APP下载

植物NLP转录因子研究进展

2022-07-16何炫颐王可欣董月华习向银杨怀玉

江苏农业学报 2022年3期

何炫颐 王可欣 董月华 习向银 杨怀玉

摘要: 转录因子NLP (NIN-like protein)是近年来发现的具有调控养分吸收和植物生长发育、响应外界环境胁迫等功能的植物特异性转录因子。本文对近年来有关NLP家族的最新研究成果进行了总结,综述了植物NLP家族的结构和分类、对氮磷养分信号通路的调控、参与植物生长发育过程以及胁迫应答方面的研究进展,并展望了NLP的可能研究热点和领域,以期为后续研究提供参考。

关键词: NLP转录因子; 氮磷养分; 植物生长发育; 脅迫应答

中图分类号: Q74   文献标识码: A   文章编号: 1000-4440(2022)03-0830-07

Research progress on plant NLP transcription factors

HE Xuan-yi 1 , WANG Ke-xin 1 , DONG Yue-hua 1 , XI Xiang-yin 1 , YANG Huai-yu 1,2

(1.College of Resources and Environment, Southwest University,Chongqing 400716,China; 2.Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University,Chongqing 400716,China)

Abstract: Transcription factor NLP (NIN-like protein) is a plant-specific transcription factor identified in recent years, which has multiple functions in regulating nutrient uptake, growth and development, as well as response to external environmental stresses of plants. In this review, we summarized the latest research achievements on plant NLP family, including research progresses on the structure and classification, regulation of nitrogen and phosphorus nutrients signal pathways, participation in plant growth and development, and stress response in recent years. Meanwhile, possible hot research topics and fields of NLP were proposed, which may provide reference for further researches.

Key words: NLP transcription factor; nitrogen and phosphorus nutrients; growth and development of plants; stress response

转录因子是可以与真核基因上游特定序列进行专一性结合,并在特定的时空维度上调控目标基因表达水平的蛋白质分子 [1] 。NLP (Nin-like protein)是1个具有3个主要保守结构域的植物特异性家族,在多种植物中均有发现 [2-5] 。关于NLP家族的研究最早可追溯到其同源基因结瘤起始基因(Nodule inception, NIN ) [6] 。第一个 NIN 基因是从豆科植物百脉根( Lotus corniculatus  )中发现的,是豆科植物和放线菌结瘤植物所必需的基因 [6] 。后续研究发现,在非豆科植物中也存在该类基因,并命名为 NLP 基因 [6] 。进一步的基因功能分析结果表明, NLP 具有感知硝酸盐信号的能力,参与硝酸盐信号通路,可激活下游靶基因,从而调控植物对硝酸盐的吸收与同化以及协调氮磷的相互作用 [5,7-9] 。硝酸盐除了是植物生长过程中需求量最大的矿质元素之外,在植物中还能作为信号分子,调节相关基因的表达,进而影响植物生长发育以及胁迫应答等 [10] 。本研究主要从NLP转录因子的结构和分类、参与植物中氮磷养分信号通路以及对植物生长发育和胁迫应答的影响进行综述,提出目前存在的问题并对今后研究方向进行展望。

1 NLP转录因子结构和数量

最新研究发现,典型的NLP蛋白结构包括3个主要结构域:RWP-RK、PB1和NRD [5] 。RWP-RK是由约60个氨基酸残基包含RWPXRK基序组成的DNA结合结构域,可以特异性结合靶基因启动子区域的硝酸盐响应的顺式作用元件(Nitrate-responsive elements,NREs) [6,11-13] 。PB1是1个位于C端的结构域,由约80个氨基酸残基组成,包含2个 α 螺旋、1个混合的五链 β 折叠和1个酸性OPCA基序,参与硝酸盐诱导的蛋白质-蛋白质相互作用 [13-16] 。NRD(nitrate-responsive domain)是硝酸盐响应结构域,是NLPs的N端保守结构域,其中S205位点是NLP核保留过程中必不可少的磷酸化位点 [5,17] 。

研究发现,拟南芥( Arabidopsis thaliana )、玉米( Zea mays )、藜麦( Chenopodium quinoa  )中均有9个 NLP 基因,水稻( Oryza sativa )、苹果( Malus domestica )和番茄( Lycopersicon esculentum )中均有6个 NLP 基因,蒺藜苜蓿( Medicago truncatula )中有5个 NLP 基因,毛果杨( Populus trichocarpa )中有14个 NLP 基因,甘蓝型油菜( Brassica napus  )中有31个 NLP 基因,小麦( Triticum aestivum )中有37个 NLP 基因 [2-4,6, 18-22] 。表明,不同物种中 NLP 基因数量存在差异。

