APP下载

豫西栾川中鱼库锌(铅)矿床闪锌矿Rb-Sr年龄及其地质意义

2016-11-12曹华文裴秋明张寿庭张林奎胡昕凯

关键词:栾川闪锌矿矽卡岩

曹华文, 裴秋明, 张寿庭, 张林奎, 郑 硌, 胡昕凯

(1.中国地质调查局 成都地质调查中心,成都610081; 2.中国地质大学 地球科学与资源学院,北京 100083)



豫西栾川中鱼库锌(铅)矿床闪锌矿Rb-Sr年龄及其地质意义

曹华文1,2, 裴秋明2, 张寿庭2, 张林奎1, 郑 硌2, 胡昕凯2

(1.中国地质调查局 成都地质调查中心,成都610081; 2.中国地质大学 地球科学与资源学院,北京 100083)

中鱼库矽卡岩型锌(铅)矿床位于华北陆块南缘河南省西部栾川Mo-W-Pb-Zn-Ag多金属矿集区南部,矿体呈层状-似层状赋存于新元古界栾川群三川组碎屑岩、碳酸盐岩地层中。因缺乏精确的成矿年代学研究,对该矿床成因的争议较大。本文在矿床地质背景和岩石矿物学研究的基础上,对13件矿石样品中的闪锌矿进行Rb-Sr同位素年代学研究。闪锌矿87Rb/86Sr和87Sr/86Sr同位素比值分别集中在0.802~18.98和0.713 359~0.748 684,二者具有良好的线性关系;其等时线年龄为(136.4±0.8) Ma (2σ,MSWD=3.6),(87Sr/86Sr)t=0.711 913±0.000 074。Rb-Sr同位素年龄反映该矿床形成于早白垩世,稍晚于研究区内的斑岩-矽卡岩型Mo-W矿床(146±2 Ma B.P.),与区内最后一阶段花岗质岩浆活动(142~136 Ma B.P.)有关,属于栾川Mo-W-Pb-Zn-Ag多金属成矿系统。结合区域资料,认为该矿床形成于中生代陆-陆碰撞过程中由挤压向伸展转变的阶段,或碰撞后造山的局部伸展背景。

锌(铅)矿床;闪锌矿;Rb-Sr同位素;中鱼库;成矿系统

矿床成矿时代的厘定对探讨成矿物质来源、建立矿床成因模式和指导找矿勘查等具有重要的意义[1-5]。铅锌矿床的精确测龄一直是一个科学难题,前人进行过较多的探索性工作[6-11]。近年来,随着测试技术的提高与理论方法的完善,硫化物Rb-Sr同位素已成为一种直接测定铅锌矿床矿化年龄的有效方法,在实际研究中取得了许多进展[12-15]。其中,闪锌矿Rb-Sr测龄已被较为广泛地用于Pb-Zn-Ag多金属矿床成因解释[16]。

豫西栾川Mo-W-Pb-Zn-Ag多金属矿集区位于华北陆块南缘(图1-A)。近年来,该地区Mo-W矿床(147~139 Ma B.P.)的成因[17-21]、晚中生代(157~135 Ma B.P.)花岗岩的成岩过程[22-25]和区域大地构造背景[26-28]的研究较详细;但区域内的Pb-Zn-Ag多金属矿床的研究较少,且成因争议较大。部分学者认为区内Pb-Zn-Ag矿床为MVT型[29]、SEDEX型[30]或同沉积改造成因型矿床[31];也有学者认为属热液脉型Pb-Zn-Ag矿床,受层间断裂控制,且与研究区内晚中生代花岗岩浆活动有关[32-35]。

栾川多金属矿集区北部为南泥湖-三道庄矿田,南部为近几年探明的鱼库-石宝沟矿田(图1-B)[33]。中鱼库锌(铅)矿床相对富锌,贫铅,位于鱼库矿田西端,即蜚声中外的南泥湖-三道庄矿床的南部(图1-B)。中鱼库矿床东南的银洞沟和西沟矿床属层间断裂控矿的脉状铅锌银矿床(图1-C),发现较早且研究较为详细[30,34, 36-37];但对新近发现的中鱼库矿床的研究较为薄弱,前人仅对中鱼库矿床的闪锌矿痕量元素[38]和隐伏岩体[22]做过部分研究。本文在中鱼库矿床地质特征研究的基础上,采用闪锌矿Rb-Sr测龄方法,厘定该矿床的成矿时代,并与研究区内晚中生代花岗岩成岩时代、斑岩-矽卡岩型Mo-W矿床成矿时代进行对比,探讨中鱼库锌(铅)矿床的成因和构造背景。

图1 鱼库-赤土店锌铅银矿带地质简图Fig.1 Simplified geological map of the Yuku-Chitudian Zn-Pb-Ag belt(A)秦岭造山带大地构造背景简图(据文献[22]修编);(B)栾川钼钨铅锌银矿集区地质简图(据文献[22]修编);(C)中鱼库锌(铅)矿床矿体分布简图(据文献[31]修编)。Pz1s.三岔口组; Pt3y.鱼库组; Pt3d.大红口组; Pt3m.煤窑沟组; Pt3n.南泥湖组; Pt3s.三川组; Pt2b.白术沟组; 5.燕山早期花岗岩; ν3.加里东期变辉长岩-变正长斑岩

