APP下载

生物炭对旱坡地宿根甘蔗土壤养分、酶活性及微生物多样性的影响

2022-06-15桂意云李海碧韦金菊毛莲英张荣华区惠平祝开赵培方周会刘昔辉

南方农业学报 2022年3期
关键词:生物炭甘蔗养分

桂意云 李海碧 韦金菊 毛莲英 张荣华 区惠平 祝开 赵培方 周会 刘昔辉

摘要:【目的】分析旱坡地宿根甘蔗生长、土壤养分和微生物群落对生物炭的响应,揭示生物炭改良宿根甘蔗土壤的微生态机制,为缓解甘蔗连作障碍、宿根蔗病害及生物炭在甘蔗栽培中的应用提供科学依据。【方法】以旱坡地宿根甘蔗(种植第4年,1年新植3年宿根)为试验材料,设2个处理:不施用生物炭对照(CK)和施用生物炭处理(3 t/ha),分析生物炭对宿根甘蔗土壤养分、酶活性、微生物多样性和甘蔗生长的影响。【结果】与CK相比,施用生物炭可显著增加土壤碱解氮、速效钾和有机质含量(P<0.05,下同),显著提高蔗糖酶和酸性磷酸酶活性。施用生物炭还可改变土壤细菌和真菌分类单元(OTUs)总数,对土壤中各优势细菌门、细菌属相对丰度影响不大,但降低了真菌子囊菌门(Ascomycota)、担子菌门(Basidiomycota)及淀粉藻(Amyloflagellula)和鐮刀菌属(Fusarium)相对丰度,增加了接合菌门(Zygomycota)及毛壳菌属(Chaetomium)和被孢霉属(Mortierella)的相对丰度。在甘蔗生长方面,施用生物炭可显著降低甘蔗梢腐病发病率,使甘蔗产量显著提高5.2%。【结论】施用生物炭可改良甘蔗土壤,改变土壤微生物群落结构,增强宿根甘蔗抗梢腐病能力,提高旱坡地宿根甘蔗第4年产量。

关键词: 甘蔗;生物炭;土壤;养分;微生物多样性;梢腐病发病率;产量

中图分类号: S566.1;S158.3                      文献标志码: A 文章编号:2095-1191(2022)03-0776-09

Effects of biochar on soil nutrients,enzyme activities and microbial diversity of ratoon sugarcane in dry slope land

GUI Yi-yun LI Hai-bi WEI Jin-ju MAO Lian-ying ZHANG Rong-hua

OU Hui-ping ZHU Kai ZHAO Pei-fang ZHOU Hui LIU Xi-hui

(1Sugarcane Research Center, Chinese Academy of Agricultural Sciences/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Key Laboratory of Sugarcane Genetic Improvement in Guangxi, Nanning, Guangxi 530007, China; 2Guangxi South Subtropical Agricultural Science Research Institute, Chongzuo, Guangxi  532400,China; 3Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, Yunnan  661699, China)

Abstract:【Objective】To explore the microecological mechanism of biochar on soil improvement by analyzing the growth of ratoon sugarcane soil nutrition and microbial diversity, so as to lay a theoretical foundation for application of biochar in sugarcane cultivation, the alleviation of ratoon sugarcane diseases and the reduction of obstacles to continuous cropping of sugarcane. 【Method】Sugarcane in the fourth year of planting was used as the experimental material and two treatments were set up. They were CK (without biochar) and biochar (3 t/ha). The effect of the treatments on soil nu-trients, enzyme activities, microbial diversity and sugarcane growth were measured. 【Result】The application of biochar significantly increased the contents of alkali hydrolyzable nitrogen, available potassium and organic matter (P<0.05,the same below) compared with CK. Moreover, biochar also significantly increased the activities of sucrase and acid phosphatase. The application of biochar can also change the total number of bacterial and fungal OTUs in soil. The relative abundance of dominant bacterial phylum and genus in soil were equivalent between CK and biochar treatment. Biochar treatment decreased the relative abundance of Ascomycota, Basidiomycota, Amyloflagellula and Fusarium, while increasing the relative abundance of Zygomycota, Chaetomium and Mortierella. In terms of sugarcane growth, the application of biochar significantly reduced the incidence rate of pokkah boeng disease, and the sugarcane yield was significantly increased by 5.2%. 【Conclusion】The application of biochar can improve sugarcane soil, change the structure of the soil microbial community, increased the sugarcane resistance to Pokkah boeng, thus increased the sugarcane yield of ratoon sugarcane in the fourth year on dry slope land.

