APP下载

坦克目标侦查模型的建立与仿真

2017-02-08马也

山东工业技术 2017年2期
关键词:层次分析法

马也

摘 要:本文通过分析影响坦克搜索发现识别目标的因素,利用层次分析法(AHP)分析得出坦克发现目标与环境因素、观瞄装置及战术技术性能指标、目标特征、侦察条件的关系,得出最主要的影响因素--目标特征。然后通过建立坦克内发现目标的模型,得出发现目标的概率。发现目标后,利用基于微多普勒技术的目标识别技术提取目标参数,对目标进行识别。最后考虑坦克通视率和环境參数等因素,建立两坦克之间相互发现模型。将建立的侦察发现目标模型在坦克对抗系统中进行仿真试验,得到符合战场实情的有效仿真结果。

关键词:层次分析法;发现目标模型;发现目标概率;仿真试验;模型可靠性

DOI:10.16640/j.cnki.37-1222/t.2017.02.218

1 引言

当今世界,面临着高技术战争和非传统安全双重威胁,提高部队战斗能力是有效应对各种威胁和挑战的前提,军事训练是提供部队战斗能力重要途径,世界各国军队都在加强现代军事训练的探索和研究。由于处在和平时期,我们很难像过去那样“从战争中学习战争”,同时传统的大规模军事演习不仅要受到政治环境和经济条件的约束,而且对演习场所、管理调度和安全保密等方面提出了较高的要求。随着计算机网络等仿真技术的兴起,仿真训练已逐渐成为训练部队、提高军队战斗力的重要工具,利用计算机仿真技术对系统建模仿真模拟训练和对抗,已成为一种经济、有效的部队训练方式。“从系统中构建出数学模型,在仿真中模拟训练”已成为现实中常用的方法。因此一个新兴的研究领域--计算机生成兵力(Computer Generate Force,以下简称CGF)应运而生。计算机生成兵力通过对武器装备和人员的建模,增强参训人员的参与感、体验感,提高训练效果,减少训练费用和时间场地限制,并为军队的装备训练、战术开发、武器系统先期概念、需求论证及研制等提供支持。

地面活动目标在我们的生活中普遍存在,例如人与车辆等目标都属于此类。在战场上的敌军、卡车、坦克等目标也属此类,它们的识别都具有重要的作用和意义。在战场上,实时识别探测到的目标属性,对战场的作战指挥显然极为有利。现代战争具有态势变化快,作战环境复杂等特点。在陆地战场上,坦克是的主要的突击作战武器之一,它具有强大的直射火力,它的主要任务是用于与对方的坦克和其他装甲车辆作战,用于压制和消灭反坦克武器,摧毁敌野战工事。坦克主要以火力完成任务,要想摧毁敌目标,首先必须要侦查目标进而发现目标。目标识别是战场作战的基本前提,指挥员在识别敌我目标之后,确定目标的类型和目标位置等参数,继而下达攻击命令,火力系统在得到各种目标参数后才能准确的击中目标。

在现代作战仿真中,坦克是重要的建模对象,其行为复杂导致有多种建模方式。从坦克的构造及功用来看,坦克模型主要由发现目标模型、目标特征识别模型、行动模型、火力模型和通信模型等组成。发现目标是坦克火力打击的前提,发现目标模型是坦克模型中需要考虑的首要模型。建立发现目标后对目标进行识别和特征分析是在发现目标模型的基础上建立的。如何建立可行的发现目标模型是核心的问题。实际战场环境中存在的各种各样的不可控的影响因素,如地形地貌,天气气候等,哪些因素对我们的建立的模型影响较大,哪些因素影响较小?如何去评价和判断?根据战场的实际对抗系统,我们又需要建立怎样的数学模型,使得复杂的战场因素量化,得到可分析的处理数据?另外,如何识别目标特征并确认目标身份,识别敌我?

2 问题的分析

针对上述问题,我们根据提供的命题对其目的进行分析。命题的目的是建立两辆坦克相互观察发现目标模型,而后建立计算机程序,使其能进行侦察发现目标的仿真试验,最后对试验结果进行分析。

通过观察目的,得出影响坦克发现目标的相关因素。坦克发现目标的影响因素主要有环境影响因素、观察仪器设备性性能因素、目标特性、侦查条件等等。通过层次分析法,罗列出在坦克发现目标的模型中各种因素的条件和变化情况,并对各影响因素进行比较、判断、评价、作出决策,得出各影响因素在建立发现模型中所占的比例,进而分析出主要影响因素,为后面建立的模型需要考虑的要素提供理论基础。得出主要影响因素后,我们从主要因素出发,建立相应的数学模型。本文建立与坦克车内利用瞄准镜搜索发现目标率和发现目标的概率数学模型,进而研究影响发现率的因素。发现目标后,通过基于微多普勒特征的坦克目标参数估计对目标进行身份识别,判断目标类型和敌我属性。最后将建立的坦克发现模型进行仿真实验,并结合“人在环”实验数据相验证,得出其可靠性。

