APP下载

即饮茶香气品质研究进展

2023-09-20李苏童李安生孙彬妹郑鹏谭新东刘少群

中国茶叶 2023年9期

李苏童 李安生 孙彬妹 郑鹏 谭新东 刘少群

摘要:近年来,即饮茶在中国饮料行业中渗透率高,发展前景广阔。即饮茶饮料作为茶叶的衍生品,其风味呈现是决定消费者接受度的一个重要因素。当前对即饮茶特征风味呈现的机理探讨还相对较少,关于茶饮料的研究也大多集中在其制作工艺的改进层面。文章以前人研究为基础,对即饮茶香气品质形成进行综述,明晰即饮茶挥发性化合物特性、香气互作效应,概括总结芳香物质的提取分析方法,并对即饮茶香气调控的创新技术进行探究归纳,以期为即饮茶风味品质的相关科学研究提供参考,促进即饮茶产品在市场上的消费流通。

关键词:即饮茶;茶叶香气;香气物质提取;香气互作;香气调控

中图分类号:TS275.2                                           文献标识码:A                                          文章编号:1000-3150(2023)09-19-9

Research Progress on Aroma Quality of Ready-to-drink Tea

LI Sutong, LI Ansheng, SUN Binmei, ZHENG Peng, TAN Xindong, LIU Shaoqun*

College of Horticulture, South China Agricultural University, Guangzhou 510642, China

Abstract: In recent years, ready-to-drink tea has a high penetration rate in China's beverage industry and a broad development prospect. As a derivative of tea, the flavor of ready-to-drink tea is an important attribute that determines the acceptability of consumers. At present, there are relatively few researches on the mechanism of the characteristic flavor presentation of tea drinks, and most of the researches on tea drinks focused on the improvement of its production technology. Based on previous studies, this paper summarized the formation of aroma quality of ready-to-drink tea. The characteristics of volatile compounds and the mechanism of aroma formation in tea beverage were clarified, and the extraction and analysis methods of aroma substances were summarized. Then the innovative technology of beverage aroma preparation was explored and concluded.  It would provide references for the scientific research on the flavor quality of tea beverage and promote the consumption and circulation of ready-to-drink tea products in the market.

Keywords: ready-to-drink tea, tea aroma, aroma substance extraction, aromatic interaction, aroma regulation

茶作為当今世界上最受欢迎的三大非酒精饮料之一,其消费量仅次于水[1]。2022年全球茶叶市场价值为 330 亿美元,预计到 2032 年整体市值将达到705 亿美元。2022—2032 年预期的复合年增长率为 7.9%[2]。

即饮茶(Ready-to-drink tea)是指将传统原叶茶进行深加工制成瓶装、罐装或利乐包的茶饮料及当下热门的新式茶饮,具有一定的佐餐解腻、助消化、减脂降糖等保健功效[3]。随着经济的快速增长及消费者对健康生活方式必要性的认知不断提高,越来越多的饮料品牌针对不同地区开发供应即饮茶系列产品,驱动即饮茶市场快速发展[4]。

即饮茶品质的判别主要是对香气、滋味和色泽的综合感官识别、判断及评价[5-6]。茶的风味包括茶叶中的可挥发性香气化合物及茶汤中的可溶性滋味化合物[7],对风味组分进行研究可以从分子水平来解析构成茶香的物质基础。

目前茶饮料的风味研究中,如何定量描述并评价茶汤香气,并阐明各香气成分的含量配比对茶汤总体接受度的影响已成为茶饮料风味学发展的瓶颈问题,有必要展开深入研究。本文针对即饮茶中主要挥发性物质在加工贮藏过程中的形成及其变化规律,对即饮茶香气互作效应和芳香物质的提取分析方法进行概括总结,并对即饮茶香气调配的创新技术进行探究归纳,旨在为即饮茶风味品质相关的科学研究提供参考,在一定程度上促进即饮茶产品在市场上的消费流通。

1  即饮茶香气品质呈现

1.1  香气感知的生理基础

产品独特的香气是消费者能够对其产生记忆及下一次识别产品的重要因素。人类日常感知到的香气几乎都是挥发性物质多组分混合的结果。人体对于香气的感知主要借助嗅觉,即生物鼻腔的嗅觉神经受某些挥发性分子刺激后,由神经元末端纤毛转化的电信号通过嗅球和嗅束抵达中枢神经而引起的一种复杂而模糊的感觉[8]。人体嗅闻过程可分为鼻前嗅闻(香气分子从外界直接到达嗅上皮)以及鼻后嗅闻(香气分子经过吞咽从咽喉部再到达鼻腔)[9]。图1描绘了人体的嗅觉系统以及对外部气味的感知过程。据理论估计,人类能够辨别和记忆近1 000种不同的气味,但大脑编码这些复杂混合物的方式尚且未知。作为评价茶叶品质的重要指标,到目前为止,从茶叶和茶汤中鉴定出来的香气成分多达600种[10],但其中只有部分挥发性物质会产生特征性气味。

