APP下载

抚顺市环境空气质量与污染源相关性分析

2017-07-05苑宏刚

绿色科技 2017年10期
关键词:二氧化氮二氧化硫污染源

苑宏刚

摘要:在系统阐明了抚顺市城区高污染燃料的消耗特征、大气污染物治理排放特征以及环境空气质量状况与评价基础上,采用相关性分析的方法,系统分析了抚顺市城区2014年环境空气质量污染物的浓度量值、首要污染物天数的及月分布,与高污染燃料燃烧污染物排放量之间的关系。研究表明:PM10、PM2.5代表的烟(粉)尘颗粒物和NO2是首要的污染物因子;烟气SO2的排放量的拟合线与环境空气SO2月浓度的拟合均是一致的凹抛物线,具有良好的一致性;烟(粉)尘的排放量与环境空气PM10和PM2.5月均浓度存在的良好的相关性;烟气NOx的月排放量及其拟合线与NO2月浓度变化趋势具有良好的一致性。

关键词:空气质量;污染源;相关性;二氧化氮;二氧化硫

中图分类号:X831

文献标识码:A 文章编号:16749944(2017)10006303

1 引言

大量研究表明,区域环境空气质量与区域污染源具有极强的相关性[1~3]。在特定区域内,环境空气质量污染物在浓度量值、首要污染物天数,以及出现的特定时间段上会呈现特定特征[4]。笔者在系统分析了抚顺市城区高污染燃料的消耗特征、大气污染物治理排放特征以及环境空气质量状况与评价的基础上,采用相关性分析的方法,系统分析了抚顺市城区2014年环境空气质量污染物的浓度量值、首要污染物天数的及月分布,与高污染燃料燃烧污染物排放量之间的关系,为高污染燃料禁燃区科学客观地划分提供必要条件。

2 主要污染物的识别与确定

高污染燃料禁燃区划分方案需要明确确定影响区域环境空气质量的主要污染物。中国国家标准《环境空气质量标准》(GB3095-2012)共确定六项污染物[5],分别是SO2、NO2、CO、O3、PM10和PM2.5。这六项污染物在撫顺城区域环境空气质量浓度特征、首要污染物天数以及时间分布上呈现了以下明显特点。

(1)以PM10、PM2.5代表的烟(粉)尘颗粒物和O3,是自2012年全市有系统环境空气质量监测数据以来最主要的三种污染物。2012年二级空气质量以下污染天数为73 d,O3占了47 d约64%,PM10为26 d约36%;2013年二级空气质量以下污染天数为78 d,O3占了21 d约27%,PM10为30 d约38%,PM2.5为27 d约35%;距现在最近的2014年,二级空气质量以下污染天数为123 d,O3占了41 d约33%,PM10为10 d约8%,PM2.5达到了71 d约58%(图1)。这些数据表明,抚顺市的环境空气污染的主要污染物即为O3和烟(粉)尘颗粒物。

(2)PM10、PM2.5和O3污染物在年度内出现的时间段上,PM10、PM2.5主要出现春、秋和冬季三季,O3污染物主要出现在夏季。

(3)SO2、NO2、CO、O3、PM10和PM2.5六项污染物,特别是PM10、PM2.5和O3污染物在浓度上,年度内呈现规律性分布。SO2、NO2、PM10和PM2.5一直呈凹型抛物线,这表明4种污染物在污染排放源上具有同一性,而O3呈凸型抛物线。研究表明,O3是环境空气的二次污染物,是由于NO2引发,在夏季强紫外光辐射照射下产生了NO、O、NO2、O2和O3各成分间循环的光化学反应。图1也表明,O3的存在与抚顺市的光照时间存在良好的相关性,尽管日照时间仅是NO、O、NO2、O2和O3各成分间转化的一个因素,但是光照时间却和紫外线的辐射强度存在一致性。因此,在污染源对环境空气质量的影响方面,应O3将与NO2归类,分析NO2与污染源排放的关系。

通过上述3个规律的分析可知,PM10、PM2.5代表的烟(粉)尘颗粒物和NO2是首要的污染物因子。而SO2一直以来作为环境空气污染必须分析的污染物,在抚顺市的浓度量值在年度内的分布特征又与PM10、PM2.5具有相同分布特征和同源性,所以也应该把SO2作为污染物因子。因此,抚顺市环境空气污染物因子确定为PM10、PM2.5、NO2和SO2。

