APP下载

基于电化学生物传感方法检测肾上腺素等生物小分子研究进展

2015-04-17黄志伟

江西化工 2015年5期
关键词:化学修饰伏安检出限

丁 忙 王 敏 吴 靓 黄志伟

(东华理工大学化学生物与材料科学学院,江西 南昌 330013)



基于电化学生物传感方法检测肾上腺素等生物小分子研究进展

丁 忙 王 敏 吴 靓 黄志伟

(东华理工大学化学生物与材料科学学院,江西 南昌 330013)

肾上腺素(EP,adrenaline)是肾上腺分泌的一种非常重要的儿茶酚氨激素和神经传送体。它是由L-苯丙氨酸和L-酪氨酸在人体中自然合成。EP的重要性主要是在哺乳动物与人类的中枢神经系统中进行信息的传送,因而体内EP浓度的变化都会导致许多的问题。对EP的定量化检测方法不论是食品科学、生命科学还是临床医学都是非常重要的。本文综述了在近十年中,基于电化学传感器伏安测定肾上腺素及共存生命小分子的研究进展,并着重从修饰基底、修饰材料、修饰方法以及表征方法等四个方面进行综述。

肾上腺素 电化学传感器 测定 进展

引言

肾上腺素(EP)是哺乳动物中枢神经系统中的一种重要的儿茶酚胺类神经递质,是肾上腺素髓质分泌的激素,肾上腺素能使心肌收缩力加强、兴奋性增高,传导加速,心输出量增多。对全身各部分血管的作用,不仅有作用强弱的不同,而且还有收缩或舒张的不同。对皮肤、粘膜和内脏(如肾脏)的血管呈现收缩作用;对冠状动脉和骨骼肌血管呈现扩张作用等。肾上腺素代谢的絮乱会导致某些疾病的发生。因此,建立一种准确检测生物体液中肾上腺素含量的方法是十分必要的,目前测定EP的方法有很多种,高效液相色谱法[1]、气相色谱-质谱法[2]、毛细管电泳法[3]、荧光法[4]、电化学发光法[5]、分光光度法[6]以及电化学分析方法[7]等。电化学分析法是应用电化学原理和技术,利用化学电池内被分析溶液的组成及含量与其电化学性质的关系而建立起来的一类分析方法。其特点是选择性好,灵敏度高,操作方便,设备简单,应用范围广。

化学修饰电极[8](chemically modified electrodes,CMEs)是当前电化学、电分析化学方面十分活跃的研究领域。化学修饰电极的来源和兴起与整个化学和其它学科特别是电化的研究密切相关,而分子水平上进行电极修饰的还是尝试于60~ 70年代初开始的。我国中科院长春应用化学研究所董绍俊领导的小组在80年代率先在我国国内开展了化学修饰电极的电催化专题研讨。

近十年来,正是基于电化学方法灵敏度高,操作简便,响应快速,且仪器价廉等诸多优点,而采用上文中提到的诸多方法,因仪器设备昂贵,操作繁琐等诸多不便,采用电化学方法对EP进行分析已引起科研工作者的极大兴趣[9]。故本文综述的是采用电化学方法检测EP等生物小分子近十年的研究进展,并基于化学修饰电极中几个重要部分:电极材料,修饰物质、修饰方法和修饰膜表面表征方法等方面着重进行综述。

1 修饰基底

在化学修饰电极中,作为电极三系统中的工作电极,依据要求选择,测定的物质、体系以及方法的选择,修饰基底可以分为很多种类,在对肾上腺素等生物小分子的测定中,文献报道的主要有:玻碳电极[10](Glassy carbon electrode,GCE)、碳糊电极[9,12-13](Carbon paste electrode,CPE)、丝网印刷电极[14](Screen Printed Electrodes,SPE)、铅笔石墨电极[15](Pencil graphite electrodes,PGEs)、金电极[16](Gold electrode)、石墨电极[17](Graphite electrode),石蜡电极[18](Paraffin electrode)、点微传感器[19](Dot micro-sensors)、不锈钢微电极[20](Stainless steel microelectrodes)和ITO导电玻璃[21]。其中以玻碳电极和碳糊电极及金电极作为修饰基底的较为普遍。

