形成的紧密疏水核心折叠起跨越内质网膜的锚定作用[15]。小鼠SCD1(AAH07474.1)、人SCD1(NP_005054.3)、人SCD5(NP_001032671.2)、猪SCD1(AAR87713.1)和猪SCD5(NP_001107750.1)的氨基酸序列比对结果(图2)显示,这5条氨基酸序列具有很高的相似度,分开来看,小鼠、人和猪的SCD1以及人和猪的SCD5的序列相似度更高。由于猪的SCD模型还未出现,因此本文关于SCD1及SCD5的基因功能部分主要参考小鼠和人的研究。

1.1 SCD1基因

猪SCD1基因位于14号染色体上[16],主要在脂肪组织、大脑、肝脏和肌肉组织中表达,可作为肌内脂肪沉积的潜在生物标志物[17],其基因标记可用于选择猪肉的最佳脂肪酸谱[18]。在个体水平,全基因敲除SCD1的小鼠(GKO)能量代谢加快,表现为脂质氧化增强、合成减弱,胰岛素敏感性增强,能够抵抗高碳水化合物和高脂饲粮诱导的肥胖和脂肪酸变性[19]。Ntambi等利用Cre-lox技术生产具有肝脏特异性敲除SCD1的小鼠(LKO)能够抵抗高碳水化合物饲粮带来的肥胖[CM(25],但对其饲喂高脂饲粮后的体质量比GKO明显高[19]。在细胞水平,SCD1活性主要受外源性UFAs含量影响,当外源UFAs受到限制时,SCD1被诱导产生内源性UFAs。对SCD1抑制剂处理的细胞限制添加外源性UFAs,细胞生长受到抑制,补充SFAs也无法改善这一状况,表明细胞生长受到抑制的原因是缺乏UFAs而不是累积过量的SFAs[20]。

1.2 SCD5基因

SCD5也叫ACOD4、FADS4,首先由Zhang等在人角质细胞中鉴定出来[3],猪SCD5基因位于8号染色体上,包含5个外显子,编码332个氨基酸,在大脑中高度表达[4],在肾脏中也检测到较低的表达[21]。在个体研究方面,Burhans等在全基因敲除SCD1的小鼠肝脏中转入人源SCD5基因,得到SCD5+SCD1-/-小鼠(GLS5),饲喂高蔗糖、低脂肪饲粮的GLS5小鼠表现出肥胖表型;相对于GKO小鼠,GLS5小鼠恢复了肝脂肪变性并扩大了脂肪组织的质量;肝脏中产生的肝脏油酸盐增加,但是肝脏脂肪酸从头合成没有增强,表明脂质积累不是由增加的脂质合成驱动的[22]。

在细胞水平上,SCD5的研究主要在人上且集中在癌症和神经系统的研究上。Puglisi等在原发性黑色素瘤细胞系中检测到SCD5显著表达,但在肿瘤晚期阶段几乎检测不到。通过在晚期黑色素瘤中恢复表达SCD5或添加SCD5酶促产物油酸能减少黑色素瘤的分化[23]。Roongta等将正常肿瘤细胞和RNA干扰SCD5的肿瘤细胞接种到不同浓度的血清中培养,与SCD1不同,SCD5均不会被诱导[20]。在神经系统研究方面,Astarita 等在阿兹海默症患者(一种中枢神经系统变性病)的脑中检测到SCD5 mRNA上调[24]。 Sinner等将表达人源SCD5基因的质粒转染小鼠Neuro 2a细胞(神经元生长和分化的细胞模型),与空载组相比,过表达组MUFAs(n-7)水平显著提高,同时伴随SFAs的降低,细胞分裂速度加快,但诱导分化却受到抑制[7]。表明SCD5在调节神经元细胞分裂和分化的过程中起关键作用。

