APP下载

不确定扰动分数阶混沌系统自适应Terminal滑模同步

2017-07-12邵克勇王季驰于叶强

计算技术与自动化 2017年2期
关键词:滑模平衡点扰动

邵克勇+王季驰+于叶强

摘 要:针对带扰动不确定分数阶混沌系统的同步问题,基于自适应Terminal滑模控制,设计了一种分数阶非奇异Terminal滑模面,保证误差系统沿着滑模面在有限时间内稳定至平衡点,在系统外部扰动和不确定性的边界事先未知的情况,设计了自适应控制率,在线估计未知边界,使得同步误差轨迹能到达滑模面。最后,以三维分数阶Chen系统和四维分数阶Lorenz超混沌系统为例,利用所设计的自适应Terminal滑模控制器进行同步仿真,验证了所给方法是有效性和可行性。

关键词:混沌同步;分数阶非奇异Terminal滑模;自适应控制;分数阶混沌系统

Abstract: In this paper, the problem of synchronization of uncertain fractional order chaotic systems with disturbance is investigated based on adaptive terminal sliding mode control method. First, a new non-singular fractional order terminal sliding surface with strong robustness is designed to guarantee finite-time convergence to the equilibrium of the error dynamics in the sliding mode. Then, for the case that the bounds of the uncertainties and external disturbances are assumed to be unknown in advance, an adaptive control law is proposed to estimate the unknown bounds online, and force the trajectory of the synchronization error system onto the sliding surface. Finally, numerical simulations on synchronizing Chen chaotic system and hyperchaos Lorenz are carried out separately. The simulation results show the effectiveness and feasibility of the adaptive terminal sliding mode controller.

Keywords: Chaos synchronization; non-singular fractional order terminal sliding mode; adaptive control; fractional order chaotic systems

1.引 言

分數阶微积分起源于19世纪,是一个有着将近300年历史的数学概念,近些年来,科学工作者对分数阶微积分进行了深入研究[1]。多年来,这个分支被认为是唯一一个几乎没有应用的数学和理论相结合的学科。但是,数十年来,分数阶动力学系统的混沌现象、混沌控制及同步研究已经得到广泛和深入的研究[2-6]。

1990 年,Pecora和Carroll等人在混沌同步的研究中做出了开创性的工作[7]。此后,科学工作者们对混沌控制与同步问题产生广泛的关注[8]。由于分数阶与整数阶模型相比较,分数阶微分是刻画具有记忆性和遗传性的各种材料及过程的良好的工具,分数阶混沌同步比整数阶混沌同步在保密通信以及控制领域等方面有着巨大的应用前景和发展前景[9-14]。近年来,人们提出了很多分数阶混沌系统的同步控制方法,如脉冲控制[15],主动控制[16],自适应控制[17],广义投影控制[18]和被动控制[19]。

滑模控制是一种简单并且有效的鲁棒控制策略。传统的线性滑模具有很快的速度,但却渐近地趋于平衡点,极大的影响收敛速度;Terminal滑模使系统状态在有限的时间内收敛于平衡点,但当系统的状态离平衡点较远时,到达时间却较长,并出现了无穷大奇异点。为了避免传统Terminal滑模方法中所出现的奇异问题,文献[20-22]提出了非奇异Terminal滑模控制方法,提高系统到达滑模面的速度,提高系统处于滑动模态时的收敛速度。但在实际应用中,系统受外界干扰和自身的不确定性是不可避免的,而且由于测量条件的局限性,外界也很难精确探测出系统的数学模型。因此研究受扰动和带有不确定项的分数阶混沌系统更具有实际的意义。然而,国内外学者对于不确定扰动分数阶混沌系统的同步问题的研究并不深入。文献[23]在考虑不确定因素影响的情况下,对不确定项进行了自适应估计,但是该方法中误差系统并不能在有限时间内收敛到滑模面。

综上所述,论文首先研究了分数阶非奇异Terminal滑模控制方法,误差系统在有限时间收敛到Terminal滑模面的同时,实现了误差系统的状态变量在有限时间内收敛到平衡点附近的邻域内,实现分数阶混沌系统的同步。进而在未知外部扰动及不确定性的条件下,设计自适应控制器,使得同步误差轨迹达到Terminal滑模面,并在线估计未知边界。通过理论分析和数值模拟验证所设计的控制器是有效和可行的。

4 结论

本文基于非奇异Terminal滑模控制方法和自适应控制方法,研究了不确定扰动的分数阶混沌系统的同步问题。首先设计了一种分数阶非奇异Terminal滑模面,其次根据滑模可到达条件,并假设不确定性和外部扰动的边界都是事先未知的情况下,设计了自适应非奇异Terminal滑模控制器,使误差系统从空间内任意一点出发,都能在有限时间内沿滑模面稳定至平衡点,进而实现了分数阶混沌系统同步。运用所设计的自适应非奇异Terminal滑模控制器实现了三维分数阶Chen系统与四维分数阶Lorenz超混沌系统的滑模控制同步。数值仿真结果验证了该控制器的有效性。

參考文献

[1] Podlubny I. Fractional differential equations[M]. New York: Academic Press, 1999.

[2] Tavazoei MS, Haeri M, Jafari S, Bolouki S, Siami M. Some applications of fractional calculus in suppression of chaotic oscillations. IEEE Trans Ind Electron

2008, 55:4098–101.