1.2  即饮茶中重要呈香物质

茶叶中挥发性的风味物质是多种复杂成分构成的混合物,其含量低、挥发性强。但是在茶饮料的加工中,仅有很少一部分化合物能够保留并赋予茶汤特殊的香气。现今欧美即饮茶市场中较为流行的调味酒精冰茶饮料,是由茶、天然香料和麦芽基底酿造而成,其中的柠檬口味冰茶是市场的主打产品。经香气物质提取分析表明,该产品柠檬香调的主要贡献物质是萜烯烃(蒎烯、柠檬烯和松油烯)以及含氧萜类化合物(香茅醛、芳樟醇、柠檬醛、橙花醛和香叶醛)。其中,柠檬醛(3,7-二甲基-2,6-辛二醛)是柑橘油中最重要的风味化合物之一,广泛应用于食品和饮料加工,而其他如(Z)-3-己烯醇、1-己醛和4-乙烯基愈创木酚等茶叶中的挥发性成分虽然对风味影响较小,但为柠檬风味提供了丰富的层次感[11]。干茶经过浸提、过滤、浓缩、灭菌、干燥和储存而制成即饮茶饮料,直接对即饮茶产品进行香气提取分析,结果显示大量挥发性成分经提取定量后的含量较最初浸提液大幅减少,说明茶饮料感官质量发生的变化可能是由于加工及贮藏过程中挥发性物质的氧化及水解所致[12]。

干茶经过浸提或萃取后,茶汤特征香气的呈现中起主要贡献作用的部分被称为关键香气组分,因具有较高的香气强度、香气活度值(OAV)或风味稀释因子(FD),从而能够决定茶饮整体的香型[13-16]。目前认为,醛、醇、酮类和萜烯是茶汤中重要的香气活性化合物,对茶汤的整体香气有重要的潜在影响。有学者研究认为,β-大马士酮和芳樟醇便是茶饮料中最活跃的挥发性化合物[12]。醛类和醇类通常经审评小组成员的感官描述被赋予绿色植物、柑橘、脂肪气息和甜味等风味特征词汇;萜烯则被描述为茶汤具有的花香、果香及甜味;酮类化合物是茶汤中典型黄油味的来源。冲泡后的绿茶茶汤中还含有少量芳樟醇、壬醛、香叶醇、茉莉酮和β-紫罗兰酮等挥发性化合物,有助于花香味的呈现[17]。乌龙茶浸提液中挥发性硫化物(VSC)的适量存在,令茶汤具有独特的熟土豆香[18]。冻顶乌龙茶汤中的二甲硫醚更是使茶饮整体香气接近绿茶[19-20]。台湾红玉红茶含有正庚醇、β-环柠檬醛、月桂烯等多个柑橘香的香气成分,加工制得的即饮茶整体以青果香(正己醛、水杨酸甲酯、1-戊烯-3-醇等)为主,还有花甜香(苯甲醛、氧化芳樟醇、苯乙醛等)及发酵香、坚果香(戊醛、丁醛1-甲基-4-异丙烯基苯等)[21]。具备独特呈香化合物的茶类均可作为即饮茶基底的优良选择,为产出风味口感融合性好、有独特记忆点的茶饮料提供保障。

2  即饮茶香气的提取富集及分析方法

目前茶叶挥发性化合物提取方法有液液萃取(LLE)、同步蒸馏萃取(SDE)、动态顶空萃取(DHS)、超临界流体萃取(SFE)、超声辅助萃取(UAE)、微波辅助萃取(MAE)、固相萃取 / 微萃取(SPE/SPME)、溶剂辅助风味蒸发(SAFE)[22-24]和搅拌棒吸附萃取 (SBSE)[25]等常用方法 ,还有以SBSE結合冷冻浓缩(FC)的新型提取技术(ICECLES)[26]。Zhu等[27]以烘焙绿茶为研究对象,显示不同提取方法的效率高低排序为:顶空吸附萃取(HSSE)< SBSE< 顶空-搅拌棒吸附萃取(HS-SBSE)<顺序顶空-搅拌棒吸附萃取(seq-HS-SBSE)。

结合挥发性化合物的筛选方法,定量数据和气味检测阈值准确的基础上使用OAV值以更好地评估化合物的气味活动。针对常见于提取分析果汁等液体饮料[28-30]的方法体系,目前可做如下概括:基于分子感官科学进行呈香属性及整体风味轮廓的描述性研究,首先使用SPME提取富集待测液的挥发性物质;随后,利用气相色谱-质谱技术(GC-MS)和气相色谱-嗅闻技术(GC-O)对浸提液中的挥发性化合物进行定性定量鉴定分析,并借助香气提取物稀释分析法 (AEDA)[31]对重要香气物质进行筛选,同时结合OAV对芳香物质的贡献性作出评价;最后,利用模拟体系进行香气重组和遗漏试验深入验证呈香物质的贡献性,实现样品中特征香气物质的准确鉴定。该方法体系可推广应用于即饮茶的香气品质成分研究分析。