2 修饰物质

探讨了修饰基底的种类,对基底的修饰同样也有很多种,本文探讨修饰电极的物质主要有聚合物,碳纳米材料,离子液体以及金属离子和金属纳米粒子等。

聚合物薄膜修饰电极具有三维空间结构,可提供许多有利的势场,其活性基的浓度高、电化学响应信号大,十分有利于电催化,而且具有较大的化学、机械和电化学稳定性,制备简便而被广泛研究。马建国[22]等人研究了肾上腺素在聚氨酯-β-环糊精修饰电极上的电化学行为,线性范围为4.0×10-6~1.5×10-4mol L-1,检出限达到2.5×10-7mol L-1。Balamurugan Devads[23]等人研究了聚姜黄素修饰电极电催化氧化肾上腺素与对乙酰氨基酚,其线性范围为4.97×10-6~1.5×10-4mol L-1,检出限达到5×10-8mol L-1。Yan Wang[24]等人研究了聚牛磺酸同时检测肾上腺素和多巴胺,肾上腺素线性范围为2.0×10-6~6.0×10-4mol L-1,检出限为4×10-7mol L-1。

碳纳米材料:F.Valentini[20]等人研究了单壁碳纳米管修饰电极在抗坏血酸的共存下选择测定肾上腺素,线性范围为2.0×10-6~1.0×10-4mol L-1,检出限为2.0×10-6mol L-1。Jacobus Frederick[19]等人研究了基于石墨烯的点微传感器检测尿液中的肾上腺素等生物小分子,肾上腺素的线性范围为1.0×10-5~1.0×10-2mol L-1,检出限为1.4×10-5mol L-1。

离子液体:Mohammad Mazloum-Ardakani[25]等人研究了BBNBH离子液体修饰碳糊电极同时检测肾上腺素和对乙酰氨基酚,其中肾上腺素的线性范围为1.0×10-6~6.0×10-4mol L-1,检出限为2.0×10-5mol L-1。

金属纳米粒子:Zhousheng Yang[26]等人研究了纳米金自组装修饰玻碳电极在抗坏血酸共存下对肾上腺素的选择性测定,线性范围为1.0×10-7~5×10-4mol L-1,检出限为4.0×10-8mol L-1。Bolade O[27]等人研究了纳米金自组装辛酸酞菁电催化检测肾上腺素,线性范围为2.0×10-6~1.0×10-4mol L-1,检出限为2×10-7mol L-1。Soundappn Thiagarajan[28]等人钯纳米粒子修饰电极在抗坏血酸共存下检测儿茶酚类物质,肾上腺素线性范围为1.8×10-5~1.8×10-4mol L-1。

金属氧化物纳米粒子:Mohammad Mazloum-Ardakani[29]等人报道了二氧化钛纳米粒子修饰碳糊电极电化学催化肾上腺素等生物小分子,其中肾上腺素检测线性范围为2.0×10-6~1.6×10-3mol L-1,检出限为4×10-7mol L-1。

除了上述较为普遍的电极修饰物质之外,有机大分子修饰电极亦有相关研究报道。Wang Ren[30]等人研究了咖啡酸修饰电极对肾上腺素、抗坏血酸和尿酸伏安测定,肾上腺素检测线性范围为2.0×10-6~8.0×10-5mol L-1,检出限为2×10-7mol L-1。

此外,多种物质基于物质之间的协同静电等作用而进行掺杂修饰,有机染料分子掺杂碳纳米材料亦是近年来化学修饰电极热门,亦是化学修饰电极的趋势。Prerna Pradhan[9]等人研究了电聚合布鲁士蓝掺杂氧化多壁碳纳米管修饰碳糊电极及其在药物与生物样品中肾上腺素的伏安测定。线性范围为8.0×10-7~9.0×10-6mol L-1,1.0×10-5~1.0×10-4mol L-1,检出限为8×10-7mol L-1。Ying Li,M[31]等人研究了聚碱性红9掺杂功能化多壁碳纳米管作为复合膜测定肾上腺素等神经递质,其中肾上腺素检出限为7×10-6mol L-1。Tony Thomas[12]等人研究了多壁碳纳米管掺杂十二烷基硫酸钠修饰碳糊电极伏安测定肾上腺素。线性范围为1.0×10-7~1.0×10-4mol L-1,检出限为4.5×10-8mol L-1。Luiz C.S[32]等人报道了氧化镍纳米粒子和碳纳米管掺杂磷酸二鲸蜡酯对人体体液中肾上腺素及多巴胺伏安检测。其中肾上腺素检测线性范围为7.0×10-8~4.8×10-6mol L-1,检出限为5×10-8mol L-1。Fernando H[33]等人报道了SiO2复合氧化石墨烯掺杂银纳米粒子共同检测肾上腺素与多巴胺,肾上腺素检测线性范围为2.0×10-6~8.0×10-5mol L-1,检出限为2.7×10-7mol L-1。