本文研究在坦克车内用瞄准镜发现目标的概率,从而建立发现率,发现目标概率的数学模型。通过建立的数学模型,模拟坦克在实际战斗中搜索目标,识别目标的过程,以相同的某型坦克参数为输入条件,在不同植被和不同能见度的条件下,使用不同倍率的观察镜进行仿真实验,在机动中观察搜索进行仿真实验评估,验证模型建立的准确性,进而为火力打击摧毁目标,完成战斗任务提供支持和保证。

3 模型的假设

(1)假设坦克高3米

(2)瞄准镜距水平面高为h,与目标水平距离为d;

(3)目标尺寸较d小;

(4)发现率与目标在观察点所成的立体体角成正比,则发现率为f,f=。

4 模型的建立及求解

根据以上分析,两坦克相互观察发现目标模型建立总体设计思路如下:为了完整仿真发现目标的全过程,将模型分为四个部分。

(1)影响坦克搜索发现识别目标的因素很多,为了寻找各因素统计分析的价值,使用层次分析法进行一致性检验。

(2)针对坦克是否能识别及发现可疑目标,建立坦克车内用瞄准镜搜索发现目标率和发现目标判断概率的数学模型。

(3)在发现目标后,对目标进行类别,特征分析,建立基于微多普勒数学模型的坦克身份识别。

(4)总结分析上诉三个模型,建立两坦克相互观察发现目标模型,使其能够满足侦查发现目标的仿真试验。

4.1 基于层次分析法的坦克搜索识别目标影响因素分析

坦克发现目标的影响因素很多,有环境影响因素,观瞄装置及战术技术性能指标,目标的特征,侦查的条件。因素中还有多种条件,环境因素中有地形,植被,能见度。每个因素的变化情况也不同,例如环境因素中的地形有城市,丛林等。

各种因素的每种条件和变化情况在坦克发现目标的模型中都要考虑,例如考虑5个因素的4种可变情况,将有中组合,每个组合需要数百乃至数千次的试验,才能得到可靠有价值的统计数据,再根据数据反映出数据的规律性。考虑到现实因素,每种情况都试验较为复杂,也难以完成。为了减少试验次数,对各影响因素进行比较、判断、评价、作出决策。提高模型建立的准确性和快速性,使用层次分析法(Analytic Hierarchy Process, AHP)进行模型建立、求解及评定分析影响因素,规划设计有重点,有主次,有针对性的试验。坦克发现目标的影响因素集:

,其中,:环境影响因素,:观瞄装置及战术技术性能指标,:目标特征,:侦察条件。

现针对目标与各影响因素的关系,进行分层,确定目标层与准则层,构造层次分析结构。图1如下:

通过经验判断四个影响因素的相对重要程度,根据判断矩阵元素标度方法表将四类因素对坦克发现目标的影响构成成对比较矩阵:

因此,坦克发现目标的影响因素与环境影响因素、观瞄装置及战术技术性能指标、目标特征、侦察条件的关系可以表示为:

由上式可以看出,坦克发现目标的影响因素与环境影响因素、观瞄装置及战术技术性能指标、目标特征、侦察条件成线性关系,且目标特征影响最大,观瞄装置及战术技术性能指标较大,侦察条件次之,环境影响因素最小。

4.2 发现目标概率模型

将一个地区内地形的变化对视线覆盖率的影响表示为随机过程,根据此随机目标视线覆盖率判断过程的特性参量,求出该地区的平均视线覆盖率,平均视线覆盖率是典型地形视线覆盖率的统计平均值,如表2所示。

坦克在战斗过程中,坦克内战斗人员通过望远镜,红外夜视仪等装置搜索发现目标,目标的概率有很多因素。第n次观测的发现目标概率为为:

其中为单独第i次观测发现目标率。假设目标偏离视线的角度在垂直方向的偏向角为、水平方向的偏向角为。则每次观测的有效立体角为。

假设搜索时观察者眼睛处所的立体角为,搜索者不了解目标具体的位置,且目标的有效观察立体角与视线方向无关。则随机指向内的单次观测目标发现概率将是一个常数,大小由确定。