1.3 SCD1与SCD5的差异

在正常生理和发育条件下,SCD5发挥了与SCD1不同的作用。 Castro等指出,SCD1和SCD5基因是2轮基因组重复(2R)的一部分,SCD1和SCD5之间的调控分歧说明了2R后的功能分化。因此,在分配给SCD5异构体的脊椎动物祖先中出现了组织特异性表达(如脑和可能的胰腺),SCD5异构体已被选择性地保留在大多数谱系中。SCD5和SCD1的主要区别体现在监管层面,SCD1基因表达主要由各种激素和营养素在转录水平上进行调节,而SCD5对食物等外源输入无反应[25]。 Wu等通过对SCD基因的5′-UTR(5′-非翻译区)和3′-UTR(3′-非翻译区)处的miRNA的转录因子结合位点进行预测,结果表明,不同于SCD1,SCD5支持自身在调控水平上发生分化[26]。

2 SCD1多態性与miRNA调控

猪SCD(AY487830)基因由6个外显子和5个内含子组成,21 kb的DNA序列中发现19个单核苷酸多态性(SNP)[27]。2004年,Ren等在野猪、德国大白、德国长白、皮特兰等9个欧洲猪种和荣昌猪、藏猪等6个中国猪种的SCD1基因启动子区和编码区检测出5个SNP位点,2个位于启动子区(g.2108C> T和g.2228T> C),另外3个位点分别在内含子1、外显子2和内含子5上,SNP g.2108C> T不改变SCD表达[28]。 Estany 等在纯种杜洛克系中发现,g.2228T> C能增强脂肪酸去饱和作用且不会影响脂肪含量[29]。Renaville等的研究显示,SCD多态性(g.2228T> C)对背最长肌和腿部肌内脂肪含量[30]、脂肪酸组成和脂肪熔点[31]有很强的相关性。

SCD1是与miR4335的种子序列完全互补的、具有良好表征的靶基因,miR4335启动子中的差异甲基化区域(differentially methylated regions,DMR)可通过靶向SCD1影响脂肪酸组成[32]。miR125b的过表达降低了脂滴和甘油三酯的积累,并且抑制了SCD1蛋白表达和MUFAs组成[33]。肌肉转录组测序滇南小耳猪、藏猪、兰德瑞斯和约克夏,获得与脂质沉积有关的27个基因和16个miRNA,其中miR 92b(NC_010446.5)和miR182(NR_128422.1)预测与SCD1有关[34]。通过对莱芜猪和大白猪皮下脂肪组织差异表达的lncRNAs和基因进行鉴定,预测XLOC_014379可能以SCD为目标并参与过氧化物酶体增殖剂激活受体(PPARs)信号通路,从而调节脂肪酸代谢[35]。

3 SCD1在脂肪型猪和瘦肉型猪中的表达差异

从妊娠后期、泌乳早期到泌乳高峰期,母猪乳腺组织中三酰甘油含量增加2~3倍,实时PCR和蛋白质印迹显示,在整个泌乳期,乙酰辅酶A羧化酶α(ACC)、脂肪酸合成酶(FAS)和SCD1的 mRNA及蛋白质水平显著上调[36]。在哺乳期,脂肪型仔猪的脂肪组织中表达更多的SCD1 mRNA,断奶后期则相反;SCD1 mRNA在0日龄仔猪中几乎检测不到,但在49日龄时增加了20倍[37]。

脂肪型猪和瘦肉型猪的SCD1表达受表观遗传因子调控。Zhang等的研究显示,长白猪背最长肌(LBF)中多不饱和脂肪酸(PUFAs)与SFAs的比例(0.51)比荣昌猪(RBF)(0.19)高,2个品种脂肪沉积和动员速率、脂肪酸合成差异很大。在全基因组水平,LBF表现出比RBF更高的甲基化,说明低能量代谢水平可能导致LBF中脂质合成的效率较低[32]。类似地,通过比较金华猪与长白猪30、90、150日龄背最长肌中全基因表达谱,交叉比较分析显示,在金华猪中调节脂肪酸生物合成的基因(如FAS和SCD1)表达水平较高,而调节肌细胞形成的基因在长白猪中表达水平较高[38]。与瘦肉型猪相比,脂肪型猪有更高的转化MUFAs效率[39]。

