APP下载

高速高精度带钢表面检测系统的设计与实现

2017-02-21张培培吕震宇赵爽吴红霞

哈尔滨理工大学学报 2016年6期
关键词:神经网络

张培培 吕震宇 赵爽 吴红霞

摘要:针对带钢表面缺陷检测系统的速度滞后,精度偏低等问题,在分析成像理论和图像检测理论的基础上,设计并实现了一种带钢表面缺陷高速高精度在线检测系统,该系统首先采用大功率半导体均匀发光激光器技术、高速线扫描成像技术和基于图形处理器的Gabor纹理滤波技术实现了高速高分辨率的图像采集和处理,然后采用基于嵌套循环的K-折交叉验证、信息增益率和BP神经网络方法构建了高准确率的分类器,以达到对带钢表面缺陷高速高精度在线检测,实验结果表明,该系统满足了现有带钢生产速度的要求,具有较高的精度和准确率。

关键词:图像采集和处理;图像检测;Gabor纹理滤波;神经网络

DoI:10.15938/j.jhust.2016.06.009

中图分类号:TPl83;TP391.4

文献标志码:A

文章编号:1007-2683(2016)06-0044-06

0.引言

钢铁企业为了提高竞争力,对带钢的生产提出了新的要求,也对带钢表面检测系统提出了更高的要求,既要有更高的检测速度还要有更加准确的检测精度,而与此同时,跟随机器视觉技术的发展,带钢表面检测系统也得到了广泛的研究与应用,主要研究包括:①光源技术,由于带钢检测对光源要求频度高、体积小,这限制了传统光源在其应用,激光具有方向性好、亮度高、体积小等优点,被广泛应用于带钢检测应用中,国内的徐科等提出热轧钢检测中用绿光作为激光光源,但激光照明需解决均匀性问题.②扫描技术,由于电荷耦合元件(charge-coupled device,CCD)能够实现实时检测,成为目前研究和应用的主流技术,但是,CCD电荷耦合器需在同步时钟的控制下,以行为单位一位一位地输出信息,速度较慢,而互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)光电传感器采集光信号的同时就可以取出电信号,还能同时处理各单元的图像信息,速度比CCD电荷耦合器快很多,③图像处理算法,受限于带钢加工过程的特性,带钢表面呈现出随机纹理的特点,对于随机纹理图像的处理分析,目前常用的方法有共生矩阵法、频域滤波法、分形法等,作为频域滤波法的代表,二维Gabor滤波器有着与生物视觉系统相近的特点,广泛应用于纹理图像的处理分析,但是,CPU很难满足现在的带钢检测的实时要求,④分类算法,特征选择的主流算法是主成分分析和信息增益,主成分分析存在特征向量方向不一致的问题,而且如何确定主成分存在主观性,信息增益可以衡量特征的優劣,利用它可对特征进行排序,方便后面的特征选择,但信息增益适用于离散特征,信息增益率既适用于离散特征也适用于连续特征,被广泛应用于特征选择的过程中,图像分类算法主流算法包括支持向量机和BP神经网络,支持向量机不适用于大样本的分类问题,BP神经网络方法具有能够解决非线性分类问题,对噪声不敏感等优点,被广泛应用于带钢检测中,如王成明等提出的基于BP神经网络的带钢表面质量检测方法等,但是BP神经网络的超参的设定往往具有随机性,这严重影响了分类效果。

本文首先介绍了带钢表面缺陷高速高分辨率成像系统的设计,针对光源的不均匀性、图像处理速度慢等问题,提出改进方法,然后介绍了分类器的构建,针对样本划分的随机性、特征选择的随机性以及BP神经网络超参设定的随机性问题,做出改进,最后介绍试验结果。

1.带钢表面缺陷高速高分辨率的成像系统的设计

1)大功率半导体均匀发光激光器技术,激光能够保证带钢表面缺陷的检出率,本系统选用808mm半导体激光器作为照明源,出光功率可达30w,亮度可达1500流明,激光照明需解决均匀性的问题,本文采用了基于鲍威尔棱镜的激光线发生办法,解决了激光照明的均匀性问题,其光路如图1所示。

该方法首先在激光聚焦位置放置圆形球面透镜,负责将发散的激光束汇聚成准平行光,同时控制光柱的粗细,然后,利用鲍威尔棱镜的扩散效果对圆柱的一个方向进行扩束,最终形成激光线,为保证亮度及宽度的适应性,激光器出光口距离圆透镜、鲍威尔棱镜的距离可以精密调整,为了降低反射亮度损失,在透镜表面镀上808±5nm的T≥99%的增透膜。

