APP下载

血红素氧合酶-1与心血管系统的相关研究*

2016-03-15靳霄涵综述徐忠伟李玉明审校

微循环学杂志 2016年1期
关键词:疾病

靳霄涵综述 徐忠伟 李玉明审校

cardiolab@live.com



血红素氧合酶-1与心血管系统的相关研究*

靳霄涵1,2综述徐忠伟2李玉明1,#审校

cardiolab@live.com

【摘要】血红素氧合酶-1(NO-1)是细胞受到外界刺激后诱导性表达的一种分解血红素的关键酶,其通过激活p55/肿瘤坏死因子受体-1(Tumor Necrosis Factor Receptor-1,TNFR-1)、p38丝裂原活化激酶(Mitogen-Activated Protein Kinases,MAPK)和磷脂酰肌醇-3激酶/蛋白激酶B(Phosphatidylinositol 3 Kinase /Protein Kinase B,PI3K/AKt)等信号通路,抑制多种凋亡相关分子活性,发挥抗氧化、抗炎、抗凋亡、抗血栓与降压等作用,从而保护心血管系统,HO-1基因变异可能引起心血管疾病。

【关键词】血红素氧合酶;心血管系统/疾病

血红素氧合酶-1(Heme Oxygenase 1,HO-1)作为血红素氧合酶同工酶中唯一一种诱导型表达蛋白,在拮抗氧化应激对细胞损伤过程中发挥着重要作用,可保护心血管,延缓心血管疾病的发生与发展。

1HO-1及其调控

1960年,Tenhunen等[1]首先发现HO有三种同工酶,即HO-1、HO-2和HO-3,HO-2是细胞中的稳定表达蛋白,HO-3被认为是一种无活性蛋白,HO-1是三种同工酶中唯一一种诱导表达蛋白。有研究[2]表明,人内皮细胞和成纤维细胞中,HO-1的诱导表达可介导细胞对氧化应激的适应性和保护性应答;HO-1作为血红素降解的限速酶,能将血红素分解为二价铁离子(Fe2+)、一氧化碳(Carbon Monoxide,CO)和胆绿素(Biliverdin,BV)。在氧化应激条件下,机体细胞迅速产生HO-1,加强游离血红素代谢,保护细胞不被游离血红素刺激而进入凋亡进程,发挥细胞保护作用。

HO-1的编码基因位于22号染色体1区2带,其调控主要发生在转录水平。由胞外刺激活化的激酶级联信号,识别并结合于HO-1启动子的DNA结合位点,调节HO-1的表达。氧化应激可抑制HO-1启动子的应激应答元件(Stress-Responsive Elements,StREs)转录抑制剂BACH1的活性,抑制BACH1的转录[3]。细胞内的血红素通过BACH1上的结合位点与BACH1结合并诱导BACH1的构象修饰,抑制BACH1结合至StREs,使BACH1出核转运,随后被降解。活性氧自由基(Reactive Oxygen Species,ROS)也能直接作用于BACH1上的巯基,抑制BACH1与StREs结合,促进其出核转运及降解。HO-1上StREs结合的BACH1的释放,有助于氧化应激应答转录因子Nrf2(NF-E2-related factor-2)与StREs结合,诱导HO-1转录[4]。通过HO-1与BACH1的相互作用,引起HO-1表达,保护细胞免受氧化应激产生的游离血红素的损害。

2HO-1抗凋亡信号通路

肿瘤坏死因子(Tumor Necrosis Factor,TNF)、淋巴毒素、死亡受体家族的激活能引起半胱氨酸天冬氨酸蛋白酶(Cysteine-Aspartic Acid Protease,Caspase)家族相关信号通路的活化[5],促进细胞凋亡;而HO-1可阻止细胞内的这一凋亡进程。TNF主要通过p55/TNFR-1引起细胞凋亡,TNF与TNFR-1的结合引发TNF相关死亡结构域(TNFR-Associated Death Domain,TRADD)、TNF相关受体-2(Tumor Necrosis Factor-Associated Receptor-2,TRAF2)、受体相互作用蛋白-1(Receptor-Interacting Protein-1,RIP1)以及细胞凋亡抑制蛋白-1和-2(Inhibitor of Cell Apoptosis Protein,c-IAP-1,c-IAP-2)形成复合物,导致核因子-κB(Nuclear Factor-κB,NF-κB)家族转录因子的活化[6],这是诱导细胞凋亡的重要环节;而HO-1和CO都可以调低p55/TNFR-1的表达或者减弱p55/TNFR-1识别TNF的能力[7],HO-1还可以在不影响其它细胞保护相关基因表达的情况下抑制NF-κB的活化,从而抑制细胞凋亡。