即饮茶制作的第一道工序就是将干茶进行萃取或浸提,经一定时间后得到的茶汤(茶浸提液)即为茶饮料的基础形态。近年来有部分学者以经过萃取或一定时长浸提所得的茶浸提液为研究对象,对其进行香气成分分析。表1和表2列举了近几年有关报道中不同种类的干茶浸提液及部分即饮茶产品冲泡后特征性挥发物质的提取、分析方法及特征性香气描述。表中结果及数据,可为即饮茶加工中茶基底的选用以及后续使用天然香精调配制作调味茶饮提供参考依据。

3  即饮茶香气互作效应研究

据前人研究,以茶汤中测出的单一香气化合物与混合体系中的阈值变化为指标,挥发物质间的相互作用可划分为无作用、掩蔽作用、累加作用和协同作用4种类型[45]。当结构相近的香气化合物混合时,能产生协同作用和相加作用。反之,掩蔽效应或弱加成作用主要存在于由结构差异较大的化合物组成的混合物中[46]。即饮茶产品的最终风味特征可能更多地取决于各成分间的组合及比例,而非特定成分作用[47]。研究发现,茉莉花茶和乌龙茶浸泡液中亚阈值香气化合物之间的协同效应对茶特征风味的形成起到重要作用[48-49]。速溶普洱茶中反式-β-紫罗兰酮和芳樟醇及其氧化物产生的甜味、花香和绿草香气能够掩盖来自甲氧基苯的陈旧气味,并提高整体的香气接受度[50]。针对红茶中关键呈味酯类化合物和呈现花香的芳香化合物,通过Feller添加模型探讨二者间的相互作用,发现浸提液中酯类浓度的增加会对花香类物质释放起到掩蔽作用[51]。

目前针对饮品的香气互作研究多集中在咖啡[52-54]和酒精饮料[55-57]上,很少有研究深入探讨茶浸提液或即饮茶中香气化合物之间的相互作用。在上述研究基础上,探索即饮茶各种呈香化合物之间的感知相互作用,可为改善即饮茶风味以及后续风味创新提供更多理论支持。

4  即饮茶香气调控因素研究

4.1  茶叶内含成分影响香气呈现

即饮茶所含的香气成分有醇、醛、酯、萜类等多种物质,挥发物的组成及含量在一定程度上决定着消费者的偏好性和购买欲。Lin等[58]发现乌龙茶冲泡过程中,浸提液中的非挥发性成分对吲哚、苯甲醇和 2-苯乙醇等挥发性物质的顶空释放可产生抑制作用。另外在龙井茶汤中,游离氨基酸(甘氨酸)对 1-辛烯-3-酮的释放和 2-丁基-2-辛烯醛的形成作用影响显著[59]。加工乌龙茶饮料时,茶叶在浸提前先经烘烤可以增强风味特征,是因为茶氨酸和己糖或戊糖通过美拉德反应生成的糠醛和5-甲基糠醇构成了岩茶和陈年乌龙茶的重要香气成分[60]。Guo等[61]通过体外加热模拟试验,证实了在热加工过程中,茶氨酸与挥发性物质2,5-二甲基吡嗪的生成有所关联。

即饮茶的香气虽然在茶饮风味品质呈现中只占很小的一部分,但也在茶饮料的品质形成及消费者感官接受度方面起着极其重要的作用。Wang等[62]发现在高压灭菌过程中和绿茶饮料的货架期内,饮料中芳香化合物的变化也与茶叶中儿茶素氧化产生的过氧化氢有关。

4.2  加工工艺影响香气呈现

即饮茶加工制作过程香气成分的动态变化,主要取决于浸提和灭菌两大环节[4]。基底茶的香气挥发性前体经过浸提进一步水解,使得浸提液中的一些风味物质如2-苯基乙醇、2-甲氧基-4-羟基苯甲醛等化合物与原叶中的含量相比显著增加[63]。由于浸提时间和温度对各类茶成分的影响不同,即使是由相同茶基底制成的饮品,呈香物质最终可能都会以不同的比例存在于冷泡或热泡茶饮中,呈现不同的感官品质[64]。Dos 等[65]研究路易波士茶在不同冲泡条件下的香气等感官特征,发现传统热冲泡的茶汤强度得分低于经过浸提的茶汤。目前市场上的罐装茶饮料一般采用巴氏灭菌 (85 ℃,15 min) 或高温灭菌 (121 °C,10 min)[66]处理。另外超高温瞬时灭菌 (135 ℃,15 s)目前也有应用于聚对苯二甲酸乙二醇酯 (PET)瓶装茶饮的灭菌处理。以上热处理均会使即饮茶中大马士酮的糖苷前体水解,对饮料的风味品质产生显著影響[67]。相较于热杀菌技术,常用于食品[68-72]、果汁[73-76]中的常温或低温冷灭菌技术同样值得关注。Song等[77]发现经超声技术结合高静水压(HHP)处理的冷泡茶,其茶多酚、pH 值、颜色、抗氧化能力和浊度能够得到有效保留。若采用高压脉冲电场(HPEF)对普洱茶进行催熟处理,可有效保证其“久藏好味”的特点[78]。Hemmati等[79]利用常压冷等离子体(CAP)处理速溶绿茶粉,结果表明该技术在保证绿茶抗菌效力的同时能使产品微生物安全性有所提升。Mandal等[80]用脉冲紫外光(PL)处理红茶浸提液,却发现PL处理对样品的总酚含量和抗氧化活性并无显著影响,于是计划结合温和的热加工方法对处理后茶汤的颜色和感官特性的变化进行研究。在前人的试验基础上,未来可将感应电场、冷等离子体等新型技术应用于即饮茶的灭菌处理,过程中茶饮料的呈香异化机制值得展开深入研究。