由于上述各种因素对发现概率的影响,要判断目标成功被发现还要考虑地形视线覆盖率和战场环境系数等。则坦克发现目标的概率,其中,为观察系统对目标的视线覆盖率,可表示为:

其中K为战场环境系数体现了环境、烟雾、灰尘等因素的综合影响,不同的战场环境,K的取值是不同的;Q为地形视线覆盖率;L为能见度限定值;X为观察者与目标间的距离。由此,当时(为某一定值)则认为目标被发现。

5 仿真结果与模型验证

5.1 基于层次分析法的坦克搜索识别目标影响因素分析

仿真界面如图2所示,在该仿真界面中有两个输入要素:地形因素,扫描距离因素。地形因素分析主要分为四种,当输入s=1时,表示环境地形为平坦地形;当输入s=2时,表示环境地形为丘陵地形;当输入s=3时,表示环境地形为较低山地;当输入s=4时,表示环境地形为中等山地。输入地形参数的框格中只能输入1、2、3、4四个数字。扫描距离为坦克观察设备的扫描半径,即扫描视场范围。输入地形参数和输入距离后,根据论文中的数据和编写的matlab程序,点击开始按钮,得出发现概率及是否能够发现目标两个输出结果。

该次仿真表示在平坦的地形环境中,扫描距离为500m的仿真结果,得到坦克发现概率为0.63837,大于预设的概率p0,p0是根据数据表中的多次统计数据得来的,所以本次仿真结果为可以发现目标。

通过多次输入数据仿真,我们可以得到大量的数据,统计并分析,可以得出在平坦的地面上能发现目标的临界距离约为2500m,在丘陵的地形上能发现目标的临界距离约为1900m,在较低山地的地形上能发现目标的临界距离约为1300m,在中等山地的地形上能发现目标的临界距离约为1000m。

5.2 坦克发现目标仿真试验与模型验证

(下转第256页)(上接第250页)

根据汤再江教员在系统仿真学报中发表的文献《坦克CFG发现目标过程的建模和仿真》,利用坦克对抗仿真系统进行仿真试验。

试验以相同的坦克参数为输入条件,在不同植被、不同能见度条件下,使用不同倍率的观察镜进行试验。通过对抗1000次试验的发现目标距离结果数据,再用spass軟件统计,实验得到平坦地形中坦克发现目标的平均距离为2130m,即在平坦的地形中能够发现目标的临界距离为2130m。和仿真结果相比,在平坦的地面上能发现目标的临界距离约为2500m,试验和仿真数据较为吻合。同样在丘陵、较低山地、中等山地的地形上进行试验,同时和仿真数据对比,发现数据都较为吻合。

通过“人在环”坦克模拟器对抗试验系统,试验和前面相同或相当进行试验。坦克型号相同,在较平坦地、丘陵、较低山地、中等山地等地形上进行对抗试验,模拟100次,平坦地地形发现目标平均距离2311m,均方差550.73m;丘陵地地形发现目标平均距离为1943m,均方差为340.47m;较低山地地形发现目标平均距离1504m,均方差为427.65m;中等山地地形发现目标平均距离978m,均方差为387.65m。两者实验数据结果较为吻合。

参考文献:

[1]黄健,李欣,黄晓涛等.基于微多普勒特征的坦克目标参数估计与身份识别[J].电子与信息学报,2012,32(05):1050-1055.

[2]徐大杰,宋贤龙,赵端波.坦克车内发现目标概率的研究[J].火力与指挥控制,2003(28):79-80.

[3]汤再江,石勇,薛青等.坦克CGF发现目标过程的建模与仿真[J]系统仿真学报,2013,25(05):957-961.

[4]岑凯辉,杨克巍,谭跃进.基于状态图的坦克行为建模研究[J].计算机仿真,2007,24(01):17-20.

[5]王宗祥,张仁友,杨道驰等.坦克智能体的感知行为建模[J].数学建模及应用,2014,03(02):18-23.

[6]汤再江,李光辉,鲁鹤松.坦克单车对抗仿真实验研究[J].系统仿真学报,2006,18(02+):998-1004.

[7]朱竞夫,赵碧君,王钦钊.现代坦克火控系统[M].北京:国防工业出版社,2003.

猜你喜欢

层次分析法
基于模糊层次分析法的公路桥梁施工安全风险评价研究
乳制品品牌顾客满意度测评指标体系研究
微电子科学与工程专业评价指标体系研究
基于AHP—GRA的工程施工项目进度风险管理研究
浅谈基于层次分析法的变电站安全风险管理研究
基于模糊综合评价模型对道路拥堵的研究