2009年,Zhao等从乌金猪和长白猪中收集背最长肌检测肌内脂肪含量,乌金猪平均日增质量低于长白猪,脂肪细胞直径、肌内脂肪含量和PUFAs含量均高于长白猪。与长白猪相比,乌金猪在固醇调节元件结合蛋白-1c(SREBP-1c)、脂肪酸结合蛋白(FABP)、SCD1和FAS的mRNA表达水平均较高[40]。2014年Yu等在蓝塘猪和长白猪中得到类似的结果,蓝塘猪的背最长肌中MUFAs和PUFAs含量高于长白猪,SCD1 mRNA表达丰度也显著高于长白猪[41]。2016年Madeira等对初始体质量为60 kg的40头公猪饲喂还原蛋白饲粮(RPD)和正常蛋白饲粮(NPD),93 kg时屠宰并采取血样和肝组织样,结果显示,RPD饲喂组的肝脏脂肪酸18 ∶1(n=11)、20 ∶1(n=11)、16 ∶1(n=9)和18 ∶1(n=9)比饲喂NPD的猪高20%;实时PCR显示,饲喂RPD的猪中SCD1 mRNA水平在Alentejano猪中更高[42]。

4 日粮营养成分对脂肪代谢及SCD1基因表达的影响

饲喂含有棕榈仁油、大豆油或棕榈油的低蛋白饲粮,能显著增加猪肌肉中的SCD1蛋白表达,同时伴随MUFAs和总脂肪酸水平升高,但SCD1在皮下脂肪组织中只有很小的变化[43]。日粮中赖氨酸缺乏导致SCD1 mRNA表达上调,脂质积累增加;日粮中赖氨酸过量,则不会有影响[44]。对初始体质量为(5.6±0.2) kg 的猪群分组饲喂1.5%牛油、1.5%玉米油或1.5%共轭亚油酸(CLA),35 d后采集皮下脂肪组织样品,证明饲粮CLA能降低猪脂肪组织中的酶SCD1活性[45]。日粮中添加PUFAs对SCD1 的抑制作用与亚油酸是一致的[46]。与对照组相比,日粮中添加甜菜碱组的妊娠母猪的SREBP-1c、FAS、SCD1的mRNA及SREBP-1c、ACC、FAS、SCD1的蛋白含量显著降低[47]。日粮中锌水平提高,SCD1的mRNA上调[48]。

5 其他

在急性炎癥对生长猪肝脏甘油三酯代谢的影响以及可能的潜在机制试验中,脂多糖(LPS)注射6 h后,肝脏形态学改变,血浆皮质醇含量增加,ACC和SCD1的蛋白表达显著降低[49]。热应激能下调SCD1 mRNA表达水平[50]。SCD可以接受外源化合物(N-羟基化脒)作为底物,进行还原反应[51]。SCD基因在细胞核中的三维空间位置与转录活性无关[52]。

6 结语

本文综述了SCD在个体和细胞水平的基因功能、猪各组织的表达分布、在不同猪品种关键组织表达差异的原因以及不同营养成分对其表达的影响等方面,对改善猪的肉质的研究具有一定的参考价值。但是,目前在猪上没有SCD缺失的个体和细胞模型,而且非脑组织中的SCD5基因功能尚未阐明。因此,SCD对猪脂肪酸代谢的调控机制有待进一步研究。

参考文献:

[1]Lai J T,Wu B F,Xuan T M,et al. Efficacy and tolerability of adding coenzyme A 400 U/d capsule to stable statin therapy for the treatment [JP3]of patients with mixed dyslipidemia:an 8-week,multicenter,double-Blind,randomized,placebo-controlled study[J]. Lipids in Health and Disease,2014,13:1-9.

[2]Richard D,Bausero P,Schneider C,et al. Polyunsaturated fatty acids and cardiovascular disease[J]. Cellular and Molecular Life Sciences,2009,66(20):3277-3288.