2 NLP参与氮磷养分信号通路调控

2.1 NLP参与硝酸盐反应信号通路

NLP是调控氮响应的核心转录因子,大多数位于低硝酸盐浓度的细胞质中,当感测到高硝酸盐浓度时,它们被转运至细胞核,激活数百个与硝酸盐运输和代谢有关的基因 [23-25] 。研究发现,硝酸盐- Ca 2 +  -NLP级联反应是主要的硝酸盐反应信号通路 [26-27] 。外源硝酸盐浓度信号通过硝态氮转运蛋白NPF6.3(ptr family6.3/protein nrt1.1)使細胞质中Ca 2+ 浓度发生变化;随后,硝酸盐触发的Ca 2+ 信号被传输到3个下游钙离子传感器蛋白质激酶(Ca 2+ -sensor protein kinases, CPKs ),包括CPK10、CPK30和CPK32 [26,28-29] 。NLP6、NLP7感知到 CPKs 信号,使其保守的丝氨酸205(Ser205)磷酸化从而保留在细胞核中,进而与硝酸盐响应过程中的顺式作用元件结合来激活初级硝酸盐反应基因 [26] 。此外,还有研究结果表明,水稻中硝酸盐-OsNRT1.1B-OsSPX4-OsNLP3级联反应,也是硝酸盐信号通路一个关键部分 [9] 。硝酸盐信号被NRT1.1B感知并促进磷感知蛋白质SPX4的降解,使得NLP3释放到细胞核中从而激活硝酸盐响应基因的表达 [9] 。此外,OsNLP4也能够通过影响硝酸还原酶( NR )活性调节植物氮响应 [30] 。这是因为OsNLP4可以调控 NR 所必需的元素(铁和钼)的浓度来影响 NR 活性,进而调节硝酸盐信号通路中的基因表达 [30] 。

2.2 NLP参与缺磷响应信号通路

磷酸盐信号通常由磷酸盐亏缺激活,诱导磷酸盐饥饿诱导基因(Phosphate starvation–induced genes, PSI )的表达 [9] 。在拟南芥活体中进行的荧光素酶成像结果显示,氮源是激活磷酸盐饥饿反应的先决条件 [31] 。在硝酸盐存在的条件下,磷饥饿反应可以通过NLP-NIGT1-SPX-PHR信号传导激活 [32] 。因为磷酸盐饥饿反应(Phosphate starvation response, PHR) 转录因子在磷信号通路中起核心调控作用,其中AtPHR1(在拟南芥中)和 OsPHR2(在水稻中)作为中枢调节因子来激活 PSI 基因的表达 [33-35] 。磷感知蛋白质SPX (SYG1/Pho81/XPR1)是细胞中感应磷素有效性的蛋白质 [33-36] 。在磷充足的条件下,PHR转录因子与SPX蛋白家族成员形成SPX-PHR复合物并保持非活性状态;在缺磷条件下,PHR转录因子从SPX-PHR复合物中释放出来,诱导 PSI 基因表达,从而启动磷饥饿反应 [9, 37-38] 。基于原生质体的瞬时表达测定和染色质免疫沉淀测定的结果表明,由硝酸盐诱导基因编码的NIGT1(Nitrate-inducible、garp-type transcriptional repressor1)转录抑制因子能被NLP诱导激活,然后抑制 SPX 基因的启动子活性,从而影响磷饥饿反应的SPX-PHR调节系统 [39-40] 。因此,氮信号通过激活NLP上调NIGT1的表达来抑制 SPX 的表达,使PHR蛋白从SPX-PHR复合体中释放,进而启动磷饥饿反应 [32] 。

