APP下载

甜樱桃采后保鲜技术的研究进展

2021-01-17李国琴武晋海朱洪梅杜俊杰额日赫木许国帅李桂峰

食品研究与开发 2021年20期
关键词:壳聚糖货架保鲜

李国琴,武晋海,朱洪梅,杜俊杰,额日赫木,许国帅,李桂峰*

(1.山西师范大学食品科学学院,山西临汾041004;2.临汾市综合检验检测中心,山西临汾041000)

樱桃为蔷薇科樱桃属,主要包括甜樱桃(Prunus avium L.)(又称大樱桃、欧洲甜樱桃)、酸樱桃(Prunus ceraus L.)和地樱桃(Prunus fruticose Pall.)。酸樱桃主要用于加工制品,而甜樱桃在鲜果市场中广受欢迎。甜樱桃来源于欧洲和西亚,目前已在全世界广泛种植[1]。根据联合国粮食及农业组织(Food and Agriculture Organization of the United Nations,FAO)统计数据可知,目前全球甜樱桃产量逾233万吨,我国产量约为4.2万吨。甜樱桃果大、色泽鲜艳、酸甜可口,富含维生素C(vitamin C,VC)和酚类物质(如酚酸、类黄酮和花青素),但在鲜果市场的供给链中比较难保存,因此需要较高成本来保持水果的高品质,价格相对较高。国内甜樱桃一般20元/kg~50元/kg,进口甜樱桃一般 100元/kg~300元/kg。

从田间到餐桌,甜樱桃品质存在多种问题,如失水、裂果、腐烂、机械损伤和褐变等[2]。在贮藏期间相对湿度达不到甜樱桃的最佳条件(90%~95%),则会引起果实失水从而导致品质下降[3]。若甜樱桃在成熟期雨水过多,则会引起裂果[2]。果实腐烂是影响甜樱桃品质下降的主要原因,采后甜樱桃果实硬度低且易衰老软化,极易受到外界的机械损伤。果实表皮和果梗表面含有大量的真菌(如扩展青霉菌、灰疽菌和褐腐病菌等),一旦物理屏障受到破坏,微生物快速繁殖,果实就会腐败变质。由此可见,控制微生物、减少机械损伤、增加果实硬度或者延缓果实衰老软化对维持果实品质和延长货架期可能会有效果。本文主要根据近五年国内外的研究报道,从物理、化学和生物三方面展开对甜樱桃保鲜技术的阐述。

1 物理保鲜

1.1 低温冷藏

常温下甜樱桃货架期一般能维持5 d~7 d。低温主要是通过抑制相关酶活性和降低呼吸强度减缓果实衰老,目前普遍认为甜樱桃冷藏的适宜温度为-1℃~1℃。Zhao等[4]发现相比0℃和5℃冷藏,将贮藏温度控制在接近生物冰点对甜樱桃的保鲜效果更佳,但每个品种的生物冰点不同。目前国外成熟的甜樱桃冷链物流技术可以保证甜樱桃从采后到销售均处于5℃以下,有研究发现一氧化氮可提高甜樱桃的冷藏品质[5]。虽然冷链中冷库的相对湿度很难达到甜樱桃保鲜的最佳要求,但它仍是受到普遍认可和广泛应用的保鲜方法之一。我国缺乏冷链设施还无法保证鲜果的全程冷链,但有研究发现缓慢升温的出库方式对于甜樱桃低温贮藏的品质有积极效果[6]。

1.2 冷激处理

冷激处理一般是对采后果蔬进行短时低温处理,通过冷胁迫诱发果蔬自身的生理抗性,从而达到保鲜的物理方法,常使用冷库、冷水和压差3种预冷方式。冷水预冷可以将甜樱桃在6 min迅速降温,但研究发现这种处理对不同品种的保鲜效果并不一致[7-8]。采用1℃冷水预冷“Ambrunés”樱桃6 min会增加果实腐败率[7],但0℃冷水(即冰水混合物)冷激10 min可延缓“萨米脱”樱桃品质下降[8]。冷库预冷降低果实温度的速度相对较慢,有研究发现0℃冷库预冷对“美早”樱桃保鲜效果不如0℃冷水预冷的保鲜效果,货架期缩短2 d~3 d[9]。美国、智利等国家早已把预冷作为甜樱桃商品化处理的重要环节,因此国外樱桃的商品化操作步骤一般经采摘、预冷、分级、贮藏保鲜和包装5个环节[10],但在我国很多地方将此步骤省略[9]。