[3]Zhang L,Ge L,Parimoo S,et al. Human stearoyl-CoA desaturase:alternative transcripts generated from a single gene by usage of tandem polyadenylation sites[J]. The Biochemical Journal,1999,340(1):255-264.

[4]Lengi A J,Corl B. A comparison of pig,sheep and chicken SCD5 homologs:evidence for an early gene duplication event[J]. Comparative Biochemistry and Physiology(Part B Biochemistry & Molecular Biology),2008,150(4):440-446.

[5]Wang J,Yu L,Schmidt R E,et al. Characterization of HSCD5,a novel human stearoyl-CoA desaturase unique to primates[J]. Biochemical and Biophysical Research Communications,2005,332(3):735-742.

[6]Paton C M,Ntambi J M. Biochemical and physiological function of stearoyl-CoA desaturase[J]. American Journal of Physiology (Endocrinology and Metabolism),2009,297(1):E28-E37.

[7]Sinner D I,Kim G J,Henderson G C. Stearoyl CoA desaturase-5:a novel regulator of neuronal cell proliferation and differentiation[J]. PLoS One,2012,7(6):e39787.

[8]von Roemeling C A,Marlow L,Caulfield T A,et al. Stearoyl-CoA desaturase 1 is a novel molecular therapeutic target for clear cell renal cell carcinoma[J]. Cancer Research,2013,73(8):2368-2380.

[9]Noto A,Raffa S,de Vitis C,et al. Stearoyl-CoA desaturase-1 is a key factor for lung cancer-initiating cells[J]. Cell Death & Disease,2013,4(12):e947.

[10]Chen L,Ren J,Yang L H,et al. Stearoyl-CoA desaturase-1 mediated cell apoptosis in colorectal cancer by promoting ceramide synthesis[J]. Scientific Reports,2016,6:19665.

[11]Ralston J C,Badoud F,Cattrysse B,et al. Inhibition of stearoyl-CoA desaturase-1 in differentiating 3T3-L1 preadipocytes upregulates elongase 6 and downregulates genes affecting triacylglycerol synthesis[J]. International Journal of Obesity,2014,38(11):1449-1456.

[12]Jahansouz C,Xu H,Hertzel A V,et al. Partitioning of adipose lipid metabolism by altered expression and function of PPAR isoforms after bariatric surgery[J]. International Journal of Obesity,2018,42(2):139-146.

[13]Spurlock M E,Gabler N K. The development of porcine models of obesity and the metabolic syndrome[J]. Journal of Nutrition,2008,138(2):397-402.

[14]Bai Y H,McCoy J G,Levin E J,et al. X-ray structure of a mammalian stearoyl-CoA desaturase[J]. Nature,2015,524(7564):252.

[15]Wang H,Klein M G,Zou H,et al. Crystal structure of human stearoyl-coenzyme A desaturase in complex with substrate[J]. Nature Structural & Molecular Biology,2015,22(7):581.

[16]Ren J,Knorr C,Habermann F,et al. Assignment of the porcine stearoyl-CoA desaturase (SCD) gene to SSC14q27 by fluorescence in situ hybridization and by hybrid panel mapping[J]. Animal Genetics,2003,34(6):471-473.

[17]Canovas A,Estany J,Tor M,et al. Acetyl-CoA carboxylase and stearoyl-CoA desaturase protein expression in subcutaneous adipose tissue is reduced in pigs selected for decreased backfat thickness at constant intramuscular fat content[J]. Journal of Animal Science,2009,87(12):3905-3914.

[18]Ros-Freixedes R,Gol S,Pena R N,et al. Genome-wide association study singles out SCD and LEPR as the two main loci influencing intramuscular fat content and fatty acid composition in duroc Pigs[J]. PLoS One,2016,11(3):e0152496.

[19]Ntambi J M,Miyazaki M,Stoehr J P,et al. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity[J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99(17):11482-11486.