研究显示,p38丝裂原活化激酶(MAPK)与HO-1的细胞保护作用相关,抑制MAPK活性可拮抗HO-1的抗凋亡作用[8]。p38MAPK分子有两种同工酶,p38αMAPK和p38βMAPK,p38αMAPK有促凋亡作用,而p38βMAPK则发

挥抗凋亡作用[9]。p38βMAPK可能通过HO-1与c-IAP-2或者其它细胞保护性基因的相互作用,抑制TNF介导的细胞凋亡过程而活化,HO-1能特异性识别p38αMAPK,并通过泛素-蛋白酶复合体系统使其降解;通过这种机制,控制p38α与p38β两种同工酶的比例,保证具有细胞保护作用的p38βMAPK在比例上大于有细胞毒性p38αMAPK。HO-1活化的p38MAPK可以通过磷酸脂酰肌醇-3激酶/蛋白激酶B(PI3K/Akt)信号通路诱导抑制凋亡因子Bcl-xl的表达,抑制细胞固有的凋亡途径激活[10]。PI3K/Akt信号传导通路的活化还能诱导HO-1的表达,并通过HO-1上第188位丝氨酸残基的磷酸化,调节HO-1的活性[11]。

3HO-1对心血管系统的保护作用

HO-1能够通过抗氧化和抗炎、抗凋亡和抗血栓以及血管调节等多种机制发挥心血管系统保护作用。

3.1抗氧化与抗炎

血红素被HO-1分解之后的产物包括CO和BV,CO与血红蛋白结合,可抑制电子转移及ROS积聚,ROS积聚能够激活许多信号通路,如:MAPK/细胞外调节蛋白激酶(Extracellular Regulated Protein Kinases,ERK)、AKt及环磷酸鸟苷依赖的蛋白激酶(Cyclic Guanosine Monophosphate/cGMP- Dependent Protein Kinase, cGMP/PKG),还能直接活化单核细胞趋化蛋白-1(Monocyte Chemotactic Protein-1,MCP-1)和转化生长因子-β(Transforming Growth Factor,TGF-β)等炎症和纤维化因子,改变组蛋白复合物结构,并调节某些基因的表达[12]。BV作为一种抗氧化剂,被氧化之后转化为胆红素(Bilirubin,BR)。BR是一种ROS强清除剂,能够抑制低密度脂蛋白(Low Densith Lipoprotein,LDL)及其它脂质的氧化,降低血管内皮细胞中ROS水平,减少梗死面积以及再灌注引起的线粒体损伤[13]。研究表明,细胞内过表达或诱导型HO-1的产生,可以抑制主动脉异体移植小鼠的内膜增生及中性粒细胞渗入、趋化因子表达、NF-κB活化及细胞凋亡[14]。BV能减少巨噬细胞和受脂多糖(Lipopolysaccharide,LPS)刺激血管内皮细胞分泌IL-6[15]。在血管系统中诱导产生的HO-1,可能通过BV及BR减少 E-选择素、血管细胞黏附分子-1(Vascular Cell Adhesion Molecular-1,VCAM-1)及细胞间黏附分子(Intercellular Cell Adhesion Molecular-1,ICAM-1)的上调,抑制TNF-α刺激的内皮细胞与中性粒细胞粘着,发挥抗炎作用。

3.2抗凋亡与抗血栓

研究表明,心肌缺血再灌注(Ischemia/Reperfusion,I/R)会引起Caspase3、Caspase9的活化,引发心肌细胞凋亡[16]。CO释放分子-3(CO-Releasing Molecules-3,CORM-3)处理小鼠之后,其心肌细胞中许多凋亡标志分子如NF-κB、信号传导与转录激活因子1/3(Signal Transducer And Activator of Transcription 1/3,STAT1/3)和核因子NF-E2相关因子-2(Nrf2)表达水平明显的降低,具有心脏保护和抗凋亡作用分子表达显著提高[17],而用CO抑制剂处理后,能诱导细胞线粒体中过氧离子积聚,细胞凋亡增加。