1.3 气调贮藏

气调贮藏被认为是果蔬保鲜效果较佳的方法,常分为自发气调(modified atmosphere,MA)和人工气调(controlled atmosphere,CA)。MA是果蔬自身在包装容器内进行呼吸作用,形成低浓度氧气(oxygen,O2)和高浓度二氧化碳(carbon dioxide,CO2)的环境,而 CA 是一次性充入理想比例的2种或3种气体,快速建立起有利于保鲜贮藏的气调环境。MA可有效延长“0900 Ziraat”樱桃货架期和降低坏果率[11]。相比MA,CA可以更好地提高“砂蜜豆”樱桃在冷藏期的品质和延长货架期[12]。甜樱桃本身对CO2有较强的忍耐力,当CO2浓度为20%和O2浓度大于等于7%时,可有效降低坏果率,不影响其它品质[13-14];在CO2浓度为10%~20%和O2浓度为 3%~8%时,甜樱桃能够保存 40 d~50 d[15];当CO2浓度为10%和O2浓度低于1.5%时,甜樱桃会产生厌氧乙醇气味[14,16]。有研究发现将氩气(argon,Ar2)和CA 结合(Ar2∶O2∶CO2=85∶5∶10,体积比)可以有效提高“拉宾斯”樱桃的品质[17]。除此之外,包装材料对气体的选择渗透可以直接影响内部气体的比例,进而影响果实的呼吸作用、代谢和衰老等。新型包装材料如淀粉复合膜[15]、防雾膜[18]和添加薄荷精油的聚乳酸活性抗菌膜[19]对果实保鲜有积极效果。不同品牌的纸箱内衬薄膜袋对气体渗透量不同时,对甜樱桃的保鲜效果有显著区别,Wang等[16]的研究结果表明,保鲜效果最好的纸箱内衬薄膜袋可以将O2和CO2的浓度控制在6.5%~7.5%和8%~10%范围,从而显著减少VC损失和脂质过氧化,有效维持果实风味。姜齐永等[20]通过调节薄膜面积、薄膜厚度及产品量改变袋内气体比例,可以达到对“红灯”樱桃的理想保鲜效果。不同类型的包装箱对果实品质影响显著,增强除湿型保鲜纸箱比普通功效型保鲜纸箱和普通纸箱对“美早”樱桃的保鲜效果好[21],它能有效增强果实硬度,减少果实腐烂率,减少可溶性固形物和VC损失,将货架期从6 d延长至9 d。

1.4 辐照

辐照(电子束、γ-射线和X射线等)可有效杀灭微生物,是一种常见的冷杀菌方式。代守鑫等[22]发现2.31 kGy和2.41 kGy电子束辐射处理的甜樱桃在0℃冷库的贮藏期可延长30 d~45 d,但是减少了花青素、总酚、可溶性固形物和总糖含量,与高剂量(1.5 kGy和2.25 kGy)的 γ-辐射相比,低剂量的 γ-辐射(0.75 kGy)可显著降低“玛瑙红”樱桃的果实腐败[23]。田竹希等[23]还发现短波紫外线(ultraviolet C,UV-C)比 γ-射线对甜樱桃的保鲜效果好。不同剂量的UV-C对果实品质影响不同,低剂量的UV-C照射(1.37 kJ/m2)延缓“玛瑙红”樱桃好果率下降的效果比高剂量的UV-C照射(2.05 kJ/m2和 2.74 kJ/m2)好[23]。中波紫外线(ultraviolet B,UV-B)也可以有效维持甜樱桃的品质,但在提高酚类物质含量和抗氧化活性方面的效果弱于UV-C[24-25]。不同品种的甜樱桃对辐照剂量和辐照时间的耐受度不同,每个国家对辐照产品的限量标准也不同。结合这方面的信息,应用辐照技术对甜樱桃进行保鲜的研究探索,可为产业化应用提供坚实的理论指导。