4.3  物料添加及微生物发酵影响香气呈现

即饮茶香气依赖于人体嗅觉的感官判断,因此茶饮料在风味调配时常选择额外添加一些促味剂增香,在不同的搭配组合下获得较为舒适及均衡的风味特征[81]。茶叶中虽含有水解糖苷的关键酶,如β-葡萄糖苷酶、β-半乳糖苷酶和β-樱草糖苷酶[82],但内源酶和糖苷香气通常不易反应[83]。加工过程中糖苷香气释放有限,一般可通过添加外源性糖苷酶提高茶产品的香气品质。β-葡萄糖苷酶处理可改善发酵红茶汁的整体香气,使“花香”风味得到加强,强化红茶特有的“甜”香[84]。

微生物发酵技术常见于食品饮料的加工制作。国内茶饮市场中,发酵茶饮料因其独特的风味品质和有益的生化活性功能,已成为现今的爆款产品。如目前在国内外市场推广的康普茶,就是由红茶或绿茶和蔗糖在细菌和酵母的共生培养环境下发酵而成[85]。研究表明,微生物发酵使茶饮料中的酚氨比下降、芳香物质增加,并积累大量初级或次级代谢产物,从而改善茶汤风味[86-87]。陈清爱等[88]对发酵过程中不同阶段红茶汤香气成分和活性因子的生成及变化展开探讨,发现复合乳酸菌发酵红茶汤的风味层次更加丰富。随发酵时间的延长,一些具有花香和水果甜香的挥发性醇、酮逐渐增加,而壬醛、松油醇等物质逐渐减少,降低了茶汤中的青草味。Rigling等[34]将可食用担子菌添加到基底茶中生产出的新型绿茶饮料,在不添加糖和调味剂的条件下仍能表现出强烈的巧克力味和坚果香气。另外还可以通过添加水果或花卉的天然香料提取物,使康普茶饮品香气品质多元化[89]。

5  总结与展望

即饮茶的香气品质、挥发物与茶饮基底间的风味融合性,以及风味物质对消费者饮品接受度产生的影响等极具有研究前景和吸引力。尽管目前已明确茶饮中的各类呈香物质,但有关各挥发性成分单体的阈值及气味组合间复杂的互作机制对即饮茶整体风味的影响还有待深入研究。今后应关注不同种类茶饮料的特征性香气成分,重点放在各呈香物质间的互作机理上,结合感官组学明晰即饮茶香气与滋味物质间的跨模态感官互作,为完善产品品控提供理论依据。使用代谢组学分析,揭示即饮茶贮藏期风味变化机理,结合动力学方程及数学模型预测茶饮料保质期,控制风味品质稳定性。以期助力即饮茶市场高品质、智能化发展,进一步提高我国茶叶的资源利用率及经济附加值。

参考文献

[1] ZHU M Z, LI N, ZHAO M, et al. Metabolomic profiling delineate taste qualities of tea leaf pubescence[J]. Food Research International, 2017, 94: 36-44.

[2] KALE R, DESHMUKH R. Ready-to-drink (RTD) tea market[J/OL]. Allied Market Research: Portland, 2020, 299. https://www.futuremarketinsights.com/reports/ready-to-drink-rtd-tea-market.

[3] 尹軍峰, 许勇泉, 张建勇, 等. 茶饮料与茶食品加工研究“十三五”进展及“十四五”发展方向[J]. 中国茶叶, 2021, 43(10): 18-25.

[4] 李洁, 董昕阳, 冯瑛, 等. 液体茶饮料品质研究进展及发展展望[J]. 中国茶叶加工, 2018(2): 23-27, 30.

[5] BERTRAND B, BOULANGER R, DUSSERT S, et al. Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality[J]. Food Chemistry, 2012, 135(4): 2575-2583.

[6] JOHNSON A J, HJELMELAND A K, HEYMANN H, et al. GC-Recomposition-Olfactometry (GC-R) and multivariate study of three terpenoid compounds in the aroma profile of Angostura bitters[J/OL]. Scientific Reports, 2019, 9: 7633. https://doi.org/10.1038/s41598-019-44064-y.

[7] 聂枞宁. 基于风味组学的茶叶香味与成分的映射关联评价研究[D]. 雅安: 四川农业大学, 2020.

[8] 罗龙新. 新式茶饮产品及其茶叶原料的创新与启示[J]. 中国茶叶, 2021, 43(9): 12-16.

[9] HANNUM M E, FRYER J A, SIMONS C T. Non-food odors and the duality of smell: Impact of odorant delivery pathway and  labeling convention on olfactory perception[J/OL]. Physiol Behav, 2021, 238: 113480. https://doi.org/10.1016/j.physbeh.

