APP下载

科学技术及化学学科新发展对化学教学的启示(下)

2016-11-25吴俊明束婷婷

化学教学 2016年10期
关键词:化学学科化学教学科学技术

吴俊明+束婷婷

摘要:世界科学技术正在走近新突破时代。概述了化学学科发展的特点和趋势。科学技术及化学学科新发展启示化学教学要注重研究思路、方法和创新的感悟、体会与训练;注意学科思想(观念)的渗透、领悟和发展;注重立德树人,促进全面发展;激发学习兴趣,不要吓跑学生;痛下决心,全面改革课程、教材、训练与考试。

关键词:科学技术;化学学科;发展趋势;化学教学;启示

文章编号:1005–6629(2016)10–0003–05 中图分类号:G633.8 文献标识码:B

3 展望化学科学的发展趋势

世界很奇妙,未解之谜不少。尽管现代科学技术已经揭开了不少谜底,取得了很大成就,仍然有许多问题尚未解决,仍然会不断地发现、产生新的问题,在这些问题中有相当大的部分通常归属于化学问题,需要化学科学来解决。一般地说,化学问题可以分为3大类:第一类是关于物质组成、结构、性能、合成、检测等等的“纯粹化学”问题,例如“三氧化二碳分子具有什么样的结构?”“三氧化二碳有哪些性质?”“怎样制取三氧化二碳?”等。第二类是人类生活、生存和现代社会迫切需要化学解决的现实问题,例如“怎样制造效果更好、副作用更小的新药物?”“人类能不能实时监测自身的化学变化?”“石墨烯能直接应用于日常生活吗?”等,这类问题可以称为“应用化学问题”。第三类是跟化学有密切关系,又需要多学科联袂协同解决的科学问题,例如宇宙的构成、起源与演化问题;生命的起源与演化问题以及“意识和理智是怎样形成的?”“大脑如何思考、如何形成记忆?”“环境如何影响人类基因?”“怎样消除环境污染?”“如何捕获更多的太阳能?”“能否有选择地切断某些免疫反应?”等,这类问题既是基本的又是复杂的,可以称为“跨学科问题”。

这些问题的解决,不仅需要新的化学知识,也将促进化学科学继续发展。

根据解决未来化学问题的需要,可以进一步概括未来化学科学的发展趋势主要是[22,23]:

3.1 由研究简单化学体系向研究复杂化学体系发展

19世纪的化学是在原子的层次上认识和研究物质,主要研究原子的组合和排布,是“原子的科学”(参见恩格斯《自然辩证法》)。20世纪的化学合成了大量的分子,研究了分子中的化学键及其本质、分子的相互作用,高分子材料和生物分子的结构与功能等,主要是在分子的层次上认识和研究物质,被认为是研究分子的科学。21世纪的化学不但研究原子、分子,而且进一步研究分子片、结构单元、高分子、原子分子团簇、超分子、生物大分子、分子和原子各种不同维数、不同尺度和不同复杂程度的聚集态和组装态,直到分子材料、分子器件和分子机器的合成和反应,制备、剪裁和组装,分离和分析,结构和构象,粒度和形貌,物理和化学性能,生理和生物活性及其输运和调控的作用机制,以及上述各方面的规律、相互关系和应用等,使21世纪的化学越来越成为研究泛分子的科学,由研究简单化学体系向研究复杂化学体系发展。

3.2 由研究简单反应体系向研究复杂反应体系发展

现代化学的研究对象不但由研究简单微粒向研究复杂微粒发展,而且呈现由研究简单反应向研究复杂反应,即向分子群研究深入的发展趋势。近代化学对多分子反应是无能为力的,远远不能满足实际需要。一个活细胞内往往有几十种酶同时催化许多化学反应,研究生物体内的化学反应,就要研究多个分子甚至一大群分子间的反应。生物机体的活动常常同时发生几十个甚至几百个化学反应,生物体为延续生命所发生的化学反应就更加多了。因此,研究复杂的反应体系成为化学科学发展的趋势之一是很自然的。