3 主要污染物与污染源相关性分析

两个变量间的相关性分析是建立两种变量是否有关联的重要方法。

为客观分析污染物排放源强度与环境空气质量间的关系,做如下技术处理。

(1)将全年烟气中的SO2、烟(粉)尘和氮氧化物排放量分为取暖期附加排放量和工业污染源排放背景值两部分,工业污染源各排放总量按12个月平均到每月中,冬季取暖期的排放量按5个月平均,分别再加到1、2、3、11和12月等5个月中。按照此方法,全年分成了取暖期和非取暖期两段,取暖期分别为1、2、3、11和12月共5个月份,非取暖期为4、5、6、7、8、9和10月共7个月份。冬季取暖期的烟气污染物排放量包括取暖锅炉排放源和工业生产使用的高污染燃料源,非取暖期仅为生产使用的高污染燃料源。

(2)将各污染物月排放量进行二次曲线拟合,与对应污染物的月平均浓度或者污染天数进行相关性比较,确定污染物排放是否和环境空气污染因子具有相关性。

3.1 烟气SO2的排放量与环境空气SO2浓度间的相关性

烟气SO2的排放量与环境空气SO2浓度间的相关性如图2。

由图2可知,烟气SO2的排放量的拟合线与环境空气SO2月浓度的拟合均是一致的凹抛物线,具有良好的一致性,两者相关性分别达到了0.7180和0.9634。凹抛物线特征进一步说明,两者存在的良好的相关性,环境空气中的SO2的浓度与烟气排放SO2的数量极其相关。SO2的排放量在一年中的1、2和3月及11月、12月高,而环境空气SO2对应月的平均浓度也高,这也是取暖期比非取暖期多燃烧消耗了大量高污染燃料所致[7]。但是根据第五章的环境空气质量分析表明,SO2虽不是首要超标污染物,但是仍有一些天IAQI值超过100,因此仍需作为高污染燃料禁燃区划分的污染标识物之一。

3.2 烟气中烟(粉)尘的排放量与环境空气PM10和PM2.5之间的相关性

抚顺市高污染燃料燃烧排放烟(粉)尘的排放量与环境空气PM10和PM2.5之间的相关性如图3,4所示(以抚顺市2014年污染物排放量和环境空气质量为代表)。

由图3可知,烟气烟(粉)尘的排放量与环境空气PM10和PM2.5月均浓度均呈现1~3月份、11~12月份高而中间各月份低的现象,具有良好的一致性,这表明取暖期比非取暖期多燃烧消耗了大量高污染燃料所致[8]。图4表明,每月污染天数的分布特征与烟(粉)尘排放量也呈现良好的相关系,并且燃烧排放的烟(粉)尘造成空气中的PM10和PM2.5超标的污染物,已經在2013年开始成为抚顺市的最主要的污染物,2014年两者污染天数之和已达80 d,占全年污染天数的65%。PM10和PM2.5的污染应该受到严格的注意和防控。

从三者的拟合线来看(图3),烟(粉)尘的排放量的拟合线与环境空气PM10和PM2.5月均浓度拟合线均是一致的凹抛物线型。虽然PM10和PM2.5的拟合度并不高,但是在9次多项式以内,2次多项式抛物线拟合形式的相关系数仍然最高。凹抛物线的特征也说明了烟(粉)尘的排放量与环境空气PM10和PM2.5月均浓度存在的良好的相关性。这个结论与其他城市的研究结果相同[9]。

PM2.5月首要污染天数间的相关性

造成PM10和PM2.5拟合线相关系数不高的原因,与非取暖期呈现部分高值有关,这是因为非取暖期高污染燃料燃烧排放烟(粉)尘颗粒物数量虽然低于取暖期,但由于烟(粉)尘粒度过细,沉降性不佳,几年累积的结果,一旦空气层结稳定,必然会造成环境空气PM10和PM2.5偏高的现象[6],研究表明,高污染燃料的燃烧,如果治理水平不高,在常规的干法除尘工艺条件下,直径小于2.5 μm的PM2.5无法去除,除非采用湿法除尘。这说明了取暖期和非取暖期高污染燃料燃烧排放的烟(粉)尘均是PM10和PM2.5成为环境空气质量污染最主要的污染物。因此全国很多城市均把高污染燃料燃烧排放的烟(粉)尘作为环境空气PM10和PM2.5超标的元凶。

综合上述分析,烟气中烟(粉)尘的排放量与环境空气PM10和PM2.5之间均在良好的相关性,PM10和PM2.5的烟(粉)尘应作为高污染燃料禁燃区划分的最主要的污染标识物之一。