[10] RAVICHANDRAN R. Carotenoid composition, distribution and degradation to flavour volatiles during black tea manufacture and the effect of carotenoid supplementation on tea quality and aroma[J]. Food Chemistry, 2002, 78(1): 23-28.

[11] YUAN F, HE F, QIAN Y P, et al. Aroma stability of lemon-flavored hard iced tea assessed by chirality and aroma extract dilution analysis[J]. Journal of Agricultural and Food Chemistry, 2016, 64(28): 5717-5723.

[12] LIANG S, GAO Y, FU Y Q, et al. Innovative technologies in tea-beverage processing for quality improvement[J/OL]. Current Opinion in Food Science, 2022, 47(47): 100870. https://doi.org/10.1016/j.cofs.2022.100870.

[13] HO C T, ZHENG X, LI S M. Tea aroma formation[J]. Food Science & Human Wellness, 2015, 4(1): 9-27.

[14] SHEN S S, WU H, LI T H, et al. Formation of aroma characteristics driven by volatile components during long-term storage of An tea[J/OL]. Food Chemistry,  2023, 411: 135487. https://doi.org/10.1016/j.foodchem.2023.135487.

[15] BABA R, KUMAZAWA K. Characterization of the potent odorants contributing to the characteristic aroma of Chinese green tea infusions by aroma extract dilution analysis[J]. Journal of Agricultural and Food Chemistry, 2014, 62(33): 8308-8313.

[16] SCHUH C, SCHIEBERLE P. Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea: Quantitative differences between tea leaves and infusion[J]. Journal of Agricultural and Food Chemistry, 2006, 54(3): 916-924.

[17]  GAO Y, WANG J Q, CHEN J X, et al. Effect of ferrous ion on heat-induced aroma deterioration of green tea infusion[J/OL]. Molecules, 2021, 26(14): 4255. https://doi.org/10.3390/molecules26144255.

[18] KUO P Q, LAI Y Y, CHEN Y J, et al. Changes in volatile compounds upon aging and drying in Oolong tea production[J]. Journal of the Science of Food and Agriculture, 2011, 91(2): 293-301.

[19] WU Q, ZHU W, WANG W, et al. Effect of yeast species on the terpenoids profile of Chinese light-style liquor[J]. Food Chemistry, 2015, 168: 390-395.

[20] XUE J J, GUO G Y, LIU P P, et al. Identification of aroma-active compounds responsible for the floral and sweet odors of Congou black teas using gas chromatography-mass spectrometry / olfactometry, odor activity value, and chemometrics[J]. Journal of the Science of Food and Agriculture, 2022, 102(12): 5399-5410.

[21] 王婧. 台湾红玉红茶香气成分分析[J]. 饮料工业, 2022, 25(6): 5-9.

[22] MIZUKAMI Y, YAMAGUCHI Y. Method for the analysis of tea aroma by using solvent-assisted flavor evaporation apparatus[J]. Tea Research Journal, 2010, 110: 105-112.

[23] KUMAZAWA K, WADA Y, MASUDA H. Characterization of epoxydecenal isomers as potent odorants in black tea (Dimbula) infusion[J]. Journal of Agricultural and Food Chemistry, 2006, 54(13): 4795-4801.

[24] SCHUH C, SCHIEBERLE P. Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea: Quantitative differences between tea leaves and infusion[J]. Journal of Agricultural and Food Chemistry, 2006, 54(3): 916-924.

[25] YANG Z Y, SUSANNE B, NAOHARU W. Recent studies of the volatile compounds in tea[J]. Food Research International, 2013, 53(2): 585-599.

[26] ALLUHAYB A H, LOGUE B A. The analysis of aroma / flavor compounds in green tea using ice concentration linked with extractive stirrer[J]. Journal of Chromatography A, 2017, 1518: 8-14.

[27] ZHU Y, YAN H, ZHANG Z F, et al. Assessment of the contribution of chiral odorants to aroma property of baked green teas using an efficient sequential stir bar sorptive extraction approach[J/OL]. Food Chemistry, 2021, 365: 130615. https://doi.org/10.1016/j.foodchem.2021.130615.

[28] 劉斌善, 魏晓明, 邵丹青, 等. GC-MS-O结合OAV表征烧麦中关键香气成分及其在储存过程中的变化情况[J/OL]. 食品科学, 2022: 1-15. http://kns.cnki.net/kcms/detail/11.2206.TS.20221020.1420.042.html.

[29] LIU C, YANG P, WANG H L, et al. Identification of odor compounds and odor - active compounds of yogurt using DHS , SPME , SAFE, and SBSE / GC-O-MS[J/OL]. LWT-Food Science and Technology, 2022, 154: 112689. https://doi.org/10.1016/j.lwt.2021.112689.

[30] FLAIG M, QI S, WEI G D, et al. Characterization of the key odorants in a high-grade Chinese green tea beverage (Camellia sinensis ; Jingshan cha) by means of the sensomics approach and elucidation of odorant changes in tea leaves caused by the tea manufacturing process[J]. Journal of Agricultural and Food Chemistry, 2020, 68(18): 5168-5179.