血管损伤引起血小板聚集和活化,通过凝血因子和纤维蛋白原等共同作用,在局部形成血栓。HO-1分解血红素产生的内源性CO能提高血小板中环鸟嘌呤核糖苷-3',5'-环磷酸酯(Cyclic Guanosine 3',5'-cyclic Phosphate,cGMP)水平,抑制血小板聚集及血栓形成[18]。血管移植模型经锡卟啉原抑制HO-1活性后,移植血管处发生血小板聚集和动脉血栓形成,最终导致移植排异反应。即HO-1缺陷可能加重血栓形成过程引起的免疫应答反应;过表达HO-1则可对血栓形成起抑制作用[19]。因此,HO-1有抗血栓的作用。

3.3血管调节作用

研究表明,抑制LDL受体基因敲除小鼠HO-1表达,会增加其动脉粥样硬化程度及提高血浆过氧化氢脂质水平[20];心肌细胞过表达HO-1可拮抗再灌注损伤、心肌炎症和氧化损伤,抑制血管平滑肌细胞增殖,阻止动脉粥样硬化斑块发展为脆性斑块[21]。HO-1能降低肥胖大鼠体重,提高胰岛素敏感性及葡萄糖耐量[22-26]。研究表明,HO-1分解产物CO能通过活化可溶性鸟苷酸环化酶(Soluble Guanylyl Cyclase,sGC)直接扩张血管,减少外周阻力,通过调节血管作用分子的产生,降低血管紧张度;能抑制内皮素-1以及许多由细胞色素P450介导的血管收缩成分的产生;还能通过降低中枢交感神经的兴奋性以及促进肾脏的钠离子外排,刺激细胞内储存的NO释放,发挥降血压作用[27]。另外,HO-1在吸烟、高血糖、高血压等心血管疾病危险因子作用时表达量也会增高[28]。

4HO-1基因变异与心血管疾病

作为HO-1的转录调控因子,Nrf2和BACH1在由HO-1表达改变所引起的心血管疾病中有着关键作用[29]。Nrf2信号通路缺陷会引起糖尿病和心血管疾病,增加葡萄糖诱导的心肌细胞凋亡[29-32];BACH1缺陷会促进实验动物的动脉粥样硬化、缺血再灌注损伤及血管损伤[33]。HO-1的启动子区域存在着多态性,其近端至少有一个SNP,-413A/T,它与心血管疾病易感性相关,-413A/T多态性中AA基因型心血管疾病的发病率较低[34];其长谷胱甘肽胸腺嘧啶二核苷酸(Glutathione Thymidine Dinucleotide,GT)重复序列(重复数>29)与HO-1表达成负相关,可能加快动脉粥样硬化进程,增加心血管疾病风险[35]。

5展望

许多临床前或者临床疾病能从药物诱导产生的HO-1中获益,药物诱导HO-1有望成为一种新的心血管疾病的干预措施。而针对HO-1的基因治疗可能比药物诱导HO-1表达更有效。临床前期数据已经证明了用HO-1进行器官特异性基因治疗的可行性:在肺内皮细胞中转染HO-1miRNAs会引起HO-1表达下调,增加对氧化应激敏感性和肺内皮细胞凋亡,以及减少自噬。随着基因载体的发展,用HO-1进行基因治疗的方法将会得到进一步优化,但载体的安全性和有效性是必须考虑的问题,如何在提高疗效的同时,避免产生任何不利影响将是亟待解决的重要挑战。

靳霄涵(1991—),男,汉族,硕士研究生,研究方向:心血管内科学

参考文献

1Tenhunen R, Marver HS, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase[J]. Proc Natl Acad Sci USA, 1968, 61 (2):748-755.

2Reeve VE, Tyrrell RM. Heme oxygenase induction mediates the photoimmunoprotective activity of UVA radiation in the mouse[J]. Proc Natl Acad Sci USA, 1999, 96 (16):9 317-9 321.

3Takada T, Miyaki S, Ishitobi, et al. Bach1 deficiency reduces severity of osteoarthritis through upregulation of heme oxygenase-1[J]. Arthritis Res Ther, 2015, 17(1):285-295.

