APP下载

2,2’-联吡啶和三氟甲基修饰β-二酮金属钯(Ⅱ)配合物的合成、表征和体外细胞毒性

2017-04-26杨亚星段晓波段飞李胜辉王书香张金超

关键词:三氟理论值实测值

杨亚星,段晓波,段飞,李胜辉,王书香,张金超

(河北大学 化学与环境科学学院,河北 保定 071002)



2,2’-联吡啶和三氟甲基修饰β-二酮金属钯(Ⅱ)配合物的合成、表征和体外细胞毒性

杨亚星,段晓波,段飞,李胜辉,王书香,张金超

(河北大学 化学与环境科学学院,河北 保定 071002)

以取代苯乙酮、三氟乙酸乙酯及2,2’-联吡啶硝酸钯为原料,经Claisen缩合反应和螯合反应得到了系列三氟甲基修饰的β-二酮金属钯(Ⅱ)配合物.配合物结构通过了NMR、ESI-MS、IR及元素分析的表征,用X线单晶衍射测定了配合物3g的晶体结构.用MTT法对产物的体外细胞毒性进行了评价.初步结果表明:所得配合物对MCF-7细胞的毒性明显高于Hela和A549细胞,其中配合物3a对MCF-7的细胞毒性与顺铂相当.

Pd(Ⅱ)配合物;β-二酮;三氟甲基;联吡啶;细胞毒性

恶性肿瘤严重威胁人类健康和生命,预防和治疗恶性肿瘤已经成为人类迫切需要解决的重大问题.化疗是目前治疗恶性肿瘤最有效的手段之一.自1967年顺铂的抗癌活性被发现以后,铂类抗癌药物的研究与应用得到了迅速发展.如今,顺铂、卡铂等铂类药物已成为癌症化疗中不可缺少的药物[1].然而,其严重的毒副作用,如肾毒性、耳毒性以及神经毒性和本身耐药性极大限制了该类药物在临床上的应用[2-5].

钯和铂相似或相同的结构特征及其配合物相近的化学性质,使得金属钯配合物成为一类新的潜在抗肿瘤药物[6-9].β-二酮类化合物不仅是合成杂环化合物的重要中间体,而且是优良的金属萃取剂.同时,以β-二酮作为O,O-螯合配体构建的金属配合物也体现出不错的抗肿瘤活性[10-17].近年来,吸电子基团三氟甲基功能化的β-二酮金属配合物以其优良的脂溶性、高的细胞摄取及增强的毒性受到人们的广泛关注[11-13,17].本文通过Claisen缩合反应制备了三氟甲基功能化的β-二酮化合物,并通过与2,2’-联吡啶硝酸钯进行配位组装,得到了系列三氟甲基功能化的β-二酮金属钯配合物.在结构表征基础上,进行了体外细胞毒性及构效关系的研究.

1 实验部分

1.1 试剂与仪器

XT-4型显微熔点测定仪(温度计未校正);AVANCEⅢ 600 MHz NMR超导核磁共振仪(TMS为内标,DMSO-d6为溶剂,瑞士Bruker公司);Model-683型红外光谱仪(KBr压片,美国Perkin-Elmer公司);Apex Ultra 7.0T 型质谱仪(瑞士Bruker公司);Vario EL Ⅲ型元素分析仪(德国Elementar公司).DMEM培养基,胰蛋白酶以及胎牛血清购自Gibco公司;MTT,苄青霉素和链霉素购自Sigma公司.实验所用的所有化学品及试剂均为分析纯.

1.2 配合物3a-3g的合成

1.2.1 配合物合成方法

配合物(3a-3g)的合成路线如式1所示.联吡啶硝酸钯(bipy)Pd(ONO2)2的合成参考文献[18]进行.三氟甲基修饰的β-二酮配体(2a-2g)是由取代苯乙酮(1a-1g)与三氟乙酸乙酯通过Claisen缩合反应制备[19].将等摩尔的β-二酮配体(2a-2g)与(bipy)Pd(ONO2)2(21.6 mg,0.1 mmol)加入到水-丙酮(体积比为1∶1)溶液中,室温搅拌2 h,然后升温至50 °C并加入10倍量的KPF6,立即有黄色固体生成,过滤,用少量冷水洗涤,真空干燥,得产物3(3a-3g).