由此得知,复合掺杂修饰电极相比单物质修饰电极,进行检测肾上腺素所得线性范围更宽,检出限更小,进而研究的更为广泛。

3修饰方法

在上文中本文综述了修饰基底与修饰材料的总类,修饰方法的选择对于化学修饰电极的性能也是非常重要的一部分,不同的修饰物质有其对应的修饰方法,基于电化学传感器伏安测定肾上腺素中的文献报道中,所用的修饰方法主要有共价键组合法[16]、双层修饰法[34]、滴涂法[35][36]、自组装方法[27]、电化学聚合法[37]、LB技术[11]、电沉积方法[38]等等。

4表征方法

讨论了修饰基底、修饰物质和修饰方法之后,修饰电极复合薄膜对检测物质的电化学性能是研究电化学传感器一个重要部分,本文中提到的电化学方法主要有,循环伏安法[34](Cyclic voltammetry,CV)、示差脉冲伏安法[39](Differential pulse voltammetry,DPV)、方波伏安法[40](Square wave voltammetry,SWV)、线性扫描伏安法[41](Linear sweep voltammetry,LSV)、计时电流法[10](Chronoamperometry,CA)、电化学阻抗法[42](Electrochemical Impedance Spectroscopy,EIS)等。

修饰材料与修饰基底表面的结构对电化学活性起着很重要的作用,探讨修饰电极的表面形貌很有意义,现有的表征方法主要有:扫描电子显微镜[41](Scanning electron microscopy,SEM),扫描电化学显微镜[43](Scanning electrochemical microscopy,SECM),投射电子显微镜[44](Transmission electron microscopy,TEM),原子力显微镜[19](Atomic force microscopy,AFM),能量色散型X射线[9][12](Energy dispersive X-ray,EDX),X-射线衍射光谱[33](X-ray diffraction spectrum,XRD),X射线光电子能谱[35](X-ray photoelectron spectroscopy,XPS)等。

5 结论

本文综述了近十年,基于电化学传感器伏安测定肾上腺素等生命小分子的报道研究,并从修饰基底、修饰物质、修饰方法以及表征方法四个方面进行论述。本人在工作中通过采用滴涂法和二步法电聚合方法制备了石墨烯掺杂聚灿烂甲酚蓝,并采用循环伏安法和示差脉冲伏安法以及电交流阻抗法研究探讨该复合膜的电化学性能以及对肾上腺素和共存物质的电催化响应行为。在这一工作中,电极修饰物的表征方法,以及物质修饰过程的表征,也是我们实验研究过程的一个难题,在接下来的工作中,将借助质谱的方法来研究,修饰物在电极表面形成的结构。

[1]M.A.Fotopoulou and P.C.Ioannou.Post-column terbium complexation and sensitized fluorescence detection for the determination of norepinephrine,epinephrine and dopamine using high-performance liquid chromatography[J].Anal Chim Acta,2002,462(2):179-185.

[2]J.Zamecnik.Quantitation of epinephrine,norepinephrine,dopamine,metanephrine and normetanephrine in human plasma using negative ion chemical ionization GC-MS[J].Canadian Journal of Analytical Sciences and Spectroscopy,1997,42(4):106-112.

[3]S.Wei,G.Song and J.Lin.Separation and determination of norepinephrine,epinephrine and isoprinaline enantiomers by capillary electrophoresis in pharmaceutical formulation and human serum[J].J Chromatogr A,2005,1098(1):166-171.

[4]C.E.Cardoso,R.O.R.Martins,C.u.A.S.Telles and R.Q.Aucelio.Sequential Determination of Hydrocortisone and Epinephrine in Pharmaceutical Formulations via Photochemically Enhanced Fluorescence[J].Microchimica Acta,2004,146(1):79-84.

[5]Y.Su,J.Wang and G.Chen.Determination of epinephrine based on its enhancement for electrochemiluminescence of lucigenin[J].Talanta,2005,65(2):531-536.