近代化学致力于获得物质世界的简单的基本解,总是尽可能地把复杂的化学体系简化成简单的体系、孤立的体系来探索其中的分子及其反应,用微观来解释宏观。随着认识的不断发展,人们逐步认识到必须回归复杂性,在实际情境中研究复杂系统,越来越重视对复杂化学体系的研究。所谓复杂体系,既包括组分复杂性,也包括结构复杂性、状态复杂性和过程复杂性。多组分体系、分子群反应、开放体系、耗散结构、非平衡态、亚稳态等等复杂化学体系都成为现代化学的研究对象。同时,化学家开始注重在动态背景中对物质进行研究,而不再局限于静态。例如,在生物细胞膜背景中研究类脂分子的生物化学行为,在高级结构背景中研究蛋白质的功能行为等等。生命过程中的物质代谢都是通过一系列催化反应,而且是高效率的专一的催化反应进行的。可以预期,在未来化学中催化反应将会有极大的发展。

由原子层次到分子层次再到泛分子层次,体系的复杂性正是逐步增加的。复杂系统中的化学过程是研究复杂系统的核心问题,未来化学还需研究宽时间范围的化学行为,研究化学进化和化学演化,建立跟踪分析方法,发展过程理论。

3.3 由注重结构-性质关系向注重组成-结构-性质-功能关系发展

所谓结构是事物内部各组成要素的结合方式,反映着各组成要素的相互联系。性质是事物本身所具有的属性,能反映事物与外部其他事物的联系,而且这种联系往往不是太复杂的。功能则是事物能够满足某种需求的一种属性,是系统作用于他物的能力,其机制往往是比较复杂的。功能所发挥的作用一般都是正面的、有利的;性质则无正面、负面之分,或者说既包括正面的也包括负面的。组成、结构、性质、功能之间既有密切联系又有所区别。对于简单系统,注意其结构与性质的联系就足以认识和了解对象系统了,因而通常就只关注简单系统的结构与性质的联系。对于复杂系统来说,其性质在内部不是均匀分布的,难以用来完整地说明系统的内部和外部作用,相对来说功能更显重要,而结构对于功能往往有着决定性的影响。因此,了解结构与功能的相互联系,实行结构研究与功能研究结合,成为认识和了解复杂系统的重要方法。对于未来化学来说,研究结构时研究高级结构应该更为重要,基于结构、功能关系来设计、合成新功能分子或功能材料;基于分子或合成子组装的合成、构筑高级结构的研究,包括控制大分子缠绕、折叠和多层次有序聚集研究;基于模拟生物材料形成过程的合成方法研究等将得到进一步发展。上述所谓高级结构都是由结构单元分子组合成的,是以分子间弱相互作用为基础的。endprint

前已述及,现代化学科学的研究对象已由相对简单的化学系统逐步转变为复杂的化学系统。与此对应,在研究的侧重点上,现代化学科学呈现出由注重结构-性质关系向注重组成-结构-性质-功能关系发展的特点。

3.4 由偶然发现向自觉寻找或发明发展

19世纪化学的研究方法主要是实验方法,因而被称为实验的科学,化学的新发现也常常具有偶然性。到了20世纪下半叶,随着量子化学在化学中的应用,化学不再是纯粹的实验科学了。许多高难度的合成工作都事先根据理论设计,然后决定合成路线。稀有气体化合物的发现、维生素B12在轨道对称性守恒原理指导下的成功合成等等,都凸显了理论化学的重要性。1998年诺贝尔化学奖的颁奖公告就宣称:“量子化学已经发展成为广大化学家所使用的工具,将化学带入一个新时代,在这个新时代里实验和理论能够共同协力探讨分子体系的性质。化学不再是纯粹的实验科学了。”