4Fuse Y, Nakajima H, Nakajima-Takagi Y, et al. Heme-mediated inhibition of Bach1 regulates the liver specificity and transience of the Nrf2-dependent induction of zebrafish heme oxygenase 1[J]. Genes Cells, 2015, 20 (7):590-600.

5Yang T, Shi R, Chang L, et al. Huachansu suppresses human bladder cancer cell growth through the Fas/Fasl and TNF- alpha/TNFR1 pathway in vitro and in vivo[J]. 2015, 34(1):21-30.

6Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes[J]. Cell, 2003, 114 (2):181-190.

7Bertok S, Wilson MR, Morley PJ, et al. Selective inhibition of intra-alveolar p55 TNF receptor attenuates ventilator-induced lung injury[J]. Thorax, 2012, 67 (3):244-251.

8Jiang G, Hu Y, Liu L, et al. Gastrodin protects against MPP(+)-induced oxidative stress by up regulates heme oxygenase-1 expression through p38 MAPK/Nrf2 pathway in human dopaminergic cells[J]. Neurochem Int, 2014, 75(9):79-88.

9Zhao M, Yang Y, Bi X, et al. Acetylcholine attenuated TNF-α-induced apoptosis in H9c2 cells: role of calpain and the p38-MAPK pathway[J]. Cell Physiol Biochem, 2015, 36(5):1 877-1 889.

10Shen Y, Ward NC, Hodgson JM, et al. Dietary quercetin attenuates oxidant-induced endothelial dysfunction and atherosclerosis in apolipoprotein E knockout mice fed a high-fat diet: a critical role for heme oxygenase-1[J]. Free Radic Biol Med, 2013, 65(4):908-915.

11Seo SH, Jeong GS. Fisetin inhibits TNF-α-induced inflammatory action and hydrogen peroxide-induced oxidative damage in human keratinocyte HaCaT cells through PI3K/AKT/Nrf-2-mediated heme oxygenase-1 expression[J]. Int Immunopharmacol, 2015, 29 (2):246-253.

12Chen W, Frangogiannis NG. The role of inflammatory and fibrogenic pathways in heart failure associated with aging[J]. Heart Fail Rev, 2010, 15 (5):415-422.

13Müllebner A, Moldzio R, Redl H, et al. Heme degradation by heme oxygenase protects mitochondria but induces ER stress via formed bilirubin[J]. Biomolecules, 2015, 5 (2):679-701.

14Jayasooriya RG, Lee KT, Choi YH, et al. Antagonistic effects of acetylshikonin on LPS-induced NO and PGE2 production in BV2 microglial cells via inhibition of ROS/PI3K/Akt -mediated NF-κB signaling and activation of Nrf2-dependent HO-1[J]. In Vitro Cell Dev Biol Anim, 2015, 51 (9):975-986.

15Bisht K, Wegiel B, Tampe J, et al. Biliverdin modulates the expression of C5aR in response to endotoxin in part via mTOR signaling[J]. Biochem Biophys Res Commun, 2014, 449 (1):94-99.

16Jia X, Zhang L, Mao X. S-propranolol protected H9C2 cells from ischemia/ reperfusion- induced apoptosis via downregultion of RACK1 gene[J]. Int J Clin Exp Pathol, 2015, 8 (9):10 335-10 344.

17Andreadou I, Iliodromitis EK, Rassaf T, et al. The role of gasotransmitters NO, H2S and CO in myocardial ischaemia/reperfusion injury and cardioprotection bypreconditioning, postconditioning and remote conditioning[J]. Br J Pharmacol, 2015, 172 (6):1 587-1 606.

18Li L, Li CM, Wu J, et al. Heat shock protein 32/heme oxygenase-1 protects mouse Sertoli cells from hyperthermia-induced apoptosis by CO activation of sGC signalling pathways[J]. Cell Biol Int, 2014, 38(1):64-71.

19Gabre J, Chabasse C, Cao C, et al. Activated protein C accelerates venous thrombus resolution through heme oxygenase-1 induction[J]. J Thromb Haemost, 2014, 12 (1):93-102.

20Brydun A, Watari Y, Yamamoto Y, et al. Reduced expression of heme oxygenase-1 in patients with coronary atherosclerosis[J]. Hypertens Res, 2007, 30 (4):341-348.