[31] SELLAMI I, MALL V, SCHIEBERLE P. Changes in the key odorants and aroma profiles of Hamlin and Valencia orange  juices not from concentrate (NFC) during chilled storage[J]. Journal of Agricultural and Food Chemistry, 2018, 66(28): 7428-7440.

[32] ZHU J C, CHEN F, WANG L Y, et al. Comparison of aroma-active volatiles in Oolong tea infusions using GC-Olfactometry, GC-FPD, and GC-MS[J]. Journal of Agricultural and Food Chemistry, 2015, 63(34): 7499-7510.

[33] YU J Y, LIU Y, ZHANG S R, et al. Effect of brewing conditions on phytochemicals and sensory profiles of black tea infusions: A primary study on the effects of geraniol and β-ionone on taste perception of black tea infusions[J/OL]. Food Chemistry, 2021, 354: 129504. https://doi.org/10.1016/j.foodchem.2021.129504.

[34] RIGLING M, Yadav M, Yagishita M, et al. Biosynthesis of pleasant aroma by enokitake (Flammulina velutipes) with a potential use in a novel tea drink[J/OL]. LWT, 2021, 140 (11): 64. https://doi.org/10.1016/j.lwt.2020.110646.

[35] WANG J, LI M R, WANG H. Decoding the specific roasty aroma Wuyi Rock Tea (Camellia sinensis: Dahongpao) by the sensomics approach[J/OL]. Journal of Agricultural and Food Chemistry, 2022, 70(34): 10571-10583.

[36] 李春美, 竇宏亮, 党美珠, 等. 绿茶茶汤香气成分提取方法的比较研究[J]. 食品科技, 2009, 34(10): 99-103.

[37] CHEN J Y, YANG Y Q, DENG Y L, et al. Aroma quality evaluation of Dianhong black tea infusions by the combination of rapid gas phase electronic nose and multivariate statistical analysis[J/OL]. LWT, 2022, 153: 112496. https://doi.org/10.1016/j.lwt.2021.112496.

[38] SUN L T, DONG X, REN YBL, et al. Profiling real-time aroma from green tea infusion during brewing[J]. Foods, 2022, 11(5): 684. https://doi.org/10.3390/foods11050684.

[39] FENG T, SUN J Q, WANG K, et al. Variation in volatile compounds of raw Pu-erh tea upon steeping process by gas chromatography-ion mobility spectrometry and characterization of the aroma-active compounds in tea infusion using gas chromatography-olfactometry-mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2022, 70(42): 13741-13753.

[40] YU J Y, HO C T, LIN Z, et al. Sensomics-assisted characterization of key flowery aroma compounds in Lu'an Guapian green tea infusion (Camellia sinensis)[J]. Journal of Agricultural and Food Chemistry, 2023, 71(15): 6120-6132.

[41] NI H, JIANG Q X, LIN Q, et al. Enzymatic hydrolysis and auto-isomerization during beta-glucosidase treatment  improve the aroma of instant white tea infusion[J/OL]. Food Chemistry, 2021, 342: 128565. https://doi.org/10.1016/j.foodchem.2020.128565.

[42] XU Y Q, CHEN J X, DU Q Z, et al. Improving the quality of fermented black tea juice with Oolong tea infusion[J]. Journal of Food Science and Technology-Mysore, 2017, 54(12): 3908-3916.

[43] ALLUHAYB A H, LOGUE B A. The analysis of aroma/flavor compounds in green tea using ice concentration linked with extractive stirrer[J]. Journal of Chromatography A, 2017, 1518: 8-14.

[44] JIANG Q X, LI L J, CHEN F, et al. β-Glucosidase improve the aroma of the tea infusion made from a spray-dried Oolong tea instant[J/OL]. LWT, 2022, 159: 113175. https://doi.org/10.1016/j.lwt.2022.113175.

[45] SAISON D, De SCHUTTER D P, UYTTENHOVE B, et al. Contribution of staling compounds to the aged flavour of lager beer by studying their flavour thresholds[J]. Food Chemistry, 2009, 114(4): 1206-1215.

[46] MAIER J X, BLANKENSHIP M L, LI J X, et al. A multisensory network for olfactory processing[J]. Current Biology, 2015, 25(20): 2642-2650.

[47] 馬园园, 曹青青, 高一舟, 等. 绿茶苦味研究进展[J]. 茶叶科学, 2023, 43(1): 1-16.

[48] ITO Y, KUBOTA K. Sensory evaluation of the synergism among odorants present in concentrations below their odor threshold in a Chinese jasmine green tea infusion[J]. Molecular Nutrition & Food Research, 2005, 49(1): 61-68.

[49] ZHU J K, CHEN F, WANG L Y, et al. Evaluation of the synergism among volatile compounds in Oolong tea infusion by odour threshold with sensory analysis and E-nose[J]. Food Chemistry, 2017, 221: 1484-1490.