[6]P.Solich,C.K.Polydorou,M.Koupparis and C.Efstathiou.Automated flow-injection spectrophotometric determination of catecholamines(epinephrine and isoproterenol)in pharmaceutical formulations based on ferrous complex formation[J].Journal of pharmaceutical and biomedical analysis,2000,22(5):781-789.

[7]F.Valentini,E.Ciambella,V.Conte,L.Sabatini,N.Ditaranto,F.Cataldo,G.Palleschi,M.Bonchio,F.Giacalone,Z.Syrgiannis and M.Prato.Highly selective detection of Epinephrine at oxidized Single-Wall Carbon Nanohorns modified Screen Printed Electrodes(SPEs)[J].Biosens Bioelectron,2014,59 94-98.

[8]董绍俊,车广礼 and 谢远武,化学修饰电极,科学出版社,北京,2003,p.273.

[9]P.Pradhan,R.J.Mascarenhas,T.Thomas,I.N.N.Namboothiri,O.J.DSouza and Z.Mekhalif.Electropolymerization of bromothymol blue on carbon paste electrode bulk modified with oxidized multiwall carbon nanotubes and its application in amperometric sensing of epinephrine in pharmaceutical and biological samples[J].J Electroanal Chem,2014,732 30-37.

[10]A.A.Ensafi,B.Rezaei,S.Z.M.Zare and M.Taei.Simultaneous determination of ascorbic acid,epinephrine,and uric acid by differential pulse voltammetry using poly(3,3′-bis[N,N-bis(carboxymethyl)aminomethyl]-o-cresolsulfonephthalein)modified glassy carbon electrode[J].Sensor Actuat B-Chem,2010,150(1):321-329.

[11]L.Zou,Y.Li and B.Ye.Voltammetric sensing of guanine and adenine using a glassy carbon electrode modified with a tetraoxocalix[2]arene[2]triazine Langmuir-Blodgett film[J].Microchimica Acta,2011,173(3-4):285-291.

[12]T.Thomas,R.J.Mascarenhas,D.S.OJ,S.D etriche,Z.Mekhalif and P.Martis.Pristine multi-walled carbon nanotubes/SDS modified carbon paste electrode as an amperometric sensor for epinephrine[J].Talanta,2014,125 352-360.

[13]M.Mazloum Ardakani,S.H.Ahmadi,Z.S.Mahmoudabadi,A.Khoshroo and K.T.Heydar.Electrochemical and catalytic investigations of epinephrine,acetaminophen and folic acid at the surface of titanium dioxide nanoparticle-modified carbon paste electrode[J].Ionics,2014,20(12):1757-1765.

[14]Y.Wang,S.Wang,L.Tao,Q.Min,J.Xiang,Q.Wang,J.Xie,Y.Yue,S.Wu,X.Li and H.Ding.A disposable electrochemical sensor for simultaneous determination of norepinephrine and serotonin in rat cerebrospinal fluid based on MWNTs-ZnO/chitosan composites modified screen-printed electrode[J].Biosens Bioelectron,2014,65 31-38.

[15]R.N.Goyal and S.Bishnoi.Simultaneous determination of epinephrine and norepinephrine in human blood plasma and urine samples using nanotubes modified edge plane pyrolytic graphite electrode[J].Talanta,2011,84(1):78-83.

[16]Z.Moghadam,S.M.Ghoreishi,M.Behpour and M.Motaghedifard.A Highly Sensitive Nanostructure-Based Surface Covalently Modification of Gold for Electrochemical Sensing of Epinephrine in Presence of Uric Acid and Acetaminophen[J].J Electrochem Soc,2012,160(2):H126-H131.

[17]N.F.Atta,S.M.Ali,E.H.El-Ads and A.Galal.The Electrochemistry and Determination of Some Neurotransmitters at SrPdO3 Modified Graphite Electrode[J].J Electrochem Soc,2013,160(7):G3144-G3151.

[18]F.C.Moraes,D.L.C.Golinelli,L.H.Mascaro and S.A.S.Machado.Determination of epinephrine in urine using multi-walled carbon nanotube modified with cobalt phthalocyanine in a paraffin composite electrode[J].Sensor Actuat B-Chem,2010,148(2):492-497.

[19]J.F.Van Staden,R.Georgescu,R.I.Stefan van Staden and I.Calinescu.Graphene Based Dot Microsensors Used for the Screening of Urine for Adenine,Guanine and Epinephrine[J].J Electrochem Soc,2013,161(2):B3014-B3022.