[20]Roongta U V,Lawrence R M,Wong T W,et al. Cancer cell dependence on unsaturated fatty acids implicates stearoyl-CoA desaturase as a target for cancer therapy[J]. Cancer Research,2011,71(18):1551-1561.

[21]Beiraghi S,Zhou M,Talmadge C B,et al. Identification and characterization of a novel gene disrupted by a pericentric inversion inv(4)(p13.1q21.1) in a family with cleft lip[J]. Gene,2003,309(1):11-21.

[22]Burhans M S,Flowers M T,Harrington K R,et al. Hepatic oleate regulates adipose tissue lipogenesis and fatty acid oxidation[J]. Journal of Lipid Research,2015,56(2):304-318.

[23]Puglisi R,Bellenghi M,Pontecorvi G,et al. SCD5 restored expression favors differentiation and epithelial-mesenchymal reversion in advanced melanoma[J]. Oncotarget,2018,9(7):7567-7581.

[24]Astarita G,Jung K M,Vasilevko V A,et al. Elevated stearoyl-CoA desaturase in brains of patients with alzheimers disease[J]. PLoS One,2011,6(10):e24777.

[25]Castro L F,Wilson J M,Goncalves O,et al. The evolutionary history of the stearoyl-CoA desaturase gene family in vertebrates [J]. BMC Evolutionary Biology,2011,11:132.

[26]Wu X Y,Zou X J,Chang Q,et al. The evolutionary pattern and the regulation of stearoyl-CoA desaturase genes[J]. BioMed Research International,2013(11):856521.

[27]Ren J,Knorr C,Huang L,et al. Isolation and molecular characterization of the porcine stearoyl-CoA desaturase gene[J]. Gene,2004,340(1):19-30.

[28]Ren J,Knorr C,Guo Y M,et al. Characterization of five single nucleotide polymorphisms in the porcine stearoyl-CoA desaturase (SCD) gene[J]. Animal Genetics,2004,35(3):255-257.

[29]Estany J,Ros-Freixedes R,Tor M,et al. A functional variant in the stearoyl-CoA desaturase gene promoter enhances fatty acid desaturation in pork[J]. PLoS One,2014,9(1):e86177.

[30]Renaville B,Prandi A,Fan B,et al. Candidate gene marker associations with fatty acid profiles in heavy pigs[J]. Meat Science,2013,93(3):495-500.

[31]Uemoto Y,Nakano H,Kikuchi T,et al. Fine mapping of porcine SSC14 QTL and SCD gene effects on fatty acid composition and melting point of fat in a Duroc purebred population[J]. Animal Genetics,2012,43(2):225-228.

[32]Zhang S H,Shen L Y,Xia Y D,et al. DNA methylation landscape of fat deposits and fatty acid composition in obese and lean pigs[J]. Scientific Reports,2016,6:35063.

[33]Cheng X,Xi Q Y,Wei S,et al. Critical role of miR-125b in lipogenesis by targeting stearoyl-CoA desaturase-1 (SCD-1)[J]. Journal of Animal Science,2016,94(1):65-76.

[34]Wang Z X,Li Q G,Chamba Y,et al. Identification of genes related to growth and lipid deposition from transcriptome profiles of pig muscle tissue[J]. PLoS One,2015,10(10):e0141138.

[35]Huang W L,Zhang X X,Li A,et al. Differential regulation of mRNAs and lncRNAs related to lipid metabolism in two pig breeds[J]. Oncotarget,2017,8(50):87539-87553.

[36]Lv Y T,Guan W T,Qiao H Z,et al. Veterinary medicine and omics (veterinomics):metabolic transition of milk triacylglycerol synthesis in Sows from late pregnancy to lactation[J]. OMICS,2015,19(10):602-616.

[37]Smith S B,Mersmann H J,Smith E O,et al. Stearoyl-coenzyme A desaturase gene expression during growth in adipose tissue from obese and crossbred pigs[J]. Journal of Animal Science,1999,77(7):1710-1716.