3a:Ar=Ph;3b:Ar=4-CH3C6H4;3c:Ar=4-CH3OC6H4;3d:Ar=4-CH3CH2OC6H4;3e:Ar=3-CH3OC6H4;3f:Ar=3,4-(CH3O)2C6H3;3g:Ar=3,4,5-(CH3O)3C6H2式1 配合物(3a-3g)的合成路线Scheme 1 Synthetic routine of the complexes(3a-3g)

1.2.2 配合物3g的单晶X-ray结构检测

单晶结构测定使用SMARTAPEXⅡ衍射仪(瑞士Bruker公司),石墨单色器,Mo-Kα射线(λ=0.071 073 nm),T=296(2)K,采用ω-θ扫描方式.主要原子坐标使用SHELXS-97程序由直接法完成,对全部非氢原子坐标及其各向异性热参数进行了全矩阵最小二乘法修正(F2).所有非氢原子均为理论加氢,利用几何参数对氢原子坐标进行结构优化.配合物3g晶体学参数见表1.

表1 3g的晶体学参数

1.3 体外细胞毒性评价

1.3.1 细胞培养及溶液配制

HeLa,A549和MCF-7 3种不同种类癌细胞系在含有10%的胎牛血清,100u/mL青霉素和100μg/mL链霉素的DMEM培养基中孵育(体积分数5%CO2,37 ℃).将化合物在二甲亚砜中溶解,并配制成5mmol/L母液待用;取一定量的上述母液并用不含血清的培养基逐级稀释至不同浓度(1.0,10,100 和500μmol/L),并使DMSO的体积分数低于0.1%.

1.3.2 体外细胞毒性

取处于对数生长期的HeLa、A549、MCF-7细胞悬浮液(1.5×104个/mL)均匀加入到96孔板中(90μL/孔),于37 ℃, 体积分数5%CO2的培养箱中孵育.待细胞贴壁后,加入配合物3a-3g溶液(10 μL/孔,每种化合物设5个平行),使其终浓度为0.1、1、10和50 μmol/L,空白对照组每孔加10 μL不含血清的培养基.48 h后,每孔加入10 μL (5 mg/mL)的MTT储备液,37 ℃孵育4 h后,弃去培养基,并加入100 μL/孔DMSO,室温下震荡10 min,将细胞产生的甲瓒充分溶解,使用酶标仪在570 nm波长下测定每孔OD值.根据公式:(1-ODtreated/ODcontrol)×100%计算细胞生长抑制率,再计算IC50值.MTT测定方法如T.Mosmann[20]所述.

2 结果与讨论

2.1 化合物的合成与表征

3a:黄色固体,产率:93%;IR(KBr,cm-1):3 094,1 593,1 567,1 294,1 155,840,765,557;1H NMR(d6-DMSO,600 MHz)δ:8.65(d,J=7.8 Hz,3H),8.49(t,J=7.8 Hz,2H),8.34(br s,1H),8.24(dd,J1=8.4 Hz,J2=0.6 Hz,2H),7.97(br s,2H),7.80(t,J=7.8 Hz,1H),7.62(t,J=7.8 Hz,1H),6.99(s,1H);13C NMR(d6-DMSO,150 MHz)δ:184.06,165.07,154.49,153.68,147.55,145.53,141.60,126.98,124.27,123.35,123.15,116.94,116.85,114.98,112.98,110.29,109.60,93.92;HRMS(ESI):C20H14F3N2O2Pd[M]+计算值为477.004 5,实测值为 477.004 1.化合物C20H14N2F9O2PPd元素分析理论值为C,38.58;H,2.27;N,4.50.实测值为 C,38.19;H,2.46;N,4.80.

3b:黄色固体,产率:95%;IR(KBr,cm-1):3 094,2 993,1 587,1 554,1 292,1 155,840,767,557;1H NMR(d6-DMSO,600 MHz)δ:8.61(d,J=7.8 Hz,2H),8.54(br s,1H),8.46(t,J=7.8 Hz,2H),8.25(br s,1H),8.08(d,J=7.8 Hz,2H),7.94(br s,2H),7.34(d,J=8.4 Hz,2H),6.90(s,1H),2.41(s,3H);13C NMR(d6-DMSO,150 MHz)δ:186.94,167.60(q,2JCF=33.0 Hz),156.05(q,3JCF=4.5 Hz),147.47,147.11,146.53,143.16,130.86,130.35,129.43,128.72,128.61,124.90,117.33(q,1JCF=280.5 Hz),95.71,21.84;HRMS(ESI):C21H16F3N2O2Pd[M]+计算值为491.020 1,实测值为491.020 0.化合物C21H16N2F9O2PPd元素分析理论值为C,39.61;H,2.53;N,4.40.实测值为C,39.72;H,2.53;N,4.24.