1 区域地质背景

秦岭造山带从北到南,包括华北板块南缘(即华熊地体),北秦岭造山带、南秦岭造山带和扬子板块北缘;分别被栾川断裂、商丹缝合带和勉略缝合带分割。豫西栾川矿集区在大地构造位置上位于华北克拉通南缘与北秦岭造山带东段的结合部位(图1-A)。栾川矿集区内一系列金属矿床围绕中酸性小岩体呈规律性分布,构成了一个从中心到外围的斑岩型-矽卡岩型Mo-W矿床(内带)→矽卡岩型Mo-Pb-Zn矿床(过渡带)→中低温热液脉型Pb-Zn-Ag矿床(外带)的成矿系列。中鱼库锌(铅)矿床被认为是过渡带的典型代表[33, 39]。

研究区内主要出露地层为长城系熊耳群、蓟县系官道口群、新元古界栾川群和下古生界陶湾群(图1)。其中官道口群白术沟组,栾川群三川组、煤窑沟组为区域主要赋矿层位,层控性明显。区内主体构造格局的形成主要受控于华北板块与扬子板块的碰撞,以及太平洋板块向欧亚板块的俯冲。整体构造线方向以北西西向为主,同时发育北东向、近南北向断裂构造。区内岩浆活动频繁而强烈,岩浆岩比较发育,主要有新元古代前加里东期变正长斑岩、变辉长岩和中生代燕山期花岗岩。其中,以燕山期上房沟、南泥湖、黄背岭、鱼库、石宝沟及火神庙等中酸性岩体与成矿作用的关系最为密切;多呈小岩株、岩脉状产于区域断裂交汇部位。

2 矿床地质特征

中鱼库锌(铅)矿床位于河南省栾川县陶湾镇鱼库村,赋矿地层为新元古界栾川群三川组(Pt3s),主要为一套碳酸盐岩夹少量碎屑岩沉积(图1,图2)。三川组可分为上、下两段,下段(Pt3s1)以灰白色变石英砂岩为主,夹钙质粉砂岩及薄层炭质板岩,岩石致密坚硬,底部含燧石,厚度326.55 m;上段(Pt3s2)以大理岩为主,不同地段存在一定差异,其中上部主要为灰白色-青灰色中厚层状大理岩、黑云母大理岩,下部则以条带状大理岩夹钙质粉砂岩薄层为主,厚度289.86 m(图2)。矿区东南部出露燕山期鱼库二长花岗岩,西南部出露黄背岭黑云母二长花岗岩[22]。近期在中鱼库矿区钻孔中发现隐伏岩体——黑云母二长花岗岩,属壳幔混源的I型花岗岩,主要矿物为斜长石、钾长石、石英和黑云母,副矿物有磁铁矿、钛铁矿、磷灰石、金红石和锆石等。

矿区围岩蚀变类型主要为矽卡岩化,另发育角岩化,蚀变围岩为透辉石矽卡岩、石榴子石透辉石矽卡岩、透辉石角岩等。矽卡岩化可以分为石榴石-透辉石矽卡岩,主要形成硅灰石、钙铝榴石和透辉石等;阳起石-绿帘石矽卡岩,形成大量含水硅酸盐矿物[38]。矿区内共发现3条锌铅金属矿体,呈层状-似层状赋存于矽卡岩及角岩中。其中,S068是中鱼库矿床规模最大的矿体,分布于榆木沟-札子沟一带(图2),延伸近2.2 km;沿走向厚度变化较大,最厚处可达16.32 m,最薄处仅1.10 m;产状与地层近于一致,倾向355°~50°,倾角15°~65°。

图2 中鱼库锌(铅)矿床S068矿脉实测剖面图Fig.2 Geological cross section of S068 vein in the Zhongyuku Zn-Pb deposit(据文献[31]修编)

矿石结构主要呈半自形-自形粒状结构,少量交代残余结构等(图3)。矿石构造有块状构造、条带状构造、浸染状构造、团块状构造及少量蜂窝状构造、土状构造等。矿石矿物主要为黄铁矿、铁闪锌矿、磁黄铁矿、黄铜矿及方铅矿等,脉石矿物为石英、白云石、透辉石和石榴子石等,还可见少量方解石和白云母等。Zn品位(质量分数:w)为0.35%~4.21%,平均3.43%;Pb品位为0.01%~1.10%,平均0.08%;Ag品位为(2.79~16.40)×10-6,平均9.18×10-6[31]。

根据矿体野外地质特征和矿物镜下鉴定,可以将区内成矿作用划分为3个阶段:(1)矽卡岩阶段,早期主要形成硅灰石,钙铝榴石和透辉石等;晚期则形成大量含水硅酸盐矿物,如阳起石、绿帘石以及钾长石等。(2)石英-硫化物阶段,为成矿主阶段,形成大量的闪锌矿、磁黄铁矿等。(3)石英-碳酸盐阶段,形成大量的热液石英和方解石等。其中石英-硫化物阶段可以细分为早阶段闪锌矿+黄铁矿+黄铜矿+磁黄铁矿组合(图3-D、E);中阶段闪锌矿+黄铁矿+(黄铜矿)组合(图3-F、G);晚阶段形成闪锌矿+磁黄铁矿+黄铜矿+(黄铁矿)+(方铅矿)+(辉钼矿)组合(图3-H、I)。