3 NLP调控植物生长发育

3.1 NLP调控植物种子萌发

脱落酸(ABA)在许多植物发育过程中诱导和维持种子的休眠。因此,种子萌发往往受到ABA的负调控 [41] 。在低氮的不利条件下,让种子保持休眠状态,有利于提高植物在自然界的存活率 [10] 。与之相反,硝酸盐可以通过降低ABA浓度来促使种子萌发 [10, 42] 。研究结果表明,AtNLP8是硝酸盐促进种子萌发所必需的 [43] ,因为在硝酸盐存在的情况下,AtNLP8除了主要激活硝酸盐诱导的转录因子和氮代谢酶的表达,还以硝酸盐依赖的方式直接结合ABA水解酶的CYP707A2基因的启动子,上调其表达水平,使ABA积累减少,从而促进种子萌发 [43-45] 。吴翔宇等 [22] 也证实了在毛果杨种子中, NLPs 表达情况在不同萌发条件下有差异:在有光的萌发条件下PtrNLP1、PtrNLP6、PtrNLP7、PtrNLP12、PtrNLP13 5个基因被检测到,在黑暗中萌发的种子中则检测到PtrNLP1、PtrNLP8、PtrNLP12、PtrNLP14  4个基因的表达。这可能是因为光照影响了种子对硝酸盐的敏感性 [46] ,而NLP可能参与了光信号调控种子萌发的过程。

3.2 NLP调控植物根系生长发育

植物根系是植物吸收水分和养分的主要器官,而硝酸盐作为信号和养分可以调节根系生长发育相关基因的表达,以及通过改变根系构型和调节氮素吸收来适应环境的变化 [47-49] 。Takeo等 [50] 研究发现拟南芥中同时敲除BTB和TAZ结构域蛋白质(BTB and TAZ domain protein,BT)基因家族的BT1和BT2会影响依赖硝酸盐调节的侧根发育,因为BT1和BT2的表达水平直接受转录因子NLP7的调控。Guan等 [51] 也发现拟南芥中NLP6/7与TCP20相互作用可以促进氮饥饿条件下根分生组织的生长;同时nlp6/7突变体表现出显著的根生长迟缓以及根分生组织和分生组织细胞数量的减少。有更直接的研究结果表明,AtNLP7过表达的植株根系比野生型具有更长的初生根和更多的侧根 [52] 。这是因为TCP20和NLP6/7 相互作用是G2/M细胞周期进展基因CYCB1;1 表达和氮饥饿下根分生组织生长所必需的 [51] 。TCP20通过直接与 NRT1.1、NRT2.1、NIA1的启动子结合来调节侧根生长以及通过结合CYCB1;1启动子中的GCCCR基序来调节初生根生长 [51,53-54] 。此外,生长素是调节植物根系生长发育的关键影响因子。吲哚-3-丙酮酸 (IPyA) 途径是生长素合成的主要途径,其中色氨酸转氨酶相关酶2(Tryptophan aminotransferase related 2,TAR2)在此途径中起重要作用 [55-57] 。低氮条件下,TAR2是侧根原基中生长素合成和积累所必需的 [57] 。最新研究发现,AtNLP7通过直接与TAR2的启动子结合上调其表达,然后维持侧根原基中的生长素信号,从而促进硝酸盐介导的侧根发育 [58] 。

其他作物中,NLP转录因子对根的生长发育也有显著影响。例如,玉米在低氮条件下,zmnlp5突变体植株根长显著短于野生型 [59] 。这是由于ZmNLP5功能丧失,导致其根部ZmNIR1.1表达量显著降低,使得亚硝酸盐在根尖过度积累产生毒害,进而抑制根生长伸长 [14,59-60] 。说明NLP5在玉米植株响应低氮环境根部伸长生长中发挥重要功能。毛果杨中,除PtrNLP1 、PtrNLP14外,其余12个基因在根中都有较高的表达丰度, PtrNLP1、PtrNLP2、PtrNLP5、PtrNLP8、PtrNLP9在木质部中有表达 [22] 。说明毛果杨NLP基因在吸收组织和运输组织中具有较高的表达量 [22] 。水稻中,osnlp1突变体与野生型相比其根长显著缩短,而OsNLP1过表达株系则显著改善了根的生长,说明OsNLP1正调控水稻根长 [61] 。