GPU的算法分为两个流程:训练过程主要针对无缺陷图像进行,通过训练完成纹理图像的背景建模,一方面消除背景变化带来的干扰,另一方面形成有效的Gabor卷积参数,以便在检测过程中得到最优的检出效果.检测过程对实际拍摄的缺陷图像进行分析,首先按照GPU的核心数和缓存大小对图像进行分解,本文所有GPU的核心数为1024,显存2G,因此将原始图像分解为1000块,分别加载到1000个核心中,同时并发运行卷积运算.最后将各个窗口的卷积结果合并到一起,得到完成的滤波结果,最后借助于背景模式,将背景的干扰消除,得到干净的缺陷区域。

3)成像系统,根据缺陷检测的精度要求(1800m/min的检测速度,0.25mm的精度),带钢的规格要求(1900 mm规格),对带钢进行成像系统设计,基于互补金属氧化物半导体(CMOS)的成像芯片具有速度快,用电低等优势,选用两个4K线扫描CMOS相机作为成像核心器件,选用Camera Link Full接口作为数据输出,两个4K扫描中间重叠100mm作为图像拼接区,两组线激光光源与线扫描组成系统的主要成像模块,成像系统结构如图3所示。

2.构建分类器

检测缺陷类别及其特征描述如表1所示:

1)训练集和样本集划分.主要缺陷类别有5个,每个类别收集样本7000,共计35000个样本,为了避免训练集和样本集划分的盲目性,采用10一折交叉验证的方式划分训练集和测试集,即将样本集分成10份,从中选1份为测试集,剩下的为训练集,如图4所示,究竟选择哪一份作为测试集,需在后面的嵌套循环中实现。

2)特征选择,缺陷区域的长度、宽度、面积、区域对比度等共计138个特征形成初始特征集合,利用信息增益率来对各个特征排序。

上述各循环组合在一起就是一个嵌套循环,其N-S盒图如图5所示,最外层是测试集和训练集的10折交叉验证,第1层是确定最优的特征数,第3层是确定最优的隐含层节点数,第4、5层是确定最优的输入层和隐含层、隐含层和输出层的初始权值。

经以上循环,确定D3作为测试集,最优特征数为23个,最优的隐含层节点数是46个,同时也确定了最优的初始权值,对应的3层BP神经网络的网络模型如图6所示。

3.实验结果

1)鲍威尔棱镜与柱透镜进行对比在实际工作距离1.5m处,采用0.1m为间隔使用光功率计测试光源功率,如图7所示,横轴为测试点,纵轴为测试点的光功率。实验表明,鲍威尔棱镜均匀性优于柱透镜。

2)Gabor滤波方法与其他方法比较将动态阈值法+Blob分析法(方法A)和灰度共生矩阵纹理背景消除法(方法B)两种方法与Gabor滤波方法进行比较,如图8所示.由于缺陷与背景灰度相近(图(a)),致使方法A缺陷丢失(图(b)),由于缺陷与背景纹理相近(图(d)),致使方法B产生噪声(图(e)),Gabor方法取得了不错的效果(图(e)、(图(f)))。

3)GPU与CPU比较以4096×4096的图像为例,选10幅有代表性图像,利用CPU(最新的intel◎i7-2600处理器,4核8线程,2.6GHz,内存8G)和GPU(nVidia◎GTX970,4G緩存显卡)进行Ga-bor运算,计算时间如表2所示,GPU计算效率明显优于CPU,其中CPU的平均耗时为290.4ms,而GPU的平均耗时为31.7ms。

4)检测效果在产线速度为1775m/min,最小检测缺陷的尺寸为0.25mm的检测系统中,对带钢的主要4种类型缺陷进行检测统计,检测结果如表3所示。

可计算出整体检出率99.9%,检测准确率99.4%。

4.结论

本文提出将基于鲍威尔棱镜的大功率激光器应用到光源的设计中,保证光源光照的均匀性;提出了新的带钢表面缺陷检测系统的成像系统结构设计,保证了快速、高精度的生成图像;提出了基于GPu的二维Gabor滤波图像处理的算法,满足了实时处理的要求;提出了基于嵌套循环的分类器择优算法,避免了样本集选择、特征选择和BP神经网络参数设定的盲目性。借助上述技术,系统实现了较好的效果,满足当前带钢生产的检测需求。

猜你喜欢

神经网络
复杂神经网络下的多行为识别技术研究
基于人工智能LSTM循环神经网络的学习成绩预测
基于BP神经网络算法的成绩预测模型研究
基于CNN的轻量级神经网络单幅图像超分辨率研究
基于图像处理与卷积神经网络的零件识别
基于改进VGG-16神经网络的图像分类方法
基于 BP 神经网络的城市轨道交通客流预测研究
基于自适应神经网络的电网稳定性预测
基于遗传算法对广义神经网络的优化
基于遗传算法对广义神经网络的优化