[3] Magin RL. Fractional calculus in bioengineering. Crit Rev Biomed Eng, 2004,32:1-104.

[4] Couceiro MS, Fonseca Ferreira NM, Tenreiro Machado JA. Application of fractional algorithms in the control of a robotic bird. Commun Nonlinear Sci Numer Simul, 2010,15:895-910.

[5] Victor S, Melchior P, Oustaloup A. Robust path tracking using flatness for fractional linear MIMO systems: a thermal application. Comput Math Appl, 2010,59:1667-78.

[6] Preda L, Mihailescu M, Preda A. Application of fractional derivative to the relaxation of laser target. UPB Sci Bull Ser A Appl Math Phys ,2009,71:11-20.

[7] Pecora L M, Carroll T L. Synchronization in chaotic system[J]. Physical Review Letters, 1990, 64(8):821-824.

[8] Her-Terng Yau, Chieh-Li Chen. Chaos control of Lorenz systemsusing adaptive controller with input saturation[J]. Chaos, Solitons and Fractals, 2007, 34:1567-1574.

[9] Abdullah, A.: Synchronization and secure communication of uncertain chaotic systems based on full-order and reduced-order output-affine observers. Appl. Math. Comput.219, 10000–10011 (2013).

[10] Wu, X, Wang, H, Lu, H. Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application to secure communication[J]. Nonlinear Anal. Real World Appl., 2012, 13(3), 1441-1450.

[11] Sheu, L J . A speech encryption using fractional chaotic systems[J]. Nonlinear Dyn., 2011, 65[1], 103-108.

[12] Muthukumar, P, Balasubramaniam, P. Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography[J]. Nonlinear Dyn., 2013, 74(4), 1169-1181.

[13] Muthukumar, P., Balasubramaniam, P., Ratnavelu, K.: Synchronization of a novel fractional order stretch-twist-fold (STF) flow chaotic system and its application to a new authenticated encryption scheme (AES). Nonlinear Dyn., 2014, 77(4), 1547-1559.

[14] Muthukumar, P, Balasubramaniam, P, Ratnavelu, K. Synchronization and an application of a novel fractional order King Cobra chaotic system[J]. Chaos, 2014, 24(3), 033105.

[15] Xi, H L, Yu, S M, Zhang, R X, Xu, L. Adaptive impulsive synchronization for a class of fractional-order chaotic and hyperchaotic systems[J]. Optik Int. J. Light Electron Opt., 2014(9), 125, 2036-2040.

[16] Bhalekar, S, Daftardar-Gejji, V. Synchronization of different fractional order chaotic systems using active control[J]. Commun. Nonlinear Sci. Numer. Simul., 2010, 15(11), 3536–3546.

[17] Yang, L X, Jiang, J. Adaptive synchronization of driveresponse fractional-order complex dynamical networks with uncertain parameters[J]. Commun. Nonlinear Sci. Numer.Simul., 2014, 19(5), 1496–1506.

[18] Peng, G J, Jiang, Y L, Chen, F. Generalized projective synchronization of fractional order chaotic systems. Phys. A, 2008, 387(14), 3738–3746.

[19] Wu, C J, Zhang, Y B, Yang, N N: The synchronization of a fractional order hyperchaotic system based on passive control[J]. Chin. Phys. B, 2011,20(6), 060505.

[20] Feng Y, Yu X H, Man Z H. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38(12): 2159-2167.

[21] Zhang W W, Wang J. Nonsingular terminal sliding model control based on exponential reaching law[J]. Control and Decision, 2012, 27(6): 909-913. (张巍巍, 王京. 基于指数趋近律的非奇异terminal滑模控制[J]. 控制与决策, 2012, 27(6): 909-913.)

[22] Yang L, Yang J Y. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems[J]. Int J of Robust and Nonlinear Control, 2011, 21(16), 1865-1879.

[23] Deng W, Fang J, Wu Z J, et al. Adaptive modified function projective synchronization of a class of chaotic systems with uncertainties[J]. Acta Physica Sinica, 2012, 61(14): 140503. (鄧玮,方洁, 吴振军等. 含有不确定项的混沌系统自适应修正函数投影同步[J]. 物理学报, 2012, 61(14): 140503.)

[24] Aguila-Camacho, N, Duarte-Mermoud, M A, Gallegos, J A. Lyapunov functions for fractional order systems[J]. Commun. Nonlinear Sci. Numer. Simul., 2014, 19(9), 2951-2957 .

[25] Mohammad P A, Sohrab K, Ghassem A. Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique[J]. Applied Mathematical

Modelling, 2011, 35(6): 3080-3091.

猜你喜欢

滑模平衡点扰动
一类五次哈密顿系统在四次扰动下的极限环分支(英文)
高速公路滑模路缘石施工技术及质量控制分析
不同维分数阶混沌预设时间有限时间投影同步
永磁直线伺服系统递归小波Elman神经网络互补滑模控制
滑模施工工艺在水利施工中的优势研究
Lotka—Volterra竞争扩散系统连接边界平衡点和正平衡点行波解的存在性
环境保护投资与经济发展的关系
建筑业营改增下适用税率的选择
差分进化算法的改进研究
透过平衡点 打造完美比例