3.3 NLP调控植物根系结瘤

氮饥饿是植物根瘤形成和发育的先决条件,因此,硝酸盐可以抑制结瘤 [62] 。转录因子NIN在根瘤的形成过程中发挥着不可或缺的作用:通过与靶基因的启动子结合来介导根瘤菌侵染和根瘤的形成 [11,24,63-64] 。蒺藜苜蓿中,硝酸盐抑制根瘤菌感染、结瘤和固氮的前提条件是响应硝酸盐信号的MtNLP1在细胞核中积累 [20] 。MtNLP1的过表达会导致植株抑制硝酸盐结瘤的超敏反应,而mtnlp1突变体则因为MtNLP1的缺失而阻碍了硝酸盐信号的传导,显著减少了对NIR1和NRT2.1的诱导,并表现出缺氮的表型,因此降低了硝酸盐对结瘤形成的抑制作用 [20] 。进一步研究发现,MtNLP1与MtNIN可以发生蛋白质相互作用,调节硝酸盐响应基因的表达和硝酸盐抑制结瘤 [20] 。这可能是因为硝酸盐使MtNLP1在细胞核内积累与细胞核中MtNIN相互作用从而抑制与结瘤有关的基因CRE1和NF-YA1的表达;或者因为MtNLP1与MtNIN竞争直接结合CRE1和NF-YA1启动子,从而阻断MtNIN激活结瘤相关基因表达的能力 [20] 。还有研究发现,NLP1-CLE35-SUNN是硝酸盐抑制结瘤通路,在硝酸盐存在的情况下,硝酸盐信号使NLP1穿梭到细胞核,激活可以响应硝酸盐信号和根瘤菌的CLE35表达,然后将其产物运输到地上部激活SUNN表达,从而抑制蒺藜苜蓿根系结瘤 [65-67] 。Nishida等 [68] 在百脉根中也发现LjNLP4转录因子介导硝酸盐抑制结瘤过程。因为LjNLP4响应硝酸盐胁迫并直接调节硝酸盐诱导型共生基因CLE-RS2的表达,从而触发结瘤数的负调节 [68] 。

3.4 NLP调控植物开花结果发育进程与氮素利用率

植物的开花结果受到内外因素的影响,是植物产量的重要影响因素之一。研究发现,水稻中,OsNLP1过表达可以在不同氮肥条件下提高籽粒产量以及氮素利用率(NUE),而在低氮条件下,敲除OsNLP1则降低NUE和作物产量 [61] 。这是因为OsNLP1直接调节水稻氮素利用的关键调控因子OsNRT1.1A、OsNRT1.1B和OsGRF4的表达,从而间接地调节氮肥利用率来提高作物籽粒产量 [61,69] 。因此,OsNLP1是在低氮条件下,培育高产量和氮肥利用率高的品种的重要研究对象。转录组分析结果表明,OsNLP4通过直接结合硝酸盐响应顺式元件,调控大多数已知氮吸收、同化和信号传递基因的表达 [61] 。OsNLP4过表达株系与野生型相比产量显著提高30%,NUE显著提高47% [70] 。最新研究结果表明,OsNLP4通过将OsNIR启动子中的NRE基序增加4倍来增强NUE中的氮同化,增强了OsNLP4-OsNIR级联反应,从而增加了水稻分蘖数量和产量 [71] 。

其他作物中NLP对植物的开花结果也存在类似影响。番茄中SlNLP4、SlNLP6在地上部组织中优先表达,其转录丰度在开花过程中显著上调,表明它们可能通过调控氮的转运和同化来支持花和果实的发育 [3] 。研究结果表明,玉米中ZmNLP6、ZmNLP8在低硝酸盐和高硝酸盐条件下均可促进植物生长,并在低硝酸盐条件下提高种子产量 [72] 。因为ZmNLP6 和ZmNLP8在营养生长阶段13(V13)的叶片和生殖生长阶段1(R1)的根系中表达水平最高,在根、雄穗和籽粒中的表达量较高 [72] 。V13是抽雄时期,R1是灌浆阶段,这2个阶段对于玉米生产都是必不可少的。这意味着ZmNLP6和ZmNLP8在这些阶段的表达调控,可能对于最大限度地提高玉米产量具有极其重要的作用。

4 NLP与非生物逆境胁迫

4.1 NLP與干旱胁迫

干旱作为一种非生物胁迫,轻则使作物减产,重则使作物永久萎蔫甚至绝产。拟南芥中,AtNLP7可能在植物气孔运动和抗旱性方面发挥作用 [8] 。与野生型相比,atnlp7突变体在叶片上的失水速度更慢,遭受干旱胁迫后表现出更少的损伤,并且补充水分后能够恢复健康,而野生型则不能 [8] 。因此,拟南芥缺失NLP7后,比野生型具有更强的抗旱能力,说明植物中NLP7的表达与植物抗旱性有关。果树枳中NLP的表达在不同水分条件下有所不同 [73] 。枳叶片NLP的表达水平在干旱胁迫前期、中期上调,后期下调;枳根中NLP的表达水平在干旱胁迫下持续下调,其中PtNLP2、PtNLP7的表达量在枳根响应干旱胁迫的过程中变化较大 [73] 。与枳叶片NLP表达模式相似,随着干旱胁迫的持续,苹果中MdNLP2、MdNLP3、MdNLP5的表达情况均呈现出先升高后降低的趋势,说明苹果中NLP也参与干旱胁迫过程 [19] 。