图3 中鱼库锌(铅)矿床矿石典型结构构造特征Fig.3 Typical textures and structures of sulfide ores from the Zhongyuku Zn-Pb deposit(A)块状矽卡岩化矿石; (B)矽卡岩化矿体; (C)3个阶段的矿化作用; (D)成矿早阶段,闪锌矿(sph1)与黄铜矿(cp1),黄铜矿(cp1)与磁黄铁矿(po1),黄铁矿(py1)与磁黄铁矿(po1)分别具有共结边结构,四者近同期形成; (E)成矿早阶段,闪锌矿(sph1)与黄铜矿(cp1)、黄铁矿(py1)具有共结边结构,三者近同期形成; (F)成矿中阶段,黄铁矿(py2)交代早阶段磁黄铁矿(po1),并穿插破碎的脉石矿物(gn); (G)成矿中阶段,形成大量的黄铁矿(py2),交代早阶段磁黄铁矿(po1); (H)成矿晚阶段,形成大量的磁黄铁矿(po2), 交代中阶段黄铁矿(py2); (I)成矿晚阶段,大量磁黄铁矿(po2)、闪锌矿(sph3)和黄铜矿(cp2)交代中阶段黄铁矿(py2)。图(D)-(I)均为反射光单偏光镜下照片,红色标尺长50 μm

3 分析测试

本次研究的13件闪锌矿样品均采自中鱼库矿区斜井以及坑道中的新鲜未经风化的矿石,主要采集矽卡岩阶段和石英-硫化物阶段的矿石样品。矿石样品挑纯至纯度99%以上,研磨至粒度<200目。闪锌矿单矿物粉末样品经过如下处理:①Teflon高压密闭熔样法熔样;②稀盐酸-硝酸溶解稀释;③Rb、Sr化学分离和提纯等。其Rb、Sr含量和同位素比值在南京大学现代分析中心同位素分析室的VG 354同位素质谱仪上完成。详细实验测试方法和流程参见文献[40-42]。

美国同位素标样(NBS987)87Sr/86Sr比值测试结果为0.710 233±6 (2σ),与标准值(0.710 340±260)误差<0.015%。Sr和Rb的实验背景值分别为0.2×10-9g和0.3×10-9g。87Rb/86Sr和87Sr/86Sr比值不确定度(2σ)分别为1%和0.01%,置信度95%。Rb-Sr等时线年龄采用Isoplot(4.15)程序计算[43],其中λRb=1.42×10-11a-1。

中鱼库闪锌矿Rb和Sr同位素组成见表1。其Rb的质量分数(wRb)为(0.0853~12.86)×10-6,wSr为(0.2834~1.989)×10-6,87Rb/86Sr和87Sr/86Sr比值分别为0.802~18.98和0.713 359~0.748 684。获得等时线年龄为(136.4±0.8) Ma (2σ,MSWD=3.6),(87Sr/86Sr)t=0.711 913±0.000 074(图4),地质时代为早白垩世。

图4 中鱼库锌(铅)矿床闪锌矿87Rb/86Sr和87Sr/86Sr关系及等时线年龄Fig.4 Rb-Sr isochron age of sphalerites from the Zhongyuku Zn-Pb deposit

表1 中鱼库锌(铅)矿床闪锌矿Rb-Sr同位素分析结果

4 讨 论

4.1 成矿时代

中鱼库闪锌矿(87Rb/86Sr)-(87Sr/86Sr)等时线年龄图上(图4),所有的样品点均落在等时线上,且13个数据点加权平均方差(MSWD)为3.6,说明数据点离散程度较低,等时线可信度较高,闪锌矿形成过程中Sr同位素均一、封闭。其(87Sr/86Sr)-(1/Rb)(图5-A)和(87Rb/86Sr)-(1/Rb)之间不存在线性关系,表明不同阶段闪锌矿形成期间(87Rb/86Sr)t基本上保持不变[14]。其(Rb/Sr)-(87Sr/86Sr)值(图5-B)和(Rb/Sr)-(87Rb/86Sr)之间呈正相关关系,表明样品中87Rb和放射性成因的87Sr与样品的初始Rb含量有关[44]。因此,本次研究测定的闪锌矿Rb-Sr同位素等时线年龄(136.4±0.8 Ma)应代表其结晶成矿的年龄。

图5 中鱼库锌(铅)矿床闪锌矿Rb、Sr及其同位素关系图Fig.5 Covariant diagrams of sphalerite Rb and Sr concentrations and its isotopes for Zhongyuku Zn-Pb deposit

4.2 矿床成因

栾川Mo-W-Pb-Zn-Ag矿集区内,中鱼库北部的冷水北沟Pb-Zn-Ag矿床石英Ar-Ar年龄为138 Ma[32],东南部的西沟和西北部的三道沟Pb-Zn矿床Rb-Sr年龄分别为137 Ma和138 Ma[33]。本次研究的中鱼库锌(铅)矿床成矿年龄(136 Ma)与上述三者在误差范围内一致,表明研究区内Pb-Zn-Ag矿化时代集中在(137±1) Ma B.P.(表2,图6)。中鱼库矿区隐伏的黑云母二长花岗岩锆石U-Pb年龄为(154.1±1.8) Ma[22],辉钼矿Re-Os年龄为(146.2±0.9) Ma[22](表2),早于中鱼库铅锌矿化时代。