1.5 其它

热激处理具有操作简单、易实现等特点,是采后水果杀菌的常用手段之一。有研究表明,42℃水浸泡10 min[26]或60℃热水喷淋20 s[27]可抑制果实褐变、降低腐烂率,但不影响其它品质指标。使用44℃热空气处理114 min可有效抑制青霉病,维持果实品质[28]。然而,将“Ambrunés”樱桃在50℃水浸泡2 min后置于低温0℃贮藏10 d后转移至20℃贮藏,却加速果实成熟使其货架期缩短[7]。可能由于热激对甜樱桃的保鲜效果不一致,近五年来关于甜樱桃保鲜在这方面的研究上鲜少报道。姚瑞琪等[29]发现不同压力(20、40、60 kPa,每 12 h抽真空维持压力稳定)均可延长“拉宾斯”大樱桃在0℃冷库的贮藏时间,压力越小对樱桃的保鲜效果越好。但是,这种方法处理繁琐、成本相对较高,目前并不适宜产业化应用。脉冲电场是一种新型的间歇式熏蒸防霉技术,具有升温小、能耗低但杀菌效果明显等特点,是目前国际上研究较多的高效非热杀菌技术之一。林芳妃等[30]使用0.9 kV/cm、频率为6 kHz的纳米脉冲处理60s,可以将“红灯”樱桃的腐烂率降低2/3,有研究发现轻度或中度的脉冲电场还可以增加多酚含量[31]。弱酸性电位水是一种安全高效的杀菌剂,借助仪器用一定浓度的氯化钠溶液即可制备。在10℃,pH5.5的电位水中浸泡10 min不仅可以有效减少“友谊”樱桃的霉菌数和烂果率,且不影响果实硬度和其它指标[32]。使用不同稀释倍数的电位水浸泡3 min,自发气调包装后低温贮藏,稀释倍数大(即游离氯浓度低于200 mg/L)的电位水处理对“Ziraat”樱桃的保鲜效果更佳[33]。另外,刘东平等[34]将樱桃和等离子活化水以 1∶1~1∶1.5 的质量比浸泡5 min,可有效抑制细菌和真菌生长且无毒副作用。

2 化学保鲜

人工合成的化学物质主要通过浸泡、喷洒和熏蒸等方式杀灭甜樱桃微生物或减缓果实衰老软化,以达到保鲜的目的。目前主要有二氧化硫(SO2)、丙酮酸乙酯、二氧化氯(ClO2)、乙醇、酸、氯化钙(CaCl2)和 1-甲基环丙烯(1-methylcyclopropene,1-MCP)等。

传统人工合成的杀菌剂防腐保鲜效果虽好,但有化学残留且可能会产生抗药性。近些年有研究人员用SO2、丙酮酸乙酯和ClO2取代杀菌剂对甜樱桃进行保鲜处理。比如,添加SO2的保鲜纸[35]通过缓慢释放的方式处理甜樱桃可起到防腐、抗氧化和抑制呼吸的作用,但是保鲜纸直接接触到果实的部位会发生色泽变化,因此将SO2制成粉剂或片剂,避免与果实的直接接触,可能会减少对果实颜色的影响。丙酮酸乙酯是一种稳定的亲脂性丙酮酸衍生物,极易挥发,其蒸汽具有抗菌性,在特定条件下被食品和药物管理局(Food and Drug Administration,FDA)归为一般公认安全物质。将丙酮酸乙酯溶液浸湿滤纸[36]或丙酮酸乙酯溶液被冻干制成粉末后包埋成微胶囊[37],通过缓慢释放的方式对甜樱桃处理,可以降低果实腐败率、减缓果实成熟和生物活性成分含量的下降,而且不影响颜色。ClO2氧化能力高,但不会氧化有机物产生剧毒有害物质,是一种有效的消毒剂,已被FDA批准可用于水果和蔬菜的消毒。浓度16 mg/L或20 mg/L的ClO2结合气调可以延缓果实软化、不影响色泽、口感和花青素的含量,有效延长货架期[38]。使用ClO2处理成本低、操作简单,而且在樱桃产业应用中容易实现。