[50] ZHANG T, NI H, QIU X J, et al. Suppressive interaction approach for masking stale note of instant ripened Pu-erh tea products[J/OL]. Molecules, 2019, 24(24) : 4473. https://doi.org/10.3390/molecules

24244473.

[51] NIU Y W, MA Y W, XIAO Z B, et al. Characterization of the key aroma compounds of three kinds of Chinese representative black tea and elucidation of the perceptual interactions of methyl salicylate and floral odorants[J/OL]. Molecules, 2022, 27(5): 1631. https://doi.org/10.3390/molecules27051631.

[52] GIGL M, FRANK O, GABLER A, et al. Key odorant melanoidin interactions in aroma staling of coffee beverages[J/OL]. Food Chemistry, 2022, 392: 133291. https://doi.org/10.1016/j.foodchem.

2022.133291.

[53] GIGL M, HOFMANN T, FRANK O. NMR-Based studies on odorant-melanoidin interactions in coffee beverages[J/OL]. Journal of Agricultural and Food Chemistry, 2021, 69(50): 15334. https://doi.org/10.1021/acs.jafc.1c06163.

[54] CHIN X H, HO S, CHAN G, et al. Aromatic yeasts: Interactions and implications in coffee fermentation aroma profiles[J]. Journal of Agricultural and Food Chemistry, 2023, 71(25): 9677-9686.

[55] NIU Y W, ZHU Q, XIAO Z B. Characterization of perceptual interactions among ester aroma compounds found in Chinese Moutai Baijiu by gas chromatography-olfactometry, odor Intensity, olfactory threshold and odor activity value[J/OL]. Food Research International, 2020, 131: 108986. https://doi.org/10.1016/j.foodres.2020.108986.

[56] MA Y,  B?NO N, TANG K, et al. Assessing the contribution of odor - active compounds in icewine considering odor mixture-induced interactions through gas chromatography - olfactometry and olfactoscan[J/OL]. Food Chemistry, 2022, 388: 132911. https://doi.org/10.1016/j.foodchem.2022.132991.

[57] FERREIRA V, DE-LA-FUENTE-BLANCO A, SAENZ-NAVAJAS M. A new classification of perceptual interactions between odorants to interpret complex aroma systems. application to model wine aroma[J/OL]. Foods, 2021, 10(7): 1627. https://doi.org/10.3390/foods100

71627.

[58] LIN J, SHI Y X, DONG C W, et al. Headspace volatiles influenced by infusion matrix and their release persistence: A case study of Oolong tea[J]. Food Science and Biotechnology, 2019, 28(5): 1349-1358.

[59] CHENG Y, HUYNH-BA T, BLANK I, et al. Temporal changes in aroma release of Longjing tea infusion: Interaction of volatile and nonvolatile tea components and formation of 2-butyl-2-octenal upon aging[J]. Journal of Agricultural and Food Chemistry, 2008, 56(6): 2160-2169.

[60] GUO X Y, SONG C K, HO C T , et al. Contribution of L-theanine to the formation of 2,5-dimethylpyrazine, a key roasted peanutty flavor in Oolong tea during manufacturing processes[J]. Food Chemistry, 2018, 263: 18-28.

[61] GUO X Y, HO C, SCHWAB W, et al. Aroma compositions of large-leaf yellow tea and potential effect of theanine on volatile formation in tea[J]. Food Chemistry, 2019, 280: 73-82.

[62] WANG J Q, GAO Y, LONG D, et al. Effects of hydrogen peroxide produced by catechins on the aroma of tea beverages[J/OL]. Foods, 2022, 11(9): 1273. https://doi.org/10.3390/foods11091273.

[63] SCHUH C, SCHIEBERLE P. Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea: Quantitative differences between tea leaves and infusion[J]. Journal of Agricultural and Food Chemistry, 2006, 54(3): 916-924.

[64] LEE J, CHAMBERS D, CHAMBERS E. Sensory and instrumental flavor changes in green tea brewed multiple times[J]. Foods, 2013, 2(4): 554-571.

[65] DOS A, AYHAN Z, SUMNU G. Effects of different factors on sensory attributes, overall acceptance and preference of Rooibos (Aspalathus linearis) tea[J]. Journal of Sensory Studies, 2005, 20(3): 228-242.

[66] KUMAZAWA K. Flavor chemistry of tea and coffee drinks[J]. Food Science and Technology Research, 2006, 12(2): 71-84.

[67]  MASUDA H. Tea and tea products: Chemistry and health-promoting properties[M]. Boca Raton, FL: CRC Press,  2008: 275-300.

[68] CHEN Y Q, CHENG J H, SUN D W. Chemical, physical and physiological quality attributes of fruit and vegetables induced by cold plasma treatment: Mechanisms and application advances[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(16): 2676-2690.

[69] ZHANG B, TAN C M, ZOU F L, et al. Impacts of cold plasma technology on sensory, nutritional and safety quality of food: A review[J/OL]. Foods, 2022, 11(18): 2818. https://doi.org/ 10.3390/foods

11182818.