从栾川矿集区内花岗岩成岩年龄、Mo-W矿床及Pb-Zn-Ag多金属矿床成矿年龄统计中(表2,图6)可以发现,研究区内花岗岩岩浆活动可以细分为3个阶段:158~152 Ma B.P.、150~144 Ma B.P.、142~136 Ma B.P.;斑岩-矽卡岩型Mo-W矿床的成矿年龄为147~139 Ma,峰值为146 Ma,与第二阶段晚侏罗世晚期岩浆活动有关(图6);热液脉型Pb-Zn-Ag矿床主要形成于137 Ma B.P.,与第三阶段早白垩世早期岩浆活动时代接近。

矿集区内花岗岩(87Sr/86Sr)t值为0.706 1~0.709 8(均值为0.707 9)[45-46];赋矿围岩地层(87Sr/86Sr)t值分散,为0.712 2~0.835 7(均值为0.761 3)[47]。而西沟Pb-Zn矿床(87Sr/86Sr)t为0.709 9~0.748 3(均值为0.720 8)[33,47];百炉沟Pb-Zn矿床(87Sr/86Sr)t为0.713 8~0.721 3(均值为0.716 9)[33];三道沟Pb-Zn矿床(87Sr/86Sr)t为0.710 5~0.712 6(均值为0.711 6)[33];本次研究的中鱼库Zn-Pb矿床(87Sr/86Sr)t为0.711~0.712 8(均值为0.711 9):矿集区内Pb-Zn矿床Sr同位素比值与研究区内花岗岩的值接近,远小于赋矿地层(图7),表明Pb-Zn矿床的物质来源主要为燕山期花岗岩。

中鱼库锌(铅)矿床为典型的矽卡岩型矿化特征(图2和图3);闪锌矿痕量元素与岩浆热液脉型Pb-Zn矿床特征符合[38];闪锌矿(87Sr/86Sr)t值与花岗岩接近;且成岩成矿年龄相近,远小于赋矿围岩地层年龄:这些证据表明中鱼库矿床属于与区内岩浆岩(如中鱼库隐伏岩体[22],图1-C)有关的矽卡岩型铅锌矿床。研究区内热液脉型-矽卡岩型Pb-Zn矿床[32,34]、斑岩-矽卡岩型Mo-W矿床[17-18]与区内晚侏罗世-早白垩世花岗岩活动构成一个统一的岩浆-热液-成矿系统。

4.3 成矿构造背景

晚古生代晚期至三叠纪末期,秦岭洋(商丹洋+勉略洋)逐渐俯冲、消减和闭合[54],南、北秦岭微地块(造山带)分别与扬子板块和华北板块拼合,形成勉略缝合带和商丹缝合带[55](图1-A),至此,研究区进入板内陆-陆碰撞造山环境[28,56-57]。在强烈的碰撞挤压背景下,晚侏罗世-白垩纪(150~100 Ma B.P.)时期,华北板块沿鲁山-淮南断裂(图1-A中F1断裂)向南俯冲于华雄地体下[28];同时,在栾川断裂(图1-A中F2

断裂)以北的研究区内(即华北板块南缘或华雄地体),由于发生挤压向伸展转变的过程[23],形成大量的I型和A型花岗岩,并伴生大量的Mo-W-Pb-Zn-Ag-Au矿床[24,26,58-60]。研究区内Pb-Zn-Ag矿化时代集中在(137±1) Ma B.P.,即形成于秦岭造山带中生代陆-陆碰撞过程中由挤压向伸展转变的阶段,或碰撞后造山的局部伸展背景。

5 结 论

a.中鱼库Zn-Pb矿床13件闪锌矿Rb-Sr等时线年龄为(136.4±0.8) Ma,指示该矿床形成于早白垩世,矿床成因为与岩浆活动有关的矽卡岩型矿床。

b.栾川矿集区内矽卡岩型-热液脉型Pb-Zn-Ag矿成矿年龄(137±1 Ma)晚于区内斑岩-矽卡岩型Mo-W矿床的成矿年龄(146±2 Ma),与区内最后一阶段花岗岩浆活动(142~136 Ma B.P.)有关;它们共同构成Mo-W-Pb-Zn-Ag多金属成矿系统。

c.该矿床形成于中生代陆-陆碰撞过程中由挤压向伸展转变的阶段,或碰撞后造山的局部伸展背景。

野外工作期间得到河南省地质调查院和栾川县地质矿产局的大力支持,成文过程中得到燕长海教授级高工悉心指导和修改,使本文得以完善,在此一并致以诚挚的感谢!

[1] 李文博,黄智龙,许德如,等.铅锌矿床Rb-Sr定年研究综述[J].大地构造与成矿学,2002,26(4):436-441.

Li W B, Huang Z L, Xu D R,etal. Rb-Sr Isotopic method on zinc-lead ore deposits: a review[J]. Geotectonica et Metallogenia, 2002, 26(4): 436-441. (In Chinese)

[2] Zhang C Q, Wu Y, Hou L,etal. Geodynamic setting of mineralization of Mississippi Valley-type deposits in world-class Sichuan-Yunnan-Guizhou Zn-Pb triangle, southwest China: Implications from age-dating studies in the past decade and the Sm-Nd age of Jinshachang deposit[J]. Journal of Asian Earth Sciences, 2015, 103: 103-114.

[3] Wang C M, Deng J, Santosh M,etal. Timing, tectonic implications and genesis of gold mineralization in the Xincheng gold deposit, China: C-H-O isotopes, pyrite Rb-Sr and zircon fission track thermochronometry[J]. Ore Geology Reviews, 2015, 65: 659-673.