3.3 烟气NOx的排放量与环境空气NO2浓度间的相关性

烟气NOx的排放量与环境空气NO2浓度间的相关性如图5。

由图5可知,烟气NOx的月排放量及其拟合线与NO2月浓度变化趋势具有良好的一致性。从两者的拟合线来看,烟气NOx的月排放量与环境空气NO2月平均浓度的拟合线均是一直的凹抛物线,相关系数R2分别为0.7180和0.7294。具有良好的一致性,同前述SO2和烟(粉)尘颗粒物的分析结果一样,凹抛物线特征进一步说明了两者存在的良好相关性,环境空气中的NOx的浓度与烟气排放NO2的数量极其相关[10]。NOx的排放量在一年中的1、2、3、11、12月呈现高值,而环境空气NO2在对应月上的平均浓度也呈现高值,这与取暖期比非取暖期多燃烧消耗了大量高污染燃料有关。

NO2在夏季浓度偏低,还在于夏季转化为O3所致。一般而言,O3与NOx的排放量的关系如图6。

图6表明,由NOx氧化物、O2和紫外线光化学反应产生的O3应该引起重视。5~9月份虽然出现的降水天气对烟(粉)尘颗粒物有良好的清除作用,但是这些月份的强辐射,NOx会引发O3的产生[11]。只有控制了NOx的排放,才能抑制O3的产生,进而改变夏季抚顺市空气O3超标的现象。

因此,NOx作为高污染燃料燃烧的烟气排放的引发的O3污染的引发剂的角度,NO2、NO等NOx也应该作为高污染燃料禁燃区划分的污染标识物。

4 结语

PM10、PM2.5代表的烟(粉)尘颗粒物和NO2是首要的污染物因子;烟气SO2的排放量的拟合线与环境空气SO2月浓度的拟合均是一致的凹抛物线,具有良好的一致性,两者相关性分别达到了0.7180和0.9634;烟(粉)尘的排放量的拟合线与环境空气PM10和PM2.5月均浓度拟合线均是一致的凹抛物线型,排放量与环境空气PM10和PM2.5月均浓度存在的良好的相关性;烟气NOx的月排放量及其拟合线与NO2月浓度变化趋势具有良好的一致性,拟合相关系数R2分别为0.7180和0.7294,具有良好的一致性。

参考文献:

[1]

方荔华.西安市能源构成与环境空气质量的相关性研究[D]. 西安:西安建筑科技大学,2004.

[2]孙雪丽,程水源,陈东升. 区域污染对北京市采暖期SO2污染的影响分析[J]. 安全与环境学报,2006, 6(5):83~87.

[3]李小飞,张明军,王圣杰,等. 潜中国空气污染指数变化特征及影响因素分析[J]. 环境科学,2012,33(6):1936~1943.

[4]任婉侠,薛 冰,张 琳,等. 中国特大型城市空气污染指数的时空变化[J]. 辽宁大学学报(自然科学版),2013,32(10):2788~2796.

[5]中华人民共和国环境保护部. 环境空气质量指数(AQI)技术规定(试行) (HJ633-2012) [S]. 北京;中国标准出版社,2012.

[6]余 晔,夏敦胜,陈雷华. 兰州市PM10污染变化特征及其成因分析[J]. 环境科学,31 (1):22~28.

[7]卢广平,陈宝智. 抚顺市大气环境质量及其对策研究[J]. 环境科学研究,2005,18(4):109~111.

[8]黄丽坤,王广智,王 琨. 哈尔滨市采暖与非采暖期大气颗粒物污染特性研究[J]. 环境工程学报,2011,5(1):146~149.

[9]宋晓焱,邵龙义,宋建军. 煤矿区城市PM10单颗粒微观形貌及粒径分布特征[J]. 中国矿业大学学报,2011,40(2):292~297.

[10]齐 震,孙 也,樊 星,等. 液相氧化-吸收脱除模拟烟气中NOx的研究[J]. 环境科学学报,2014,34(12):3133~3137.

[11]徐 鹏,郝庆菊,吉东生,等. 重庆市北碚城区大气污染物浓度变化特征观测研究[J]. 环境科学,2014,35(3):820~829.

猜你喜欢

二氧化氮二氧化硫污染源
固定污染源精准治理系统中信息技术的集成应用与效果研究
二氧化氮具有独立急性健康危害 浓度升高显著增加死亡风险
葡萄酒为什么要加二氧化硫
重庆市九龙坡区二氧化氮污染现状及对策
黄岛区空气质量变化评价与分析
重庆市北碚区2015年北泉村环境空气质量分析
“二氧化硫与二氧化碳”知识归纳
葡萄酒中为什么会有二氧化硫?
浅析地理信息系统在污染源数据中的应用
全国污染源普查条例