APP下载

机械传动齿轮失效形式研究

2019-12-20王小方淮南舜天合成材料有限公司

新商务周刊 2019年14期
关键词:齿根轮齿齿面

文/王小方,淮南舜天合成材料有限公司

1 概述

当前,随着工矿企业的机械化和自动化程度的不断提高,各种大型机械设备的应用导致其输出扭矩随之增大,但是,机械设备的使用条件决定了齿轮的尺寸、模数等都要受到机械尺寸的限制因此,从提高机械设备的可靠性、安全性和机械的使用寿命出发,对其传动齿轮的设计和制造提出了更高的要求。 与其他行业机械设备相比较,厂矿企业的机械的特点是,齿轮多为大模数齿轮,传动形式一般为低速重载传动,胶合齿轮传动是依靠主动轮轮齿的齿廓,推动从动轮轮齿的齿廓来实现的。当一对轮齿从进入啮合到脱离啮合的传动过程中,具有以下几个特点:

1)齿轮传动是靠齿面的推压,因此作用在轮齿上的力总是指向齿面。

2)传动过程中,轮齿上的应力是变化的,齿面上任一点的接触应力都是从无到有,从小到大,再由大变小,最后变零的。从齿体来说,主要受到弯曲应力。

3)在轮齿推动的过程中,除节点处是纯滚动外,齿面其余接触点均为连滚带滑,齿根部分比齿顶部分跑得慢。

根据齿轮传动的以上工作特点,齿轮传动的失效主要在轮齿部分。轮齿的失效主要包括齿体和齿面两方面。常见的失效形式主要有:齿体折断、齿面点蚀、齿面磨损、齿面塑性变形和齿面胶合等。

2 轮齿折断

轮齿折断是指轮齿整体或局部折断的拉伤形式。主要分两种情况:一种是疲劳折断。疲劳折断是指齿轮在传动过程中,轮齿类似一根悬臂梁,受载后齿根处产生较大的弯曲应力,由于轮齿在交变的弯曲应力下工作,当齿轮工作一段时间,齿根弯曲应力超过材料的疲劳极限时,齿根圆角处将产生疲劳裂纹,随着应力循环次数的增加,裂纹迅速扩展,最终导致齿轮疲劳折断。而另一种是过载折断。过载折断是指齿轮在工作过程中有严重过载或冲击载荷的作用或者在制造安装过程中,精度差,齿轮局部受载或较大的冲击时,均可能产生过载折断。过载折断不同于疲劳折断,其特点是断口位置不固定,断面粗糙。

3 齿面点蚀

齿面点蚀是工作齿面在接触应力的长期反复作用下,其表面金属小块脱落的一种齿面失效形式。点蚀一般首先发生在轮齿靠近节线的齿根部位,这是因为节线附近应力较大,摩擦系数也较大。在滚滑运动中,齿根是被追越面,根据分析,互相滚滑的一对接触表面,其相对滑动时摩擦引起的初始裂纹,当两齿面相互滚动时,被追越面上的裂纹将因润滑油被挤入裂缝中而使裂纹逐渐扩展,而追越面则因滚转时将油液从裂缝中挤出,裂缝中无高压油滚。所以裂纹不致扩展。当被追越面上的裂纹扩展到一定限度时,即形成小块剥落,这就是点蚀。

4 齿面磨粒磨损

在开式传动中或润滑不充分的时候,外界微尘物质进入啮合区而引起齿面材料的损失现象,称为齿面磨粒磨损。实际工作过程中,齿轮与轴承等零件因摩擦磨损产生的微小颗粒、焊接飞溅物、氧化皮、锈蚀物和其它类似的金属和非金属杂物进入齿轮的工作面,由于齿面间存在相对滑动,这些外来颗粒起着磨粒作用,产生磨损。表现在工作齿面上,沿滑动速度方向产生平行的线道滑痕。齿轮运行时,在主、从动齿轮接触过程中某一瞬时在齿面上的特定区域分别受到拉应力、压应力、剪切应力等。在一定的循环次数后,由于疲劳作用而在轮齿表面产生轻微裂纹,润滑油进入裂纹后产生高压,促使裂纹长大并连接起来,使小块金属从表面上掉下来,形成的小坑即为点蚀。如果表面疲劳裂纹向四周扩展得较远较深,或者一系列小坑由于坑间材料失效而连接起来,造成大块金属脱落的现象即为剥落。

5 齿面塑性变形

在低速重载软齿面传动中,由于齿面间较大压力和滑动摩擦力的综合作用,使齿面材料屈服而发生塑性流动的一种齿面失效形式,称为齿面塑性变形。齿面塑性变形的方向平行于滑动方向,由于主动轮齿面的滑动方向和滑动摩擦力的方向是背离节线的,因此主动轮齿面塑性变形是在节线附近形成沟谷,在齿顶产生飞边,而从动轮的齿面跟主动轮情况相反,在节线附近形成峰棱。

6 齿面胶合

在高速或低速重载的大功率传动中,由于啮合齿面比压较大。或齿面温度较高,引起润滑油膜破裂,齿面直接接触,产生干摩擦或半干摩擦,而这种摩擦将温度进一步的升高。在齿面局部产生固有熔焊粘附,继而沿滑动方向撕裂,形成两齿面间表层材料的转移,这种齿面损伤形式称为齿面胶合。它有热胶合和冷胶合两种,在低速重载软齿面齿轮传动之中,由于齿面局部压力较大,有可能使润滑油膜失效,造成齿面金属直接接触并产生塑性变形,接触表面的金属分子相互扩散和局部再结晶而产生局部焊合粘连。当切向滑动时粘结点被撕开,形成冷胶合。当在高速重载的齿轮传动中,齿面温度较高,啮合齿间的润滑油膜由于高温和高压的作用而被破坏,造成齿面金属接触点的熔焊和撕裂。

7 预防措施

7.1 严格控制进厂钢材的质量,对所需钢材的化学成分、低倍组织、淬透性、力学性能等指标提出具体要求,并加大抽检量。

7.2 提高齿轮强度,选择合适材料并增加“开沟调质”工序。提高表面淬火热处理工艺水平,杜绝热处理内裂。使齿轮淬硬层与基体组织间有过渡区域(防止组织突然过渡);防止偏载运转严格控制轴瓦间隙,保证齿面接触精度,减少轧制过程中齿轮轴对轴瓦的冲击。运用现代手段和方法,对关键零部件进行无损探伤检查。

7.3 比较合理的齿轮工艺过程为:炼钢(炉外精炼) →锻造→锻后一次退火→探伤、检验→粗车→探伤→开沟调质→探伤、机械性能试验、金相检验→半精车→精车→滚齿一次跑合→表面淬火、回火→探伤→二次跑合。

7.4 材料选用合金钢材料如40Cr、42CrMo等代替45钢,因为合金钢的淬透性和力学性能要比45钢好。对于模数较大或轴径较粗的工件则改用综合性能好的20CrMnTiH钢。

猜你喜欢

齿根轮齿齿面
滚齿加工平齿根倒锥齿的程序调试分析
HB 与ISO标准中锥齿轮轮齿弯曲疲劳强度计算标准比较
渐开线齿轮齿根过渡曲线与齿根弯曲疲劳强度的研究*
浮动渐开线花键微动损伤及磨损疲劳预测
电动车减速器齿轮疲劳断裂分析与改进
变载荷工况下齿轮齿面的啮合性能研究
材料弹性影响的塑料齿轮齿根应力仿真分析∗
直刃刀具加工的面齿轮承载接触特性
人字齿轮小轮轴向窜动的多目标复合修形优化
滚子链传动设计与分析