[4] 曹华文,张寿庭,邹灏,等.内蒙古林西萤石矿床石英ESR年龄及其地质意义[J].现代地质,2013,27(4):888-894.

Cao H W, Zhang S T, Zou H,etal. ESR dating of quartz from Linxi fluorite deposits, Inner Mongolia and its geological implications [J]. Geoscience, 2013, 27(4): 888-894. (In Chinese)

[5] 曹华文,张寿庭,武俊德,等.云南个旧老卡岩体钾长石与“玄武岩型”铜矿金云母40Ar-39Ar年龄及其地质意义[J].矿物学报, 2014,34(3):312-320.

Cao H W, Zhang S T, Wu J D,etal.40Ar-39Ar dating of potash feldspar from Laoka granite and phlogopite from basalt type copper deposite in Gejiu tin polymetallic ore district and its geological significance[J]. Acta Mineralogical Sinica, 2014, 34(3): 312-320. (In Chinese)

[6] Shepherd T J, Darbyshire D P F. Fluid inclusion Rb-Sr isochrons for dating mineral deposits[J]. Nature, 1981, 290(5807): 578-579.

[7] Nakai S I, Halliday A N, Kesler S E. Rb-Sr dating of sphalerites from Tennessee and the genesis of Mississippi Valley type[J]. Nature, 1990, 346: 354-457.

[8] Brannon J C, Podosek F A, McLimans R K. Alleghenian age of the Upper Mississippi Valley zinc-lead deposit determined by Rb-Sr dating of sphalerite[J]. Nature, 1992, 356: 509-511.

[9] Nakai S I, Halliday A N, Kesler S E,etal. Rb-Sr dating of sphalerites from Mississippi Valley-type (MVT) ore deposits[J]. Geochimica et Cosmochimica Acta, 1993, 57(2): 417-427.

[10] Christensen J N, Halliday A N, Leigh K E,etal. Direct dating of sulfides by Rb-Sr: A critical test using the Polaris Mississippi Valley-type Zn-Pb deposit[J]. Geochimica et Cosmochimica Acta, 1995, 59(24): 5191-5197.

[11] Petke T, Diamond L W. Rb-Sr dating of sphalerite based on fluid inclusion-host mineral isochrons: A clarification of why it works[J]. Economic Geology, 1996, 91(5): 951-956.

[12] Wang Y B, Zeng Q D, Liu J M. Rb-Sr dating of gold-bearing pyrites from Wulaga Gold Deposit and its geological significance[J]. Resource Geology, 2014, 64(3): 262-270.

[13] Hu Q Q, Wang Y T, Mao J W,etal. Timing of the formation of the Changba-Lijiagou Pb-Zn ore deposit, Gansu Province, China: Evidence from Rb-Sr isotopic dating of sulfides[J]. Journal of Asian Earth Sciences, 2015, 103: 350-359.

[14] 曹亮,段其发,周云.湖北凹子岗锌矿床Rb-Sr同位素测年及其地质意义[J].中国地质,2015,42(1):235-247.

Cao L, Duan Q F, Zhou Y. Rb-Sr dating of sphalerites from the Aozigang zinc deposit in Hubei Province and its geological significance[J]. Geology in China, 2015, 42(1): 235-247. (In Chinese)

[15] 李铁刚,武广,刘军,等.大兴安岭北部甲乌拉铅锌银矿床Rb-Sr同位素测年及其地质意义[J].岩石学报,2014,30(1):257-270.

Li T G, Wu G, Liu J,etal. Rb-Sr isochron age of the Jiawula Pb-Zn-Ag deposit in the Manzhouli area and its geological significance[J]. Acta Petrologica Sinica, 2014, 30(1): 257-270. (In Chinese)

[16] Wang C M, Zhang D, Wu G G,etal. Geological and isotopic evidence for magmatic-hydrothermal origin of the Ag-Pb-Zn deposits in the Lengshuikeng district, east-central China[J]. Mineralium Deposita, 2014, 49(6): 733-749.

[17] Yang Y, Chen Y J, Zhang J,etal. Ore geology, fluid inclusions and four-stage hydrothermal mineralization of the Shangfanggou giant Mo-Fe deposit in Eastern Qinling, central China[J]. Ore Geology Reviews, 2013, 55: 146-161.

[18] Yang Y F, Li N, Chen Y J. Fluid inclusion study of the Nannihu giant porphyry Mo-W deposit, Henan Province, China: Implications for the nature of porphyry ore-fluid systems formed in a continental collision setting[J]. Ore Geology Reviews, 2012, 46: 83-94.

[19] Mao J W, Pirajno F, Xiang J F,etal. Mesozoic molybdenum deposits in the East Qinling-Dabie Orogenic belt: Characteristics and tectonic settings[J]. Ore Geology Reviews, 2011, 43(1): 264-293.

[20] Zhu L M, Zhang G W, Guo B,etal. He-Ar isotopic system of fluid inclusions in pyrite from the molybdenum deposits in south margin of North China Block and its trace to metallogenetic and geodynamic background[J]. Chinese Science Bulletin, 2009, 54(14): 2479-2492.

[21] Mao J W, Xie G Q, Bierlein F,etal. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt[J]. Geochimica et Cosmochimica Acta, 2008, 72(18): 4607-4626.

[22] Li D, Han J W, Zhang S T,etal. Temporal evolution of granitic magmas in the Luanchuan metallogenic belt, east Qinling Orogen, central China: Implications for Mo metallogenesis[J]. Journal of Asian Earth Sciences, 2015, 111: 663-680.