室温下500 μL/L乙醇薰蒸甜樱桃12 h,可有效抑制灰霉病、延缓果实软化和可滴定酸的下降[39]。考虑到乙醇对果实风味的影响,进一步研究乙醇熏蒸对甜樱桃一些重要品质指标(风味、口感、颜色和可溶性固形物等)的影响是有实践意义的。醋酸(6 mg/L)熏蒸30 min可以通过抑制霉菌生长和短期抑制细菌生长而延长“Oktavia”樱桃货架期,但由于诸多技术问题还没有被引入产业应用[40]。其他酸类(如草酸、水杨酸、乙酰水杨酸[41])及其酯类(水杨酸甲酯[42])可以提高总酚和花青素含量及抗氧化活性、延缓果实衰老,但可能会降低糖酸比进而导致果实口感下降。CaCl2主要以浸泡或喷洒方式处理,可以加大果胶分子间的交联,从而使果实硬度增加[43],但有研究表明这种方法并不是对所有品种都有效[44],大多研究更倾向采前和采后结合使用CaCl2来提高水果品质。

甜樱桃作为非呼吸跃变型水果,被认为乙烯不能显著影响其品质和货架期。然而近几年国外研究发现1μL/L 1-MCP 可以减缓“Bing”和“Burlat”樱桃果实的软化,有效延长货架期[45-46]。张立新等[35]使用高效乙烯去除剂明显减缓了0℃冷库保存甜樱桃的衰老和褐变。这些发现为甜樱桃的采后保鲜提供了新的研究思路。

3 生物保鲜

利用生物天然提取物、微生物菌群及其代谢产物和遗传基因技术等方法,达到贮藏保鲜延长货架期的目的。与传统化学物质相比,生物天然物质因其安全、易得等优点,受到世界各地消费者的青睐。近几年植物提取物特别是具有抑菌特性的植物精油,在园艺保鲜方面的研究较多。Dong等[47]将0.15%瓜尔豆胶、0.1% CaCl2、0.1%甘油和1%人参提取物复配可将甜樱桃在20℃(相对湿度70%~75%)的货架期延长8 d。以艾叶精油为原料制成浓度为0.1%的微乳对甜樱桃进行处理,可有效降低果实的腐烂率、失重率和其它品质损失[48]。但考虑到植物精油的香味,可能对水果风味造成影响,因此应用时应当注意精油的用量或浓度。植物精油一般是多成分的混合物,有研究人员发现其中一种物质——己醛(浓度为0.1%熏蒸24 h),通过抑制参与膜降解的磷脂酶D的活性来提高果实硬度,同时激活抗氧化酶系统清除自由基进而减缓果实衰老[45]。另外,茶树油、桑叶和石榴皮的提取物与壳聚糖复配使用可对甜樱桃保鲜起到积极效果[49]。

壳聚糖是一种直链状多糖,是目前果蔬采后保鲜研究最多的天然抑菌剂。由于具有很好的成膜性,常被用来做涂膜处理。不同生物提取的壳聚糖抑菌效果并不相同,用土耳其马尔马拉海里的虾渣制成的壳聚糖可以显著抑菌,对甜樱桃的保鲜效果较好[50]。壳聚糖涂膜(0.5%)还可以激活抗氧化酶系统,减少自由基对膜的损坏和抑制脂氧合酶活性从而减缓膜的降解,进而减缓甜樱桃的软化[51]。加入纳米氧化锌的壳聚糖复配膜因抗压、透气和抗菌等性能的提高,对“美早”樱桃的保鲜效果比单一使用壳聚糖的效果好[52]。考虑到壳聚糖难溶于水、商业使用不便,有研究人员选用易溶于水的羧甲基壳聚糖对甜樱桃保鲜处理,发现可以减少果实的失重率和维持外观品质[53]。