4.2 NLP与氮素胁迫

植物缺氮是作物生长发育和产量提高最常见的限制因子之一 [74] 。缺氮条件下,藜麦中CqNLP2、CqNLP3、CqNLP5、CqNLP8表达受抑制,低氮下则被诱导表达;低氮处理后期,CqNLP9的表达量急剧增加 [21] 。番茄进行氮饥饿处理后,SlNLP1、SlNLP2、SlNLP4、SlNLP6的表达量均上调 [3] 。与番茄中NLP表达模式不同,苹果在氮饥饿处理后 NLP 表达量呈现先升高后降低的趋势 [19] 。在氮饥饿条件下,水稻中OsNLP1表达量迅速增加 [61] 。这主要是因为OsNLP1蛋白定位于细胞核,对氮饥饿反应敏感,通过与NRE基序结合调控硝态氮/铵吸收和同化相关基因的表达 [61] 。

5 展 望

提高作物氮素利用率是作物施肥和實现农业可持续发展的重要目标。研究植物本身的氮素吸收、同化和转运的机制是提高植物氮素利用率的关键依据。NLP参与调控氮磷养分信号通路,在植物生长发育过程中以及胁迫应答中发挥重要作用。通过总结近年来NLP家族研究进展发现,不同植物中NLP转录因子家族的数量和结构存在较大差异,其功能还需进一步研究。目前对NLP功能的研究主要集中于拟南芥和豆科植物,而对于禾本科作物和木本植物NLP功能的研究仍然相对较少。因此,我们目前对 NLP 基因功能的认识仍然具有局限性,未来需要更多的研究来阐明其更详细的特征。例如, NLP 对非生物胁迫响应后是通过什么调节机制来增强植物的抗胁迫能力? NLP 如何应答与调控生物胁迫? NLP 如何在各种植物器官和各类细胞中发挥作用?通过解决这些问题,完善NLP在植物中的功能作用,将有助于更全面地理解氮素的吸收和同化过程,并为作物生产中提高氮肥利用率制定有效的策略。

参考文献:

[1] LIU L, WHITE M J, MACRAE T H. Transcription factors and their genes in higher plants functional domains, evolution and regulation[J]. European Journal of Biochemistry, 1999, 262(2): 247-257.

[2] LIU M, CHANG W, FAN Y H, et al. Genome-wide identification and characterization of NODULE-INCEPTION-Like protein (NLP) family genes in  Brassica napus [J]. International Journal of Molecular Sciences, 2018, 19(8): 2270.

[3] LIU M Y, ZHI X N, WANG Y, et al. Genome-wide survey and expression analysis of NIN-like protein (NLP) genes reveals its potential roles in the response to nitrate signaling in tomato[J]. BMC Plant Biology, 2021, 21(1): 347.

[4] KUMAR A, BATRA R, GAHLAUT V, et al. Genome-wide identification and characterization of gene family for RWP-RK transcription factors in wheat ( Triticum aestivum  L.)[J]. PLoS One, 2018, 13(12): e208409.

[5] MU X H, LUO J. Evolutionary analyses of NIN-like proteins in plants and their roles in nitrate signaling[J]. Cellular and Molecular Life Sciences, 2019, 76(19): 3753-3764.

[6] SCHAUSER L, WIELOCH W, STOUGAARD J. Evolution of NIN-Like proteins in  Arabidopsis , rice, and  Lotus japonicus [J]. Journal of Molecular Evolution, 2005, 60(2): 229-237.

[7] KONISHI M, YANAGISAWA S.  Arabidopsis  NIN-like transcription factors have a central role in nitrate signalling[J]. Nature Communications, 2013, 4(1): 783-798.

[8] CASTAINGS L, CAMARGO A, POCHOLLE D, et al. The nodule inception-like protein 7 modulates nitrate sensing and metabolism in  Arabidopsis [J]. Plant Journal, 2009, 57(3): 426-435.

[9] HU B, JIANG Z, WANG W, et al. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants[J]. Nature Plants, 2019, 5(4): 401-413.

[10] ISABEL F, SEBASTIAN M, FRANCISCA P D, et al. Nitrate signaling and the control of  Arabidopsis  growth and development[J]. Current Opinion in Plant Biology, 2019, 47: 112-118.

[11] SCHAUSER L, ROUSSIS A, STILLER J, et al. A plant regulator controlling development of symbiotic root nodules[J]. Nature, 1999, 402(6758): 191-195.