[70] DING Y X, MO W X, DENG Z L, et al. Storage quality variation of mushrooms (Flammulina velutipes) after cold plasma treatment[J/OL]. Life-basel, 2023, 13(1): 70. https://doi.org/10.3390/life13010070.

[71] ZHAO N, GE L H, HUANG Y L, et al. Impact of cold plasma processing on quality parameters of packaged fermented vegetable (radish paocai) in comparison with pasteurization processing: Insight into safety and storage stability of products[J/OL]. Innovative Food Science & Emerging Technologies, 2020, 60: 102300. https://doi.org/10.1016/j.ifset.2020.102300.

[72] 顏心怡, 李锦晶, 李赤翎, 等. 冷等离子体技术对食品组分的影响及其作用机制[J]. 食品工业科技, 2023, 44(12): 445-454.

[73] 王小媛, 牛涵, 靳学远, 等. 杜仲籽油苹果汁饮料低温等离子体和热杀菌的比较分析[J]. 现代食品科技, 2022, 38(9): 206-214.

[74] RODRIGUES S, FERNANDES F A N. Effect of dielectric barrier discharge plasma treatment in pasteurized orange juice: Changes in volatile composition, aroma, and mitigation of off-flavors[J]. Food and Bioprocess Technology, 2023, 16(4): 930-939.

[75] FILHO E G A, SILVA L M A, de BRITO E S, et al. Effect of glow and dielectric barrier discharges plasma on volatile and non - volatile chemical profiling of Camu-Camu juice[J]. Food and Bioprocess Technology, 2021, 14(7): 1275-1286.

[76] STAREK-WOJCICKA A, SAGAN A, TEREBUN P, et al. Quality of tomato juice as influenced by non-thermal air plasma treatment[J/OL]. Applied Sciences-basel, 2023, 13(1): 578. https://doi.org/10.3390/app13010578.

[77] SONG Y C, BI X, ZHOU M, et al. Effect of combined treatments of ultrasound and high hydrostatic pressure processing on the physicochemical properties, microbial quality and shelf - life of cold brew tea[J]. International Journal of Food Science and Technology, 2021, 56(11): 5977-5988.

[78] CHEN T, ZHAO Y, WANG L, et al. Study on ripening process of Pu'er fermented tea by high voltage pulsed electric field technique[J]. Agro Food Industry HI-TECH, 2016, 27(4): 68-71.

[79] HEMMATI V, GARAVAND F, KHORSHIDIAN N, et al. Impact of cold atmospheric plasma on microbial safety, total phenolic and flavonoid contents, antioxidant activity, volatile compounds, surface morphology, and sensory quality of green tea powder[J/OL]. Food Bioscience, 2021,44: 101348. https://doi.org/10.1016/j.fbio.2021.101348.

[80] MANDAL R, WIKTOR A, MOHAMMADI X, et al. Pulsed UV light irradiation processing of black tea infusions: Effect on color, phenolic content, and antioxidant capacity[J]. Food and Bioprocess Technology, 2022, 15(1): 92-104.

[81] 付娜, 王锡昌. 滋味物质间相互作用的研究进展[J]. 食品科学, 2014, 35(3): 269-275.

[82] OGAWA K, IJIMA Y, GUO W F, et al. Purification of a beta-primeverosidase concerned with alcoholic aroma formation in tea leaves (cv. Shuixian) to be processed to Oolong tea[J]. Journal of Agricultural and Food Chemistry,1997, 45(3): 877-882.

[83] GUI J D, FU X M, ZHOU Y, et al. Does enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the Oolong tea manufacturing process?[J]. Journal of Agricultural and Food Chemistry, 2015, 63(31): 6905-6914.

[84] LIANG S, WANG F, GRANATO D, et al. Effect of β-glucosidase on the aroma of liquid-fermented black tea juice as an ingredient for tea-based beverages[J/OL]. Food Chemistry, 2023, 402: 134201. https://doi.org/10.1016/j.foodchem.2022.134201.

[85] KITWETCHAROEN H, PHUNG L T, KLANRIT P, et al. Kombucha healthy drink - recent advances in production, chemical composition and health benefits[J/OL]. Fermentation-basel, 2023, 9(1): 48. https://doi.org/10.3390/fermentation9010048.

[86] 馬存强, 杨超, 周斌星, 等. 微生物对茶叶中嘌呤生物碱代谢的研究进展[J]. 食品科学, 2014, 35(21): 292-296.

[87] SAIMAITI A, HUANG S Y, XIONG R G, et al. Antioxidant capacities and polyphenol contents of Kombucha beverages based on vine tea and sweet tea[J/OL]. Antioxidants, 2022, 11(9) : 1655. https://doi.org/10.3390/antiox11091655.

[88] 陈清爱, 林湘旋, 陈驰, 等. 复合乳酸菌发酵红茶汤香气成分及活性因子变化规律[J]. 福建农林大学学报(自然科学版), 2022, 51(6): 835-842.

[89] JUYOUNG K, KOUSHIK A. Current trends in Kombucha: Marketing perspectives and the need for improved sensory research[J/OL]. Beverages, 2020, 6(1): 15. https://doi.org/10.3390/beverages6010015.