3c:黄色固体,产率:93%;IR(KBr,cm-1):3 095,2 938,2 853,1 583,1 562,1 276,1 178,840,771,557;1H NMR(d6-DMSO,600 MHz)δ:8.57-8.63(m,2H),8.55(d,J=4.2 Hz,1H),8.46(d,J=7.8 Hz,2H),8.24(d,J=4.2 Hz,1H),8.20(d,J=9.0 Hz,2H),7.93(t,J=6.6 Hz,2H),7.03(d,J=9.0 Hz,2H),6.86(s,1H),3.90(s,3H);13C NMR(d6-DMSO,150 MHz)δ:185.59,166.68(q,2JCF=33.0 Hz),165.19,156.00,155.91,147.34,147.02,143.14,132.04,128.66,128.52,125.69,124.87,117.39(q,1JCF=282.0 Hz),115.03,95.21,56.26;HRMS(ESI):C21H16F3N2O3Pd[M]+计算值为507.015 1,实测值为507.014 9.化合物C21H16N2F9O3PPd元素分析理论值为C,38.64;H,2.47;N,4.29.实测值为C,38.74;H,2.48;N,4.11.

3d:黄色固体,产率:89%;IR(KBr,cm-1):3 095,1 567,1 311,1 263,1 153,842,765,557;1H NMR(d6-DMSO,600 MHz)δ:8.61(t,J=6.0 Hz,2H),8.56(d,J=4.8 Hz,1H),8.47(d,J=7.2 Hz,1H),8.44(d,J=7.2 Hz,1H),8.25(d,J=4.8 Hz,1H),8.19(d,J=9.0 Hz,2H),7.93(t,J=7.2 Hz,2H),7.01(d,J=9.0 Hz,2H),6.86(s,1H),4.17(q,J=7.2 Hz,2H),1.40(t,J=7.2 Hz,3H);13C NMR(d6-DMSO,150 MHz)δ:185.68,166.64(q,2JCF=33.0 Hz),164.55,156.12,156.01,147.48,147.10,143.11,132.12,128.66,128.52,125.66,124.85,117.46(q,1JCF=280.5Hz),115.38,95.25,64.46,14.86;HRMS(ESI):C22H18F3N2O3Pd[M]+计算值为521.030 7,实测值为521.030 6.化合物C22H18N2F9O3PPd元素分析理论值为C,39.63;H,2.72;N,4.20.实测值为C,39.69;H,2.69;N,3.85.

3e:黄色固体,产率:96%;IR(KBr,cm-1):3 111,2 985,2 938,1 585,1 560,1 295,1 253,1 189,842,771,557;1H NMR(d6-DMSO,600 MHz)δ:8.65(d,J=7.8 Hz,2H),8.57(br s,1H),8.48(t,J=7.8 Hz,2H),8.32(br s,1H),7.98(br s,2H),7.78(d,J=7.8 Hz,1H),7.61(s,1H),7.50(t,J=7.8 Hz,1H),7.34(dd,J1=8.4 Hz,J2=2.4 Hz,1H),6.97(s,1H),3.89(s,3H);13C NMR(d6-DMSO,150 MHz)δ:187.35,166.57(q,2JCF=33.0 Hz),166.35,164.97,155.78,155.69,147.12,146.80,142.92,131.82,128.44,128.30,125.47,124.65,124.62,118.11,116.24(q,1JCF=282.0 Hz),114.81,94.99,56.03;HRMS(ESI):C21H16F3N2O3Pd[M]+计算值为507.015 1,实测值为507.014 7.化合物C21H16N2F9O3PPd元素分析理论值为C,38.64;H,2.47;N,4.29.实测值为C,38.76;H,2.41;N,4.14.