[12] SOYANO T, SHIMODA Y, HAYASHI M. Nodule inception antagonistically regulates gene expression with nitrate in  Lotus japonicus [J]. Plant and Cell Physiology, 2015, 56(2): 368-376.

[13] CHARDIN C, GIRIN T, ROUDIER F, et al. The plant RWP-RK transcription factors: key regulators of nitrogen responses and of gametophyte development[J]. Journal of Experimental Botany, 2014, 65(19): 5577-5587.

[14] GE M, WANG Y C, LIU Y H, et al. The NIN-like protein 5 (ZmNLP5) transcription factor is involved in modulating the nitrogen response in maize[J]. Plant Journal, 2020, 102(2): 353-368.

[15] KONISHI M, YANAGISAWA S. The role of protein-protein interactions mediated by the PB1 domain of NLP transcription factors in nitrate-inducible gene expression[J]. BMC Plant Biology, 2019, 19(1): 90.

[16] SUMIMOTO H, KAMAKURA S, ITO T. Structure and function of the PB1 domain, a protein interaction module conserved in animals, fungi, amoebas, and plants[J]. Science′s STKE: Signal Transduction Knowledge Environment, 2007, 401:re6.

[17] KONISHI M, YANAGISAWA S. Emergence of a new step towards understanding the molecular mechanisms underlying nitrate-regulated gene expression[J]. Journal of Experimental Botany, 2014, 65(19): 5589-5600.

[18] GE M, LIU Y H, JIANG L, et al. Genome-wide analysis of maize NLP transcription factor family revealed the roles in nitrogen response[J]. Plant Growth Regulation, 2018, 84(1): 95-105.

[19] 王 尋,陈西霞,李宏亮,等. 苹果NLP(Nin-Like Protein)转录因子基因家族全基因组鉴定及表达模式分析[J]. 中国农业科学,2019, 52(23): 4333-4349.

[20] LIN J S, LI X L, LUO Z P, et al. NIN interacts with NLPs to mediate nitrate inhibition of nodulation in  Medicago truncatula [J]. Nature Plants, 2018, 4(11): 942.

[21] 朱满喜,张玉荣,杨雅舒,等. 藜麦NLP转录因子家族的鉴定及表达分析[J]. 华北农学报, 2021, 36(4): 37-46.

[22] 吴翔宇,许志茹,曲春浦,等. 毛果杨 NLP 基因家族生物信息学分析与鉴定[J]. 植物研究, 2014, 34(1): 37-43.

[23] 李晨阳,孔祥强,董合忠. 植物吸收转运硝态氮及其信号调控研究进展[J]. 核农学报, 2020, 34(5): 982-993.

[24] LIU J Y, BISSELING T. Evolution of NIN and NIN-like genes in relation to nodule symbiosis[J]. Genes, 2020, 11(7): 777.

[25] CHLOE M, FTAN O R, Loren C, et al. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants[J]. Nature Communications, 2013, 4(1): 859-868.

[26] LIU K H, NIU Y J, KONISHI M, et al. Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks[J]. Nature, 2017, 545(7654): 311-316.

[27] KROUK G. Nitrate signalling: calcium bridges the nitrate gap[J]. Nat Plants, 2017, 3: 17095.

[28] RIVERAS E, ALVAREZ J M, VIDAL E A, et al. The calcium ion is a second messenger in the nitrate signaling pathway of  Arabidopsis [J]. Plant Physiol, 2015, 169(2): 1397-1404.

[29] HO C H, LIN S H, HU H C, et al. CHL1 functions as a nitrate sensor in plants[J]. Cell, 2009, 138(6): 1184-1194.

[30] WANG M Y, HASEGAWA T, BEIER M, et al. Growth and nitrate reductase activity are impaired in rice osnlp4 mutantssupplied with nitrate[J]. Plant Cell Physiol, 2021, 62(7):1156-1167.

[31] UEDA Y, KIBA T, YANAGISAWA S. Nitrate-inducible NIGT1 proteins modulate phosphate uptake and starvation signalling via transcriptional regulation of  SPX  genes[J]. Plant Journal, 2020, 102(3): 448-466.

[32] HU B, CHU C C. Nitrogen-phosphorus interplay: old story with molecular tale[J]. New Phytologist, 2020, 225(4): 1455-1460.

[33] RUBIO V, LINHARES F, SOLANO R, et al. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae[J]. Genes and Development, 2001, 15(16): 2122-2133.

[34] ZHOU J, JIAO F C, WU Z C, et al. OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants[J]. Plant Physiology, 2008, 146(4): 1673-1686.