21Harada N, Ito K, Hosoya T, et al. Nrf2 in bone marrow-derived cells positively contributes to the advanced stage of atherosclerotic plaque formation[J]. Free Radic Biol Med, 2012, 53(12):2 256-2 262.

22Yang G, Li Y, Wu W, et al. Anti-oxidant effect of heme oxygenase-1 on cigarette smoke-induced vascular injury[J]. Mol Med Rep, 2015, 12 (2):2 481-2 486.

23Bao W, Rong S, Zhang M, et al. Plasma heme oxygenase-1 concentration in relation to impaired glucose regulation in a non-diabetic Chinese population[J]. PLoS One, 2012, (3):e32223.

24Zenclussen ML, Linzke N, Schumacher A, et al. Heme oxygenase-1 is critically involved in placentation, spiral artery remodeling, and blood pressure regulation during murine pregnancy[J]. Front Pharmacol, 2015, 5:291.

25Lee EM, Lee YE, Lee E, et al. Protective effect of heme oxygenase-1 on high glucose-induced pancreatic β-cell injury[J]. Diabetes Metab J, 2011, 35 (5):469-479.

26Jais A, Einwallner E, Sharif O, et al. Heme oxygenase-1 drives metaflammation and insulin resistance in mouse and man[J]. Cell, 2014, 158 (1):25-40.

27Huo L, Zhang J, Qu Z, et al. Vasorelaxant effects of Shunaoxin pill are mediated by NO/cGMP pathway, HO/CO pathway and calcium channel blockade in isolated rat thoracic aorta[J]. J Ethnopharmacol, 2015, 173:352-360.

28Velmurugan GV1,Sundaresan NR, Gupta MP, et al. Defective Nrf2-dependent redox signalling contributes to microvascular dysfunction in type 2 diabetes[J]. Cardiovasc Res, 2013, 100 (1):143-150.

29Uruno A, Furusawa Y, Yagishita Y, et al. The Keap1-Nrf2 system prevents onset of diabetes mellitus[J]. Mol Cell Biol, 2013, 33 (15):2 996-3 010.

30Yagishita Y, Fukutomi T, Sugawara A, et al.Nrf2 protects pancreatic β-cells from oxidative and nitrosative stress in diabetic model mice[J]. Diabetes, 2014, 63 (2):605-618.

31Mozzini C, Fratta PA, Garbin U, et al. Increased endoplasmic reticulum stress and Nrf2 epression in peripheral blood mononuclear cells of patients with stable coronary artery disease[J]. Free Radic Biol Med, 2014, 68(3):178-185.

32Ashino T, Yamamoto M, Yoshida T, et al. Redox-sensitive transcription actor Nrf2 regulates vascular smooth muscle cell migration and neointimal hyperplasia[J]. Arterioscler Thromb Vasc Biol, 2013, 33 (4):760-768.

33Motovali-Bashi M1, Hamidy M. Association between GT-repeat polymorphism at heme oxygenase-1 gene promoter and gastric cancer and metastasis[J]. Tumour Biol,2015, 36 (6):4 757-4 762.

34张国红,陈宋明,王东明,等. 血红素氧合1基因-413A/T位点多态性与血脂异常个体冠心病患病风险密切相关[J].中国动脉硬化杂志,2010,18 (1):63-66.

35Kaplan M, Renbaum P, Hammerman C, et al. Heme oxygenase-1 promoter polymorphisms and neonatal jaundice[J]. Neonatology, 2014, 106(4):323-329.

作者简介:本文

[中图分类号]R54

[文献标识码]A

[文章编号]1005-1740(2016)01-0057-04

*[基金项目]国家自然科学基金项目(81170238);天津市科技计划项目(15ZXJZSY00010);天津市心血管重塑与靶器官损伤重点实验室开放基金项目(TJC1401)

本文2015-10-04收到,2015-12-14修回

猜你喜欢

疾病
进击的疾病
尿碘与甲状腺疾病的相关性
易与猪大肠杆菌病混淆的腹泻类疾病鉴别诊断
立秋后要注意调养预防呼吸疾病
夏季养生之疾病篇
牛常见呼吸道疾病的认识与防治
夏季疾病不用慌预防得当保健康
面对意外的疾病
从对抗疾病转向健康维护
疾病与人