3f:黄色固体,产率:95%;IR(KBr,cm-1):3 095,2 946,1 567,1 506,1 274,840,771,557;1H NMR(d6-DMSO,600 MHz)δ:8.65(br s,2H),8.59(br s,1H),8.49(d,J=7.2 Hz,2H),8.31(br s,1H),7.97(br s,2H),7.92(dd,J1=8.4 Hz,J2=1.8 Hz,1H),7.58(d,J=1.8 Hz,1H),7.07(d,J=8.4 Hz,1H),6.93(s,1H),3.91(s,3H),3.90(s,3H);13C NMR(d6-DMSO,150 MHz)δ:185.63,166.75(q,2JCF=33.0 Hz),156.05,155.25,149.12,147.10,143.17,143.12,128.54,125.84,124.92,124.71,121.42,121.32,118.51,117.48(q,1JCF=280.5 Hz),114.54,111.86,111.16,95.48,56.39,56.13;HRMS(ESI):C22H18F3N2O4Pd[M]+计算值为537.025 7,实测值为537.026 0.化合物C22H18N2F9O4PPd·0.5CH3CN元素分析理论值为C,39.28;H,2.79;N,4.98.实测值为C,39.13;H,2.67;N,4.95.

3g:黄色固体,产率:98%;IR(KBr,cm-1):3 095,2 946,1 565,1 498,1 328,1 286,1 218,1 126,844,771,557;1H NMR(d6-DMSO,600 MHz)δ:8.67(d,J=7.2 Hz,2H),8.59(br s,1H),8.50(br s,2H),8.35(br s,1H),7.99(d,J=6.0 Hz,2H),7.39(s,2H),7.01(s,1H),3.94(s,6H),3.81(s,3H);13C NMR(d6-DMSO,150 MHz)δ:186.34,167.75(q,2JCF=33.0 Hz),156.23,153.26,147.24,147.07,143.89,143.21,128.82,128.60,128.48,124.97,124.94,117.42(q,1JCF=280.5 Hz),106.75,96.23,60.76,56.73;HRMS(ESI):C23H20F3N2O5Pd[M]+计算值为567.036 3,实测值为567.036 1.化合物C23H20N2F9O5PPd·0.5H2O元素分析理论值为C,38.27;H,2.93;N,3.88.实测值为C,37.96;H,2.62;N,3.66.

2.2 配合物3g的晶体结构

X线晶体结构分析证实了配合物3g的分子结构.该晶体属于三斜晶系,P-1空间群.如图1所示,配合物3g是一个以钯(Ⅱ)为中心的离散单核物质.联吡啶和β-二酮配体都是以二齿形式与钯(Ⅱ)配位.Pd—O键长在0.198 0(2)到 0.200 2(2)nm之间,Pd—N键长在0.199 3(2)到0.199 9(3)nm(表2).N(1)-Pd(1)-N(2)和O(1)-Pd(1)-O(2)2个平面的角度为2.378(105)°,这表明Pd(1)-O(1)-O(2)-N(1)-N(2)有轻微扭曲.同时,晶体结构中六氟磷酸根阴离子的出现为配合物存在形式提供了有力证据.

图1 配合物3g的晶体结构Fig.1 ORTEP type view of the molecular structure of complex 3g with labeled non-H atoms

2.3 体外细胞毒性

以HeLa、A549和MCF-7为模型,采用MTT法测定化合物3a-3g以及对照物顺铂的IC50值,结果见表3.结果表明,制得的大部分配合物(3a,3b,3c,3d 和3e)对MCF-7和Hela细胞的毒性比对A549要好一些.对MCF-7细胞,配合物3a的细胞毒性(11.74 μmol/L)与顺铂(11.06 μmol/L)相当.

新的β-二酮Pd(Ⅱ)配合物构效关系如下:1)对MCF-7细胞,苯环上取代基(甲基、甲氧基和乙氧基)的引入在一定程度上降低了其细胞毒性.例如,配合物3b-3g的细胞毒性明显低于3a.2)对Hela细胞,苯环上的取代基也同样影响了配合物的细胞毒性.甲基的引入增强细胞毒性,而甲氧基的引入反而减小细胞毒性.例如,3b比3a细胞毒性更好,而3c-3g的细胞毒性比3a小.3)对A549细胞,配合物3g相对于3a表现出更好的细胞毒性.这可能因为3个甲基的引入增加了3g的脂溶性,从而导致细胞摄取增加.该结果可能对未来设计新的抗癌药物具有一定的借鉴意义.