[23] Zhang Y H, Zhang S T, Xu M,etal. Geochronology, geochemistry and Hf isotopes of the Jiudinggou molybdenum deposit, Central China, and their geological significance[J]. Geochemical Journal, 2015, 49: 321-342.

[24] Bao Z W, Wang C Y, Zhao T P,etal. Petrogenesis of the Mesozoic granites and Mo mineralization of the Luanchuan ore field in the East Qinling Mo mineralization belt, Central China[J]. Ore Geology Reviews, 2014, 57: 132-153.

[25] Mao J W, Xie G Q, Pirajno F,etal. Late Jurassic-early Cretaceous granitoid magmatism in Eastern Qinling, central-eastern China: SHRIMP zircon U-Pb ages and tectonic implications[J]. Australian Journal of Earth Sciences, 2010, 57(1): 51-78.

[26] Li D, Zhang S T, Yan C H,etal. Late Mesozoic time constraints on tectonic changes of the Luanchuan Mo belt, East Qinling orogen, Central China[J]. Journal of Geodynamics, 2012, 61: 94-104.

[27] Wang X L, Jiang S Y, Dai B Z,etal. Age, geochemistry and tectonic setting of the Neoproterozoic (ca 830 Ma) gabbros on the southern margin of the North China Craton[J]. Precambrian Research, 2011, 190(1/2/3/4): 35-47.

[28] Dong Y P, Zhang G W, Neubauer F,etal. Tectonic evolution of the Qinling orogen, China: Review and synthesis[J]. Journal of Asian Earth Sciences, 2011, 41(3): 213-237.

[29] 燕长海,宋要武,刘国印,等.河南栾川杨树凹-百炉沟MVT铅锌矿带地质特征[J].地质调查与研究,2004,27(4):249-254.

Yan C H, Song Y W, Liu G Y,etal. Geological features of Yangshuwa-Bailugou MVT lead-zinc deposit belt in Luanchuan, Henan Province[J]. Geological Survey and Research, 2004, 27(4): 249-254. (In Chinese)

[30] 刘国印,燕长海,宋要武,等.河南栾川赤土店铅锌矿床特征及成因探讨[J].地质调查与研究,2007,30(4):263-270.

Liu G Y, Yan C H, Song Y W,etal. Characteristics and genesis of Chitudian lead-zinc deposits in Luanchuan County[J]. Geological Survey and Research, 2007, 30(4): 263-270. (In Chinese)

[31] 燕长海,刘国印,彭翼,等.豫西南地区铅锌银成矿规律[M].北京:地质出版社,2009.

Yan C H, Liu G Y, Peng Y,etal. The Metallogenetical Characteristics of the Lead-Zinc-Silver Deposits in Southwest Henan[M]. Beijing: Geological Publishing House, 2009. (In Chinese)

[32] Wang C M, He X U, Yan C H,etal. Ore geology, and H, O, S, Pb, Ar isotopic constraints on the genesis of the Lengshuibeigou Pb-Zn-Ag deposit, China[J]. Geosciences Journal, 2013, 17(2): 197-210.

[33] Cao H W, Zhang S T, Santosh M,etal. The Luanchuan Mo-W-Pb-Zn-Ag magmatic-hydrothermal system in the East Qinling metallogenic belt, China: Constrains on metallogenesis from C-H-O-S-Pb isotope compositions and Rb-Sr isochron ages[J]. Journal of Asian Earth Sciences, 2015, 111: 751-780.

[34] Duan S G, Xue C J, Chi G X,etal. Ore geology, fluid inclusion, and S- and Pb-isotopic constraints on the genesis of the Chitudian Zn-Pb deposit, Southern margin of the North China craton[J]. Resource Geology, 2011, 61(3): 224-240.

[35] Wang C M, Cheng Q M, Zhang S T,etal. Magmatic-hydrothermal superlarge metallogenic systems: A case study of the Nannihu Ore Field[J]. Journal of China University of Geosciences, 2008, 19(4): 391-403.

[36] 田浩浩,张寿庭,曹华文,等.豫西赤土店铅锌矿床闪锌矿痕量元素地球化学特征[J].矿物岩石地球化学通报,2015,34(2):334-342.

Tian H H, Zhang S T, Cao H W,etal. Geochemical characteristics of trace elements of sphalerite in the Chitudian Pb-Zn deposit,West Henan Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(2): 334-342. (In Chinese)

[37] 段士刚,薛春纪,冯启伟,等.豫西南赤土店铅锌矿床地质、流体包裹体和S、Pb同位素地球化学特征[J].中国地质,2011,38(2): 427-441.

Duan S G, Xue C J, Feng Q W,etal. Geology, fluid inclusions and S, Pb isotopic geochemistry of the Chitudian Pb-Zn deposit in Luanchuan, Henan Province[J]. Geology in China, 2011, 38(2): 427-441. (In Chinese)

[38] 曹华文,张寿庭,郑硌,等.河南栾川矿集区中鱼库(铅)锌矿床闪锌矿痕量元素地球化学特征[J].矿物岩石,2014,34(3):50-59.