为了满足未来社会的种种要求,需要发展新的反应(例如绿色技术要求)。随着对化学反应本质的理解,特别是分子识别概念的引入,进一步综合考虑反应分子间各种作用力所起的作用,就有可能设计新的反应,发明创造新的反应,尤其在不对称合成反应和催化反应的发明创造方面。预计在未来,理论和计算方法的应用将大大加强,理论对实验研究起指导作用,理论和实验更加密切结合,使实验探究获得较强的自觉性,未来化学将实现由发现反应到发明反应的飞跃。化学思想、化学方法学、化学哲学的讨论也会引起越来越多的人的兴趣。

3.5 由应用传统手段向应用现代科学技术和现代信息技术发展

为了解决新问题、解决越来越复杂的问题,需要新的思路、新的过程和新的方法。因此,在21世纪,化学科学的新方法、新手段会层出不穷。

例如,合成化学始终是化学的根本任务。为了适应各种新功能分子的合成需求,合成设计必须有新的发展,尤其是对各种功能性分子聚集体的制备,需要研究过去化学家较为陌生的组装问题。未来的合成化学将从化合物的经典合成方法扩展到包含组装等在内的广义合成,以求得到能实际应用的分子器件和组装体。有人概括新合成方法的特点是“十化”:芯片化,组合化,模板化,定向化,设计化,基因工程化,自组装化,手性化,原子经济化,绿色化。引进酶技术、仿生技术、膜技术等新的实验技术,则将有力地促进生物机体和生命秘密的研究。

再如,分析化学将进一步吸收大量物理方法、生物学方法、电子学和信息科学方法,发展成为分析科学,大大拓宽应用范围。分析方法的发展趋势也被概括为“十化”:微型化芯片化、仿生化、在线化、实时化、原位化、在体化、智能化、信息化、高灵敏化、高选择性化、单原子化或单分子化。单分子光谱、单分子检测,搬运和调控的技术受到重视;以分离和分析方法连用,合成和分离方法连用,合成、分离和分析方法连用为内容的“三连用”将是很普遍的现象。

化学实验将趋向高技术化、自动化、微型化和超微型化,以节省能源、节省材料、节省时间、减少污染。

计算机技术的发展,尤其是分子结构与性能的计算机数据库的建立以及分子模建技术的发展,使得化学中的分子设计、合成设计以及进一步的反应设计有了很好的助手和工具,模型和计算机虚拟将成为化学的新方法。化学体系的组成-结构-性质-功能信息和大数据以及化学过程的各种信息和大数据将有力地促进对复杂化学系统的研究。

随着计算机性能的逐步提高,计算化学将会有进一步的大发展。未来的智能化计算机将能进行学习,帮助化学家更好地进行实验模拟、实验设计以及实验控制,应用机器来设计、合成分子将越来越多。计算机技术以及化学信息学技术、大数据技术将为化学在新世纪迅速发展插翅添翼。

此外,化学将由单科闭门独干向多学科相互渗透、交叉、协同发展,这一趋势在此不再赘述。

4 科学技术及化学科学新发展对化学教学的启示

未来化学将会在能源和资源的合理开发和高效安全利用中起关键作用;推动材料科学进一步发展;在解决食物短缺问题、治理环境、提高人类生存质量和生存安全、拓展人类化学认知的广度深度等方面继续起保证作用。因此,化学应该成为高中阶段的一门重要的科学课程。

科学技术和化学学科新的发展和趋势无疑会影响化学教学的内容。例如,合成、组装复杂分子的过程包含着分子识别过程,充实、提高和普及分子识别这一观念可能是现代化学教育的重要任务之一。但是,这不是最主要的。笔者认为,最主要的是:

4.1 注重研究思路、方法和创新的感悟、体会与训练

科学技术和化学学科的新发展是科学创新的成果,它给化学教学的重要启示之一就是要注重培养学生的创新意识和创新能力。

要培养好学生的创新能力,首先要注意通过对典型创新成果的分析、讨论来影响、启发学生,培养学生具有浓厚的创新兴趣和强烈的创新意识。

其次要注意引导学生感悟、概括典型创新成果的研究思路和方法,形成体会并适当安排相应训练。所谓研究思路是认知策略的具体表现形式,实质上就是认知策略,是开展认知活动的指导思想、行动规则和组织实施的依据,是认知活动过程和方法的精髓、灵魂和本质特征,是认知活动、认知智慧的核心成分,决定着认知活动的成败。认知活动越复杂,认知策略的关键作用就越强,越是要予以注意。

有关的知识和经验是认知智慧的基础,没有它们,认知策略就不能形成。有关的操作技能等决定着认知策略能不能落实、能不能具体化、能不能转化为实践。但是,它们绝不是认知策略本身。因此,绝不能用创新成果的知识灌输和操作训练来代替创新研究思路、方法的感悟与体会。

4.2 注意学科思想(观念)的渗透、领悟和发展

根据现代化学的特点和发展趋势,高中化学课程应该注意用恰当的方法把先进的观念介绍给学生,例如关于物质微粒及其相互作用的多样性和多层次性、微粒尺度对物质性质的影响、跟自然和谐相处等等,要认真清除传统教学内容中的形而上学观念,对学生进行生动的辩证唯物主义教育。endprint

学科思想(或学科观念)有助于学生理解、接受和掌握有关知识,十分重要,但绝不能一成不变地教条式记忆。在化学教学中注意渗透化学学科思想(观念)并适时总结、适时发展提升、注意应用,有助于学生学好化学,把握真谛。以化学微粒观为例,有人在学生刚学习分子、原子时就强调掌握微粒观,这是违反观念形成规律的,是不适宜的。另一种情况则是:在初三化学学习了分子、原子之后,就再也不提微粒观,不重视微粒观的应用,更不重视微粒观的发展,觉得已经强调过了、“无话可讲”了。其实在后续的学习中,不仅在涉及微观过程或者涉及微粒相互作用、相互影响时可以涉及微粒观,在涉及物质微粒及其相互作用多样性和多层次性时、涉及复杂化学体系的高级结构、涉及各种泛分子时都是应用微粒观、发展提升微粒观,使学生更好地掌握微粒观的好时机。

4.3 注重立德树人,促进全面发展

在科学技术不断发展、造福人类,并涌现许多用科学技术服务民族、服务国家、服务人类的楷模的同时,也存在着害人科技、犯罪科技等危害人类的负面现象,例如考场高科技作弊、高仿真犯罪、电信诈骗、伪基站、网络病毒、恶意软件、电脑犯罪、网络盗窃、计算机高频下单炒股、致幻剂、high药、新化学毒品、瘦肉精、地沟油、三聚氰胺奶、苏丹红鸭蛋、甲醛鱿鱼、硫磺枸杞、孔雀石绿防腐鱼、染色“黄花鱼”、假鸡蛋、滥用反式脂肪酸和塑化剂,等等。“发明”这些害人科技、犯罪科技的人都是掌握了有关科学技术的人!至于明知故犯,私排有害化学品或滥用化学制品造成公害、污染环境的人就更多了。严峻的事实从反面警醒我们:科学技术教育一定要注重立德树人,注重进行道德伦理教育,一定要关注学生的全面发展,努力促进学生全面发展。

根据现代化学的特点和发展趋势,中学化学课程还应该通过生动具体的事例让学生体会化学跟其他学科的密切联系,知道化学是生命科学、材料科学、环境科学以及信息科学进一步发展的重要基础,认识到在基础教育阶段偏科是不应该的。

4.4 培养学习兴趣,切忌吓跑学生

根据现代化学的特点和发展趋势,中学化学课程应该注意引导学生大致了解现代化学的目标、任务、对象、内容、方法、手段、重要领域和成就,了解化学的视野逐步扩大,增强他们学习化学的兴趣。