[20]F.Valentini,G.Palleschi,E.L.Morales,S.Orlanducci,E.Tamburri and M.L.Terranova.Functionalized Single-Walled Carbon Nanotubes Modified Microsensors for the Selective Response of Epinephrine in Presence of Ascorbic Acid[J].Electroanalysis,2007,19(7-8):859-869.

[21]R.N.Goyal and B.Agrawal.Ag ion irradiated based sensor for the electrochemical determination of epinephrine and 5-hydroxytryptamine in human biological fluids[J].Anal Chim Acta,2012,743 33-40.

[22]马建国,彭道锋,康文and包道龙.肾上腺素在聚氨基-β-环糊精修饰电极上的电化学行为[J].理化检验,2007,(01):1-4.

[23]B.Devadas,M.Rajkumar and S.M.Chen.Electropolymerization of curcumin on glassy carbon electrode and its electrocatalytic application for the voltammetric determination of epinephrine and p-acetoaminophenol[J].Colloids Surf B Biointerfaces,2014,116 674-680.

[24]Y.Wang and Z.Z.Chen.A novel poly(taurine)modified glassy carbon electrode for the simultaneous determination of epinephrine and dopamine[J].Colloid Surface B,2009,74(1):322-327.

[25]M.Mazloum Ardakani,H.Beitollahi,M.A.Mohseni,A.Benvidi,H.Naeimi,M.Nejati Barzoki and N.Taghavinia.Simultaneous determination of epinephrine and acetaminophen concentrations using a novel carbon paste electrode prepared with 2,2'-[1,2 butanediylbis(nitriloethylidyne)]-bis-hydroquinone and TiO2nanoparticles[J].Colloids Surf B Biointerfaces,2010,76(1):82-87.

[26]Z.Yang,G.Hu,X.Chen,J.Zhao and G.Zhao.The nano-Au self-assembled glassy carbon electrode for selective determination of epinephrine in the presence of ascorbic acid[J].Colloids Surf B Biointerfaces,2007,54(2):230-235.

[27]B.O.Agboola and K.I.Ozoemena.Efficient Electrocatalytic Detection of Epinephrine at Gold Electrodes Modified with Self-Assembled Metallo-Octacarboxyphthalocyanine Complexes[J].Electroanalysis,2008,20(15):1696-1707.

[28]S.Thiagarajan,R.F.Yang and S.M.Chen.Palladium nanoparticles modified electrode for the selective detection of catecholamine neurotransmitters in presence of ascorbic acid[J].Bioelectrochemistry,2009,75(2):163-169.

[29]M.Mazloum Ardakani,A.Talebi,H.Naeimi and M.A.Sheikh Mohseni.Electrocatalysis of epinephrine by TiO2nanoparticles and 2,2 '-[1,7-hepthandiylbis(nitriloethylidyne)]-bis-hydroquinone modified carbon paste electrode[J].Analytical Methods,2011,3(10):2328-2333.

[30]W.Ren,H.Q.Luo and N.B.Li.Simultaneous voltammetric measurement of ascorbic acid,epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid[J].Biosens Bioelectron,2006,21(7):1086-1092.

[31]Y.Li,M.A.Ali,S.M.Chen,S.Y.Yang,B.S.Lou and F.M.Al Hemaid.Poly(basic red 9)doped functionalized multi-walled carbon nanotubes as composite films for neurotransmitters biosensors[J].Colloid Surface B 2014,118 133-139.

[32]L.C.Figueiredo Filho,T.A.Silva,F.C.Vicentini and O.Fatibello Filho.Simultaneous voltammetric determination of dopamine and epinephrine in human body fluid samples using a glassy carbon electrode modified with nickel oxide nanoparticles and carbon nanotubes within a dihexadecylphosphate film[J].Analyst,2014,139(11):2842-2849.

[33]T.C.C.Fernando H.Cincotto,Anderson M.Campos,and R.L.a.S.e.A.S.Machado.Simultaneous determination of epinephrine and dopamine by electrochemical reduction on the hybrid material SiO2/graphene oxide decorated with Ag nanoparticles[J].Analyst,2014,139 4634.

[34]G.R.Xu,X.h.Qi,F.Yang,J.J.Lee,M.L.Xu,Y.P.Zhang and S.Kim.Double Modification of Electrode Surface for the Selective Detection of Epinephrine and Its Application to Flow Injection Amperometric Analysis[J].Electroanalysis,2009.