[38]Wu T,Zhang Z H,Yuan Z Q,et al. Distinctive genes determine different intramuscular fat and muscle fiber ratios of the longissimus dorsi muscles in Jinhua and landrace Pigs[J]. PLoS One,2013,8(1):e53181.

[39]Yang K X,Ma J W,Guo Y M,et al. Correlations between fat depot traits and fatty acid composition in abdominal subcutaneous adipose tissue and longissimus muscle:results from a White Duroc×Erhualian intercross F2 population[J]. Journal of Animal Science,2010,88(11):3538-3545.

[40]Zhao S M,Ren L J,Chen L,et al. Differential expression of lipid metabolism related genes in porcine muscle tissue leading to different intramuscular fat deposition[J]. Lipids,2009,44(11):1029-1037.

[41]Yu K F,Shu G,Yuan F F,et al. Fatty acid and transcriptome profiling of longissimus dorsi muscles between pig breeds differing in meat quality[J]. International Journal of Biological Sciences,2013,9(1):108-118.

[42]Madeira M S,Pires V M,Alfaia C M,et al. Restriction of dietary protein does not promote hepatic lipogenesis in lean or fatty pigs[J]. 2016,115(8):1339-1351.

[43]Doran O,Moule S K,Teye G A,et al. A reduced protein diet induces stearoyl-CoA desaturase protein expression in pig muscle but not in subcutaneous adipose tissue:relationship with intramuscular lipid formation[J]. The British Journal of Nutrition,2006,95(3):609-617.

[44]Wang T J,Feugang J M,Crenshaw M A,et al. A systems biology approach using transcriptomic data reveals genes and pathways in porcine skeletal muscle affected by dietary lysine[J]. International Journal of Molecular Sciences,2017,18(4):885.

[45]Smith S B,Hively T S,Cortese G M,et al. Conjugated linoleic acid depresses the Delta 9 desaturase index and stearoyl coenzyme A desaturase enzyme activity in porcine subcutaneous adipose tissue[J]. Journal of Animal Science,2002,80(8):2110-2115.

[46]Benitez R,Nunez Y,Fernandez A,et al. Effects of dietary fat saturation on fatty acid composition and gene transcription in different tissues of Iberian pigs[J]. Meat Science,2015,102:59-68.

[47]Cai D M,Wang J J,Jia Y M,et al. Gestational dietary betaine supplementation suppresses hepatic expression of lipogenic genes in neonatal piglets through epigenetic and glucocorticoid receptor-dependent mechanisms[J]. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids,2016,1861(1):41-50.

[48]Zhang H B,Wang M S,Wang Z S,et al. Supplementation dietary zinc levels on growth performance,carcass traits,and intramuscular fat deposition in weaned piglets[J]. Biological Trace Element Research,2014,161(1):69-77.

[49]Liu Z Q,Liu W F,Huang Y P,et al. Lipopolysaccharide significantly influences the hepatic triglyceride metabolism in growing pigs[J]. Lipids in Health and Disease,2015,14:64.

[50]Hao Y,Liu J R,Zhang Y,et al. The microRNA expression profile in porcine skeletal muscle is changed by constant heat stress[J]. Animal Genetics,2016,47(3):365-369.

[51]Reh R,Ozols J,Clement B. Involvement of stearoyl-CoA desaturase in the reduction of amidoxime prodrugs[J]. Xenobiotica,2008,38(9):1177-1190.

[52]Kociucka B,Cieslak J,Szczerbal I. Three-dimensional arrangement of genes involved in lipid metabolism in nuclei of porcine adipocytes and fibroblasts in relation to their transcription level[J]. Cytogenetic and Genome Research,2012,136(4):295-302.

猜你喜欢

代谢基因功能猪肉
猪肉将降到白菜价
近期猪肉价格上涨动力减弱
猪肉价格要回归正常了?
西瓜噬酸菌Ⅲ型分泌系统hrcQ基因功能分析
猪肉卷
色素上皮衍生因子与胰岛素抵抗的相关性
护理干预对多囊卵巢综合征患者体重和代谢的影响
辟谷的实质及其在减肥中的意义