[35] BUSTOS R, CASTRILLO G, LINHARES F, et al. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in  Arabidopsis [J]. PLoS Genetics, 2010, 6(9): e1001102.

[36] DUAN K, YI K K, DANG L, et al. Characterization of a sub-family of  Arabidopsis  genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation[J]. Plant Journal, 2008, 54(6): 965-975.

[37] LV Q D, ZHONG Y J, WANG Y G, et al. SPX4 Negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice[J]. Plant Cell, 2014, 26(4): 1586-1597.

[38] PUGA M I, MATEOS I, CHARUKESI R, et al. SPX1 is a phosphate-dependent inhibitor of PHOSPHATE STARVATION RESPONSE 1 in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(41): 14947-14952.

[39] UEDA Y, KIBA T, YANAGISAWA S. Nitrate-inducible NIGT1 proteins modulate phosphate uptake and starvation signalling via transcriptional regulation of  SPX  genes[J]. The Plant Journal, 2020, 102(3): 448-466.

[40] MAEDA Y, KONISHI M, KIBA T, et al. A NIGT1-centred transcriptional cascade regulates nitrate signalling and incorporates phosphorus starvation signals in Arabidopsis[J]. Nature Communications, 2018, 9(1): 153-182.

[41] NAMBARA E, OKAMOTO M, TATEMATSU K, et al. Abscisic acid and the control of seed dormancy and germination[J]. Seed Science Research, 2010, 20(2): 55-67.

[42] LISZA D, EHSAN K, DAWEI Y, et al. Regulation of seed dormancy and germination by nitrate[J]. Seed Science Research, 2018, 28(3): 150-157.

[43] YAN D, EASWARAN V, CHAU V, et al. NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in  Arabidopsis [J]. Nature Communications, 2016, 7(1): 60-78.

[44] DUERMEYER L, KHODAPANAHI E, YAN D, et al. Regulation of seed dormancy and germination by nitrate[J]. Seed Science Research, 2018, 28(S1): 150-157.

[45] OKAMOOTO M, KUWAHARA A, SEO M, et al. CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis[J]. Plant Physiol, 2006, 141(1): 97-107.

[46] FOOTITT S, HUANG Z Y, CLAY H A, et al. Temperature, light and nitrate sensing coordinate  Arabidopsis  seed dormancy cycling, resulting in winter and summer annual phenotypes[J]. Plant Journal, 2013, 74(6): 1003-1015.

[47] NISHIDA H, TANAKA S, HANDA Y, et al. A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in  Lotus japonicus [J]. Nature Communications, 2018, 9(1): 499.

[48] WANG Y Y, HSU P K, TSAY Y F. Uptake, allocation and signaling of nitrate[J]. Trends in Plant Science, 2012, 17(8): 458-467.

[49] Fan X R, NAZ M, Fan X R, et al. Plant nitrate transporters: from gene function to application[J]. Journal of Experimental Botany, 2017, 68(10): 2463-2475.

[50] TAKEO S, SHUGO M, MINEKO K, et al. Direct transcriptional activation of  BT  genes by NLP transcription factors is a key component of the nitrate response in  Arabidopsis [J]. Biochemical and Biophysical Research Communications, 2017, 483(1): 380-386.

[51] GUAN P Z, RIPOLL J J, WANG R H, et al. Interacting TCP and NLP transcription factors control plant responses to nitrate availability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(9): 2419-2424.

[52] YU L H, WU J, TANG H, et al. Overexpression of  Arabidopsis  NLP7 improves plant growth under both nitrogen-limiting and-sufficient conditions by enhancing nitrogen and carbon assimilation[J]. Scientific Reports, 2016, 6: 27795.

[53] GUAN P Z, WANG R C, NACRY P, et al. Nitrate foraging by  Arabidopsis  roots is mediated by the transcription factor TCP20 through the systemic signaling pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(42): 15267-15272.

[54] LI C, POTUSCHAK T, COLON-CARMONA A, et al.  Arabidopsis  TCP20 links regulation of growth and cell division control pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36): 12978-12983.

[55] RUBIO V, BUSTOS R, IRIGOYEN M L, et al. Plant hormones and nutrient signaling[J]. Plant Molecular Biology, 2009, 69(4): 361-373.

[56] MASHIGUCHI K, TANAKA K, SAKAI T, et al. The main auxin biosynthesis pathway in  Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(45): 18512-18517.