Cao H W, Zhang S T, Zheng L,etal. Geochemical characteristics of trace element of sphalerite in the Zhongyuku (Pb)-Zn deposit of the Luanchuan, Southwest of China[J]. Journal of Mineral Petrol, 2014, 34(3): 50-59. (In Chinese)

[39] 裴秋明,张寿庭,曹华文,等.豫西栾川县骆驼山硫锌多金属矿床闪锌矿痕量元素地球化学特征及其地质意义[J].岩石矿物学杂志,2015,34(4):741-754.

Pei Q M, Zhang S T, Cao H W,etal. Trace element geochemistry of the Luotuoshan sulphur-zinc polymetallic deposit in Luanchuan, western Henan, and its geological implications[J]. Acta Petrologica ET Mineralogica, 2015, 34(4): 741-754. (In Chinese)

[40] Li W B, Huang Z L,Yin M D. Dating of the Giant Huize Zn-Pb Ore Field of Yunnan Province, Southwest China: Constraints from the Sm-Nd system in hydrothermal calcite[J]. Resource Geology, 2007, 57(1): 90-97.

[41] Wang Y X, Yang J D, Chen J,etal. The Sr and Nd isotopic variations of the Chinese Loess Plateau during the past 7 Ma: Implications for the East Asian winter monsoon and source areas of loess[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 249(3): 351-361.

[42] Sun W Y, Li S R, Santosh M,etal. Isotope geochemistry and geochronology of the Qiubudong silver deposit, central North China Craton: Implications for ore genesis and lithospheric dynamics[J]. Ore Geology Reviews, 2013, 57: 229-242.

[43] Ludwig K R. User’s Manual for Isoplot 3.75: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center, 2012.

[44] 杨郧城,郭万军,王亚君,等.内蒙古东珺铅锌银矿床闪锌矿Rb-Sr定年及其地质意义[J].地学前缘,2015,22(3):348-356.

Yang Y C, Guo W J, Wang Y J,etal. Rb-Sr dating of sphalerites from Dongjun Pb-Zn-Ag deposit, Inner Mongolia and its geological significance[J]. Earth Science Frontiers, 2015, 22(3): 348-356. (In Chinese)

[45] Chen Y J, Li C, Zhang J,etal. Sr and O isotopic characteristics of porphyries in the Qinling molybdenum deposit belt and their implication to genetic mechanism and type[J]. Science in China Series D: Earth Sciences, 2000, 43(1): 82-94.

[46] 杨荣勇,徐兆文,任启江.东秦岭地区石宝沟和火神庙岩体的时代及岩浆物质来源[J].矿物岩石地球化学通报,1997,16(1): 17-20.

Yang R Y, Xu Z W, Ren Q J. Ages and magma sources of Shibaogou and Huoshenmiao complexes in East Qinling[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1997, 16(1): 17-20. (In Chinese)

[47] 祁进平,宋要武,李双庆,等.河南省栾川县西沟铅锌银矿床单矿物铷-锶同位素组成特征[J].岩石学报,2009,25(11):2843-2854.

Qi J P, Song Y W, Li S Q,etal. Single grain Rb-Sr isotopic composition of the Xigou Pb-Zn-Ag deposit, Luanchuan, Henan Province[J]. Acta Petrologica Sinica, 2009, 25(11): 2843-2854. (In Chinese)

[48] 向君峰,毛景文,裴荣富,等.南泥湖-三道庄钼(钨)矿的成岩成矿年龄新数据及其地质意义[J].中国地质,2012,39(2):458-473.

Xiang J F, Mao J W, Pei R F,etal. New geochronological data of granites and ores from the Nannihu-Sandaozhuang Mo(W) deposit[J]. Geology in China, 2012, 39(2): 458-473. (In Chinese)

[49] Li Y F, Mao J W, Guo B J,etal. Re-Os dating of molybdenite from the Nannihu Mo (-W) Orefield in the East Qinling and its geodynamic significance[J]. Acta Geologica Sinica: English Edition, 2004, 78(2): 463-470.

[50] Huang D H, Wu C Y, Du A D,etal. Re-Os isotope ages of molybdenum deposits in East Qinling and their significance[J]. Chinese Journal of Geochemistry, 1995, 14(4): 313-322.

[51] 毛景文,谢桂青,张作衡,等.中国北方中生代大规模成矿作用的期次及其地球动力学背景[J].岩石学报,2005,21(1):171-190.

Mao J W, Xie G Q, Zhang Z H,etal. Meszoic large-scale metallogenic pulses in North China and corresponding geodynamic settings[J]. Acta Petrological Sinica, 2005, 21(1): 169-188. (In Chinese)

[52] 杨阳,王晓霞,柯昌辉,等.豫西南泥湖矿集区石宝沟花岗岩体的锆石U-Pb年龄、岩石地球化学及Hf同位素组成[J].中国地质,2012,39(6):1525-1542.

Yang Y, Wang X X, Ke C H,etal. Zircon U-Pb age, geochemistry and Hf isotopic compositions of Shibaogou granitoid pluton in the Nannihu ore district, western Henan Province [J]. Geology in China, 2012, 39(6): 1525-1542. (In Chinese)

[53] 刘国印.华北陆块南缘铅锌银成矿规律及找矿方向研究[D].北京:中国地质大学档案馆,2007.

Liu G Y. The Study of Metallogenic Regularities and Prospecting Direction of the Pb-Zn-Ag-Mo Ore Concentration Area in Southwestern Henan[D]. Beijing: The Archive of China University of Geosciences, 2007. (In Chinese)

[54] 李诺,陈衍景,张辉,等.东秦岭斑岩钼矿带的地质特征和成矿构造背景[J].地学前缘,2007,14(5):186-198.