[35]T.C.C.Fernando H.Cincotto,Anderson M.Campos,and R.L.a.S.A.S.Machado.Simultaneous determination of epinephrine and dopamine by electrochemical reduction on the hybrid material SiO2/graphene oxide decorated with Ag nanoparticles[J].Analyst,2014,139 4636.

[36]P.S.Dorraji and F.Jalali.Novel sensitive electrochemical sensor for simultaneous determination of epinephrine and uric acid by using a nanocomposite of MWCNTs-chitosan and gold nanoparticles attached to thioglycolic acid[J].Sensor Actuat B-Chem,2014,200 251-258.

[37]G.J.W.Cheng,Y.Zhang z.Electrochemical Characteristics of Poly(o-Aminobenzoic Acid)Modified Glassy-Carbon Electrode and Its Electrocatalytic Activity towards Oxidation of Epinephrine[J].Russ J Electrochem,2005,41(9):1059-1065.

[38]N.F.Atta,M.F.El-Kady and A.Galal.Simultaneous determination of catecholamines,uric acid and ascorbic acid at physiological levels using poly(N-methylpyrrole)/Pd-nanoclusters sensor[J].Anal Biochem,2010,400(1):78-88.

[39]S.Shahrokhian,M.Ghalkhani and M.K.Amini.Application of carbon-paste electrode modified with iron phthalocyanine for voltammetric determination of epinephrine in the presence of ascorbic acid and uric acid[J].Sensor Actuat B-Chem,2009,137(2):669-675.

[40]H.K.M.Hadi Beitollahi,and Hojatollah Khabazzade.Nanomolar and Selective Determination of Epinephrine in the Presence of Norepinephrine Using Carbon Paste Electrode Modified with Carbon Nanotubes and Novel 2-(4-Oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N-phenyl-hydrazinecarbothioamide [J].Anal Chem,2008,80 9848-9851.

[41]N.F.Atta,A.Galal and E.H.El Ads.A novel sensor of cysteine self-assembled monolayers over gold nanoparticles for the selective determination of epinephrine in presence of sodium dodecyl sulfate[J].Analyst,2012,137(11):2658-2668.

[42]L.Zou,Y.Li,S.Cao and B.Ye.Gold nanoparticles/polyaniline Langmuir-Blodgett Film modified glassy carbon electrode as voltammetric sensor for detection of epinephrine and uric acid[J].Talanta,2013,117 333-337.

[43]Y.Umasankar,S.Thiagarajan and S.M.Chen.Nanocomposite of functionalized multiwall carbon nanotubes with nafion,nano platinum,and nano gold biosensing film for simultaneous determination of ascorbic acid,epinephrine,and uric acid[J].Anal Biochem,2007,365(1):122-131.

[44]F.Cui and X.Zhang.Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites[J].J Electroanal Chem,2012,669 35-41.

The Research Progress of Determination of Epinephrine Biological Small Molecules Based on the Electrochemical Biosensing

DING Mang WANG Min WU Liang HUANG Zhi-wei
(CollegeofChemistry,BiologyandMaterialScience,EastChinaUniversityofTechnology,JiangxiNanchang330013)

Epinephrine(EP,adrenaline)is an important catecholamine neurotransmitters released by the adrenal medulla endocrine,gradually synthesized by L-phenylalanine and L-tyrosine in human system.Its importance lies in the transmission of information among the mammalian and humans central nervous system.Hence,changes in concentration of EP in the body can result in many problems.Therefore,development of a simple method for EP determination and quantification is of great importance for food science,life science and clinical medicine.In this paper,the research progress of determination of EP and the coexistence biological small molecules based on the electrochemical biosensing has been reviewed,and will mainly review the following four aspects:the modified substrate,modified material,modification method as well as the characterization.

Epinephrine;Electrochemical biosensor;Determination;Progress

猜你喜欢

化学修饰伏安检出限
环境监测结果低于最低检出限数据统计处理方法
定量NMR中多种检出限评估方法的比较
用伏安法测电阻
超疏水功能材料用于食品非法添加的超灵敏SERS检测
聚乙二醇修饰重组人生长激素的研究
基于LABVIEW的光电池伏安特性研究
基于纳米材料化学修饰电极在农药检测中的应用进展
通过伏安特性理解半导体器件的开关特性
基于EP-17A2的胶体金法检测粪便隐血的空白限、检出限及定量限的建立及评价
多糖化学修饰方法的研究进展