表2 配合物3g的键长(nm)和键角(°)

表3 配合物对MCF-7,Hela 和A549的细胞毒性

3 结论

在三氟甲基修饰β-二酮类化合物制备的基础上,经螯合反应合成了7种新颖的以2,2’-联吡啶与三氟甲基修饰β-二酮为配体的单核Pd(Ⅱ)配合物,采用MTT法对其体外细胞毒性进行了评价.配合物3a-3g对MCF-7,Hela 和A549 3种细胞系有比较明显的细胞毒性.其中,配合物3a对MCF-7的细胞毒性与顺铂相当.三氟甲基的引入赋予金属钯配合物优良的脂溶性、代谢稳定性和较高的细胞毒性.有关这些金属钯(Ⅱ)配合物的作用机制尚待进一步的研究.研究结果对将来新的金属抗肿瘤试剂的设计、合成具有一定的借鉴意义.

[1] KELLAND L.The resurgence of platinum-based cancer chemotherapy[J].Nat Rev Cancer,2007,7(8):573-584.DOI:10.1038/nrc2167.

[2] HO Y P,AU-YEUNG S C,TO K K W.Platinum-based anticancer agents:Innovative design strategies and biological perspectives[J].Med Res Rev,2003,23(5):633-655.DOI:10.1002/med.10038.

[3] KOSTOVA I.Platinum complexes as anticancer agents[J].Recent Pat Anticancer Drug Discov,2006,1(1):1-22.DOI:10.2174/157489206775246458.

[4] JAKUPEC M A,GALANSKI M,KEPPLER B K.Tumour-inhibiting platinum complexes-state of the art and future perspectives[J].Rev Physiol Biochem Pharmacol,2003,146:1-53.DOI:10.1007/s10254-002-0001-x.

[5] WONG E,GIANDOMENICO C M.Current status of platinum-based antitumor drugs[J].Chem Rev,1999,99(9):2451-2466.DOI:10.1021/cr980420v.

[6] GAO E J,LIU C,ZHU M C,et al.Current development of Pd(Ⅱ)complexes as potential antitumor agents[J].Anti-Cancer AgentS in Medicinal Chemistry,2009,9(3):356-368.DOI:10.2174/1871520610909030356.

[7] RAU T,ALSFASSER R,ZAHL A,et al.Structural and kinetic studies on the formation of platinum(Ⅱ)and palladium(Ⅱ)complexes with l-cysteine-derived ligands[J].Inorg Chem,1998,37(17):4223-4230.DOI:10.1021/ic9711574.

[8] KAPDI A R,FAIRLAMB I J S.Anti-cancer palladium complexes:a focus on PdX2L2,palladacycles and related complexes[J].Chem Soc Rev,2014,43:4751-4777.DOI:10.1039/c4cs00063c.

[9] 马丽丽,彭文,王晋杰,等.钯(Ⅱ)类抗肿瘤药物研究进展[J].中国科学:化学,2014,44(3):1-14.

[10] SHEIKH J,PARVEZ A,JUNEJA H,et al.Synthesis,biopharmaceutical characterization,antimicrobial and antioxidant activities of 1-(4′-O-β-D-glucopyranosyloxy-2′-hydroxyphenyl)-3-aryl-propane-1,3-diones[J].Eur J Med Chem,2011,46(4):1390-1399.DOI:10.1016/j.ejmech.2011.01.068

[11] WILSON J J,LIPPARD S J.In Vitro anticancer activity of cis-diammineplatinum(Ⅱ)complexes withβ-diketonate leaving group ligands[J].J Med Chem,2012,55(11):5326-5336.DOI:10.1021/jm3002857.

[12] ALMEIDA J D C,PAIXAO D A,MARZANO I M,et al.Copper(Ⅱ)complexes withβ-diketones andN-donor heterocyclic ligands:Crystal structure,spectral properties,and cytotoxic activity[J].Polyhedron,2015,89(29):1-8.DOI:10.1016/j.poly.2014.12.026.

[13] LOPESA P S,PAIXAO D A,PAULAB F C S,et al.A new copper(Ⅱ)complex with 2-thenoyltrifluoroacetone and 2,2-bipyridine:Crystal structure,spectral properties and cytotoxic activity[J].J Mol Struct,2013,1034(27):84-88.DOI:10.1016/j.molstruc.2012.09.022.

[14] HUSSAIN A,GADADHAR S,GOSWAMI T K.Photo-induced DNA cleavage activity and remarkable photocytotoxicity of lanthanide(Ⅲ) complexes of a polypyridyl ligand[J].Dalton Trans,2012,41:885-895.DOI:10.1039/c1dt11400j.