复杂的学习内容往往显得比较艰深、枯燥,特别需要浓厚的学习兴趣支撑。复杂的学习内容不是注定跟学习兴趣有矛盾、有冲突的。与此相反,几乎每一个复杂研究成果都是在巨大兴趣的推动下取得的。研究活动如此,学习活动也应该如此,关键在于要对内容、形式、方法等作适当的处理加工,而不是简单、粗暴地灌输。

在化学学科新发展中有许多生动的例子。例如,固相表面催化是复杂的,通常似乎难以激发学习兴趣。如果在基于煤转化的有机合成工业的教学中,适当介绍一点微观机理过程,结合模型或示意图介绍中科院包信和院士研究团队巧妙地用部分还原的复合氧化物作催化剂,让CO分子在催化剂氧缺陷位上吸附并解离;气相氢分子选择性地与解离生成的C原子反应生成亚甲基自由基;催化剂表面CO解离生成的氧原子倾向性地与另一个CO反应形成CO2;亚甲基自由基迅速进入分子筛孔道,在孔道限域环境中进行择形偶联反应定向生成低碳烯烃而不是在催化剂表面停留或发生表面聚合反应。通过以CO替代H2来消除烃类形成中多余的氧原子,在反应不改变CO2总排放的情况下,摒弃了水煤气变换反应,从原理上开创了一条低耗水进行煤转化的新途径。同时,创造性将氧化物催化剂与分子筛复合,巧妙地实现CO活化和中间体偶联等两种催化活性中心的有效分离,把费托过程中“漫无目的”生长的自由基控制在一个“笼子”(分子筛)里,使其变成想要的目标产物(低碳烯烃);介绍美国《科学》杂志以“令人惊奇的选择性”为题发表专家评述,认为该过程未来在工业上将具有巨大的竞争力等背景知识,学习要求则不提高……这样做可以让学生体会征服困难、获得成功的喜悦,激发他们学习和探究的兴趣。

现今的中学化学教学以刷题训练为主,而且考试难度大幅度提高,导致不少学生失去学习兴趣。在实行升学选考后,选考化学的人数显著减少,在一些地方已影响到化学课的正常开设,这个教训必须吸取。

4.5 痛下决心,切实改革课程、教材、训练与考试

现代科学技术发展和社会发展的需要,使现代化学面临着一轮新的变革和发展。对此,高中化学课程需要建立一种灵活的机制,以便于及时地反映现代化学迅速发展、变化着的特点和进展,及时调整中学化学的内容,加强课程内容的现代化,把符合现代化学特点和发展趋势的基础性内容介绍给中学生,并且提供选择机会使他们能对现代化学的某些领域或者研究案例作比较深入的了解,等等。

目前我们的基础教育已经被升学应试绑架,虽然形形色色的改革措施不断出台,实际上应试教育愈演愈烈,学生以及教师、家长的负担很重,严重影响了学生全面发展和人才健康成长,迫切需要痛下决心,全面改革课程、教材、训练与考试。这是一个复杂、庞大、艰难的系统工程,我们期待、祝愿它早日成功。

参考文献:

[22]徐光宪. 21世纪的化学是研究泛分子的科学[J].中国科学基金,2002,16(2):70~76.

[23]梁文平,唐晋,王夔. 21世纪化学学科的发展趋势[J].创新科技,2006,(11):44~45.endprint

猜你喜欢

化学学科化学教学科学技术
《中国空间科学技术》征稿简则
2021年CCF科学技术奖获奖项目名单(2)
《中国空间科学技术》征稿简则
《中国空间科学技术》征稿简则
浅谈化学教学评价方式
化学学科发展与化学教育探析
浅析高中化学教学中探究式教学的实施策略
多媒体技术与化学课堂教学
化学探究性学习方式的构建
如何培养学生的化学核心素养