酚类物质是果蔬中常见的次级代谢物,有较强的抗氧化活性。浓度为100 mg/L~200 mg/L的外源香豆酸不但激活苯丙烷代谢途径和重建细胞壁,而且可提高抗氧化物质的含量和激活主要抗氧化酶的活性,进而延缓甜樱桃果实的衰老[54]。浓度为100 mg/L~200 mg/L的木犀草素可有效抑制甜樱桃病菌的菌丝生长及毒素生成,提高果实总多酚和花青素的含量[55]。陶永元等[56]发现甜樱桃在1.5%茶多酚和2%壳聚糖的复配液中浸泡5 min可有效延长保鲜期。这些方法虽然成本相对较高,但考虑到酚类物质对人体健康有益,因此认为有较好的应用前景。多肽类物质(如ε-聚赖氨酸[57]和γ-聚谷氨酸[58]),常见于微生物的代谢产物,具有较好的抑菌性。它们和壳聚糖复配使用可有效降低甜樱桃的失重率、腐烂率及凹陷率等,可以改善色泽和硬度,减缓可滴定酸和VC含量下降。β-氨基丁酸是一种小分子的非蛋白氨基酸,常用于提高果实的抗病性。有研究发现将“红灯”樱桃在30 mmol/L的β-氨基丁酸溶液中浸泡10 min还可以抑制细胞壁修饰相关酶(聚半乳糖醛酸酶、果胶甲酯酶和纤维素酶)活性减缓果实软化,延长货架期[59]。若要在产业上应用,需进一步研究对果实其它品质指标(如口感、颜色等)的影响。其它物质如褪黑素,参与植物的生长发育,对人类健康有益,近年来也被广泛应用在园艺产品的保鲜当中。有研究发现外源褪黑素有效延缓“Sunburst”果实软化、颜色损失、糖酸比下降、质量损失和腐败,促进花青素和VC合成[60-61],由此可见,这种保鲜方法在甜樱桃产业上具有很好的应用前景。

利用微生物通过竞争、抗生、寄生、诱导宿主组织的抗性以及挥发性代谢产物等多种方式,控制采后病原菌数量以改善采后果实的品质。目前主要集中在酵母的研究上,然而单独使用保鲜效果不稳定,因此有研究人员将这种生物方法与物理方法结合处理甜樱桃,发现采用60℃热水喷淋“先峰”20 s后,在罗伦隐球酵母菌液中浸泡2 min可有效抑制甜樱桃果实的青霉病和灰霉病[27]。L479和L672两种拮抗酵母菌在MA条件下可以显著降低“Ambrunés”樱桃青霉病的发病率[62]。虽然这些生物方法与物理方法结合处理可抑制甜樱桃病原菌,但对甜樱桃保鲜效果的研究仍需进一步的探索。近几年研究发现转录因子在控制果实成熟中起着重要作用,例如乙烯合成、花青素的合成和细胞壁代谢的转录因子主要是MADS-BOX、MYB和NAC。E 类 MADS-BOX SEPALLATA3(SEP3)-like基因PaMADS7在甜樱桃果实成熟软化过程中起着正向调节的作用,直接与甜樱桃果实软化的PaPG1启动子结合激活PaPG1的表达[63]。使用TRV-介导的病毒诱导PaMADS7基因沉默可抑制果实成熟[64]。甜樱桃中泛素E3连接酶PacCOP1基因可通过抑制PacMYBA转录水平,下调结构基因的丰度,最终抑制花青素的合成[64]。为进一步提高和调控甜樱桃的保鲜效果,加大对甜樱桃果实成熟和衰老的基础研究(如挖掘重要的调控果实成熟和衰老相关基因),对于产业发展有着重要意义。

4 结论与展望

目前甜樱桃产业化应用的保鲜方式主要是低温冷藏和气调。大量研究发现将生物保鲜和物理保鲜结合不仅对甜樱桃采后的感官品质有积极的效果,而且可以提高营养价值,这无疑为甜樱桃采后保鲜产业提供了强有力的理论支撑和应用指导。然而,这方面的产业化应用相对较少,应加大转化力度。影响甜樱桃产业发展的重要因素是果实品质和耐贮性,从单一的采后保鲜到采前采后结合来提高甜樱桃品质和耐贮性将是未来产业化发展的趋势。另外,加大对次级果实和果梗等资源的利用,发展加工产品,如樱桃汁饮品及提取生物活性成分等,对我国樱桃产业的发展十分有利。

猜你喜欢

壳聚糖货架保鲜
氧化石墨烯-壳聚糖复合材料对水体中农药的吸附
樱桃保鲜掌握技巧
三种不同分子量6-羧基壳聚糖的制备、表征及其溶解性
一种摆放脚扣可以灵活安装的货架应用前景分析
不聊天,感情怎么保鲜?
无人货架,真的凉了?
爱情保鲜术
邵国胜:实现从“书架”到“货架”的跨越
美洲大蠊药渣制备壳聚糖工艺的优化
整理货架