Li N, Chen Y J, Zhang H,etal. Molybdenum deposits in East Qinling[J]. Earth Science Frontiers, 2007, 14(5): 186-198. (In Chinese)

[55] Li Y, Yang J S, Dilek Y,etal. Crustal architecture of the Shangdan suture zone in the early Paleozoic Qinling orogenic belt, China: Record of subduction initiation and backarc basin development[J]. Gondwana Research, 2015, 27(2): 733-744.

[56] Li N, Chen Y J, Santosh M,etal. Compositional polarity of Triassic granitoids in the Qinling Orogen, China: Implication for termination of the northernmost paleo-Tethys[J]. Gondwana Research, 2015, 27(1): 244-257.

[57] Wu Y B, Zheng Y F. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong’an-Dabie-Sulu orogenic belt in central China[J]. Gondwana Research, 2013, 23(4): 1402-1428.

[58] Han J S, Yao J M, Chen H Y,etal. Fluid inclusion and stable isotope study of the Shagou Ag-Pb-Zn deposit, Luoning, Henan Province, China: Implications for the genesis of an orogenic lode Ag-Pb-Zn system[J]. Ore Geology Reviews, 2014, 62: 199-210.

[59] Gao Y, Mao J W, Ye H W,etal. A review of the geological characteristics and geodynamic setting of the late early Cretaceous molybdenum deposits in the East Qinling-Dabie molybdenum belt, East China[J]. Journal of Asian Earth Sciences, 2015, 108: 81-96.

[60] Li J W, Li Z K, Zhou M F,etal. The early Cretaceous Yangzhaiyu lode gold deposit, North China Craton: A link between craton reactivation and gold veining[J]. Economic Geology, 2012, 107(1): 43-79.

Rb-Sr dating and geological significance of sphalerites from the Zhongyuku Zn(Pb) deposit in Luanchuan, West Henan, China

CAO Hua-wen1,2, PEI Qiu-ming2, ZHANG Shou-ting2, ZHANG Lin-kui1, ZHENG Luo2,HU Xin-kai2

1.ChengduCenter,ChinaGeologicalSurvey,Chengdu610081,China; 2.SchoolofEarthSciencesandResources,ChinaUniversityofGeosciences,Beijing100083,China

Zhongyuku skarn type Zn (Pb) deposit is located in the southern part of Luanchuan Mo-W-Pb-Zn-Ag polymetallic ore district, southern margin of the North China Block. Bedded ore bodies occur in clastic and carbonate strata in the Sanchuan Formation of the Neoproterozoic Luanchuan Group. However, the genesis of this deposit is controversial, because of the lack of accurate metallogenic geochronology. Based on the study of geological setting, petrology and mineralogy of the deposit, the Rb-Sr isotopic compositions of sphalerite from 13 ore samples are analyzed. It shows that87Rb/86Sr and87Sr/86Sr isotopic compositions have a linear correlation, ranging from 0.802 to 18.980 and 0.713 359 to 0.748 684 respectively, and it reveals that the isochron age is (136.4±0.8) Ma (2σ, MSWD=3.6), and (87Sr/86Sr)tis 0.711 913±0.000 074, indicating that the Zhongyuku deposit formed in early Cretaceous period, slightly later than porphyry-skarn type molybdenum-tungsten deposits in the Luanchuan ore district. It is considered that the formation of the Zhongyuku deposit associates with the last stage of granitic magma activities (142~136 Ma B.P.) in the ore district. The porphyry-skarn-type Mo-W deposits and skarn-type Zn-Pb deposit constitute a Mo-W-Pb-Zn-Ag polymetallic metallogenic system. The study indicates that the Zhongyuku deposit possibly formed in a transition stage from compression to extension setting during continent-continent collision process in Mesozoic, or locally extension setting of post-collision orogenic process.

Zn (Pb) deposit; sphalerite; Rb-Sr isotope; Zhongyuku; metallogenic system

10.3969/j.issn.1671-9727.2016.05.03

1671-9727(2016)05-0528-11

2015-08-13。

国家“十二五”科技支撑计划项目(2011BAB04B06); 中国地质调查局地质调查项目(12120115022701; 1212011220925)。

曹华文(1988-),男,博士,助理研究员,研究方向:矿产资源勘查与评价,E-mail:caohuawen1988@126.com。

裴秋明(1989-),男,博士研究生,研究方向:矿产资源勘查与评价,E-mail:peiqm2010@163.com。

P597

A

猜你喜欢

栾川闪锌矿矽卡岩
西藏甲玛斑岩成矿系统闪锌矿矿物学特征及其地质意义*
基于密度泛函理论的铁含量对含铁闪锌矿浮选影响的研究
山东德州地区矽卡岩型铁矿找矿方法研究
激电联合剖面在判断矽卡岩型矿床矿体产状中的应用
广西博白县三叉冲矽卡岩型钨钼矿地球物理特征及找矿预测
Cu-X(X=C,Si,Ge,Sn,Pb)掺杂对闪锌矿ZnS 可见光吸收的影响研究
氧化剂在刺槐豆胶浮选分离方铅矿和闪锌矿中的作用及机理
王鑫:美一方环境 惠一方百姓
Geochemical and geochronological studies of the Aketas granite from Fuyun County,Xinjiang:the implications of the petrogenesis and tectonic setting
“栾川人”中原地区远古人类的一次重要发现