[57] MA W Y, LI J J, QU B Y, et al. Auxin biosynthetic gene TAR2 is involved in low nitrogen-mediated reprogramming of root architecture in  Arabidopsis [J]. Plant Journal, 2014, 78(1): 70-79.

[58] ZHANG T T, KANG H, FU L L, et al. NIN-like protein 7 promotes nitrate-mediated lateral root development by activating transcription of TRYPTOPHAN AMINOTRANSFERASE RELATED 2[J]. Plant Science, 2021, 303: 110771.

[59] 葛 敏,王元琮,寧丽华,等. 氮响应转录因子Zm NLP5影响玉米根系生长的功能研究[J]. 作物学报, 2021, 47(5): 796-802.

[60] HACHIYA T, UEDA N, KITAGAWAi M, et al. Arabidopsis root-type ferredoxin: NADP(H) Oxidoreductase 2 is involved in detoxification of nitrite in roots[J]. Plant and Cell Physiology, 2016, 57(11): 2440-2450.

[61] ALFATIH A, WU J, ZHANG Z S, et al. Rice NIN-LIKE PROTEIN 1 rapidly responds to nitrogen deficiency and improves yield and nitrogen use efficiency[J]. Journal of Experimental Botany, 2020, 71(19): 6032-6042.

[62] BARBULOVA A, ROGATO A, D′APUZZO E, et al. Differential effects of combined N sources on early steps of the nod factor-dependent transduction pathway in  Lotus japonicus [J]. Molecular Plant-Microbe Interactions, 2007, 20(8): 994-1003.

[63] MARSH J F, RAKOCEVIC A, MITRA R M, et al. Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase[J]. Plant Physiology, 2007, 144(1): 324-335.

[64] VERNIE T, KIM J, FRANCES L, et al. The NIN transcription factor coordinates diverse nodulation programs in different tissues of the medicago truncatula root[J]. Plant Cell, 2015, 27(12): 3410-3424.

[65] LEBEDEVA M, AZARAKHSH M, YASHENKOVA Y, et al. Nitrate-induced CLE peptide systemically inhibits nodulation in medicago truncatula[J]. Plants-Basel, 2020, 9(11): 1456.

[66] MENS C, HASTWELL A H, SU H, et al. Characterisation of  Medicago truncatula  CLE34 and CLE35 in nitrate and rhizobia regulation of nodulation[J]. New Phytologist, 2021, 229(5): 2525-2534.

[67] LUO Z P, LIN J S, ZHU Y L, et al. NLP1 reciprocally regulates nitrate inhibition of nodulation through SUNN-CRA2 signaling in  Medicago truncatula [J]. Plant Communications, 2021, 2(3): 100183.

[68] NISHIDA H, TANAKA S, HANDA Y, et al. A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in  Lotus japonicus [J]. Nat Commun, 2018, 9(1): 499.

[69] JAGADHESAN B, SATHEE L, MEENA H S, et al. Genome wide analysis of NLP transcription factors reveals their role in nitrogen stress tolerance of rice[J]. Scientific Reports, 2020, 10(1): 9368.

[70] WU J, ZHANG Z S, XIA J Q, et al. Rice NIN-LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency[J]. Plant Biotechnology Journal, 2021, 19(3): 448-461.

[71] YU J, XUAN W, TIAN Y L, et al. Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice[J]. Plant Biotechnology Journal, 2021, 19(1): 167-176.

[72] CAO H R, QI S D, SUN M W, et al. Overexpression of the maize ZmNLP6 and ZmNLP8 can complement the  Arabidopsis  nitrate regulatory mutant nlp7 by restoring nitrate signaling and assimilation[J]. Frontiers in Plant Science, 2017, 8: 1703.

[73] 曹雄軍,卢晓鹏,熊 江,等. 枳NLP转录因子克隆及其在不同水分条件下的表达[J]. 中国农业科学, 2016, 49(2): 381-390.

[74] ZHANG Z H, HU B, CHU C C. Towards understanding the hierarchical nitrogen signalling network in plants[J]. Current Opinion in Plant Biology, 2020, 55: 60-65.

(责任编辑:陈海霞)

收稿日期:2021-10-25

基金项目:西南大学科研启动基金项目(SWU019012);高等学校学科创新引智计划项目(B20053)

作者简介:何炫颐(1998-),女,重庆人,硕士研究生,研究方向为植物营养与调控。(E-mail)876816420@qq.com

通讯作者:习向银,(E-mail)xixiangyin@126.com;杨怀玉,(E-mail)yanghuaiyu@swu.edu.cn