[15] ZHANG K Z,CUI S S,WANG J J,et al.Study on antitumor activity of metal-based diketone complexes[J].Med Chem Res,2012,21(7):1071-1076.DOI:10.1007/s00044-011-9618-0.

[16] VOCK C A,RENFREW A K,SCOPELLITI R,et al.Influence of the diketonato ligand on the cytotoxicities of[Ru(η6-p-cymene)(R2acac)(PTA)]+complexes(PTA=1,3,5-triaza-7-phosphaadamantane)[J].Eur J Inorg Chem,2008(10):1661-1671.DOI:10.1002/ejic.200701291.

[17] SERSEN S,KLJUN J,KRYEZIU K,et al.Structure-related mode-of-action differences of anticancer organoruthenium complexes withβ-diketonates[J].J Med Chem,2015,58(9):3984-3996.DOI:10.1021/acs.jmedchem.5b00288.

[18] WIMMER S,CASTAN P,WIMMER F L,et al.Preparation and interconversion of dimeric di-μ-hydroxo and tri-μ-hydroxo complexes of platinum(Ⅱ)and palladium(Ⅱ)with 2,2′-bipyridine and 1,10-phenanthroline[J].J Chem Soc Dalton Trans,1989,3:403-412.DOI:10.1039/dt9890000403.

[19] GAO Mingzhang,WANG Min,MILLER K D,et al.Synthesis and preliminary in vitro biological evaluation of new carbon-11-labeled celecoxib derivatives as candidate PET tracers for imaging of COX-2 expression in cancer[J].Eur J Med Chem,2011,46(9):4760-4767.DOI:10.1016/j.ejmech.2011.05.024.

[20] MOSMSNN T.Rapid colorimetric assay for cellular growth and survival:Application to proliferation and cytotoxicity assays[J].J Immunol Methods,1983,65(1-2):55-63.DOI:10.1016/0022-1759(83)90303-4.

(责任编辑:梁俊红)

Synthesis,characterization and cytotoxicity of palladium(Ⅱ)complexes withβ-diketonate ligands functionalized with trifluoromethyl group and 2,2’-bipyridine

YANG Yaxing,DUAN Xiaobo,DUAN Fei,LI Shenghui,WANG Shuxiang,ZHANG Jinchao

(College of Chemistry and Environment Science,Hebei University,Baoding 071002,China)

A novel series of palladium(Ⅱ)complexes withβ-diketonate ligands functionalized with trifluoromethyl group and 2,2’-bipyridine(bipy)have been synthesized through a directed self-assembly approach that involves spontaneous deprotonation of theβ-diketone ligands in H2O/acetone solution.These complexes have been characterized by elemental analysis,IR,1H NMR,and HRMS.Crystal structure of 3g has been determined by X-ray diffraction analysis.The cytotoxicity was tested by MTT assay.The preliminary results showed that most of the obtained complexes were more toxic against MCF-7 and Hela than A549 cells.The cytotoxicity of complexes 3a is almost equal to that of cisplatin against MCF-7.

palladium(Ⅱ)complexes;β-diketone;trifluoromethyl;bipyridine;cytotoxicity

10.3969/j.issn.1000-1565.2017.02.005

2016-08-23

河北省自然科学基金资助项目(B2015201213);河北省应用基础研究计划重点基础研究项目(15962602D)

杨亚星(1990—),女,河北保定人,河北大学在读硕士研究生.E-mail:yangyaxingo@163.com

李胜辉(1972—),男,河北元氏人,河北大学教授,主要从事抗肿瘤药物研究.E-mail:lish@hbu.edu.cn 张金超(1969—),男,河北衡水人,河北大学教授,主要从事纳米医学研究.E-mail:jczhang6970@163.com

O621

A

1000-1565(2017)02-0134-07

猜你喜欢

三氟理论值实测值
3,3,3-三氟-2-羟基丙酸乙酯的制备及应用进展
GH4169高温合金螺栓高温疲劳载荷理论值的选择研究
±800kV直流输电工程合成电场夏季实测值与预测值比对分析
常用高温轴承钢的高温硬度实测值与计算值的对比分析
N-甲基-2,2,2-三氟乙胺在农药中的应用
市售纯牛奶和巴氏杀菌乳营养成分分析
扩招百万背景下各省区高职院校新增招生规模测度研究
一种基于实测值理论计算的导航台电磁干扰分析方法
组合变形实验中主应力方位角理论值的确定
ASME规范与JB/T4730对接焊缝超声检测的灵敏度差异探讨