Key words: sugarcane; biochar; soil; nutrients; microbial diversity; the incidence of pokkah boeng; yield

Foundation items: National Natural Science Foundation of China (31860350,32060293); Central Guided Local Science and Technology Development Project (ZY20198005); Guangxi Natural Science Foundation Project(2020GXNSFAA297132)

0 引言

【研究意義】广西是我国最大的甘蔗产区,甘蔗种植面积占全国甘蔗面积的60%以上。受自然条件影响,广西大部分甘蔗种植在耕层浅、瘦、酸的旱地上(谢国雪等,2018)。甘蔗连作现象普遍,导致土壤通气不良、病害严重,加上季节性干旱严重,限制了广西甘蔗产业的进一步发展。近年来,氮肥大量施用导致广西蔗区土壤酸化加剧,需重视土壤酸化治理,寻求合适途径来提高土壤肥力(孟博等,2021)。研究表明,施用适量秸秆生物炭能显著增加土壤有机质含量(安宁等,2020;焦敏娜等,2020;Hu et al.,2020;Zhao et al.,2020),尤其是快速增加土壤稳定性碳库(Smith,2016;Munir et al.,2019),也可增加土壤三大微生物类群的数量(陈心想等,2014;殷全玉等,2021)。因此,针对广西蔗区特点,分析旱坡地宿根甘蔗生长、土壤理化性质和微生物群落对生物炭的响应,揭示生物炭改良宿根甘蔗土壤的微生态机制,可为缓解甘蔗连作障碍、宿根蔗病害及生物炭在甘蔗栽培中的应用提供理论基础。【前人研究进展】大量研究表明,生物炭能改变土壤理化性质、提高土壤酶活性、优化微生物群落结构和降低土壤重金属污染风险,也可提高作物的抗病能力,进而提高作物产量和品质(戴皖宁等,2019;Liu et al.,2019;郭怀刚等,2020;Weng et al.,2020;白珊等,2021)。施用生物炭基肥可显著提高土壤有机碳、速效磷和速效钾含量(吕泽先,2017);在碱性石灰土中添加生物炭可显著提高土壤阳离子交换量(Safrazr et al.,2017);生物炭施用21 d后增加了土壤细菌群落结构的多样性(Li et al.,2019);随着生物炭施用量的增加,可加速微生物的生长和繁殖(冯慧琳等,2021;刘领等,2021)。施用生物炭还可提高农作物产量,如温室黄瓜单株产量提高11.4%(王彩云等,2019),大豆产量提高17.9%~33.3%(魏永霞等,2019)。生物炭在甘蔗生产中也已有应用。Yang等(2015)研究表明,施用生物炭对甘蔗苗期根系性状有较好的改善作用,可提高甘蔗根冠比,施用20%生物炭可提高土壤pH,显著增加有效磷、有效钾和有机质的浓度。Alvarez-Camposa等(2018)研究发现施用生物炭提高了佛罗里达砂质土新植甘蔗的产量,并可改善土壤性质。Kaewpradit和Toomsan(2019)在轮作系统中施用桉树生物炭,发现可提高甘蔗的氮利用效率。Weng等(2020)研究表明,施用13C和15N双标记甘蔗秸秆生物炭可增加甘蔗土壤有机碳含量,提高氮肥利用效率。Lopes等(2021)设5种生物炭施用量(0、10、20、30和40 t/ha),连续2年采集甘蔗土壤,结果表明小于30 t/ha的生物炭施用量可提高甘蔗土壤中β-葡萄糖苷酶、酸性磷酸酶、芳基硫酸酯酶和脲酶活性及土壤总微生物数量;然而,随着时间的推移,较高的施用量会降低这些酶的活性及土壤总微生物数量。Tafti等(2021)研究指出生物炭有助于保持土壤养分,防止径流和淋滤损失,提高甘蔗产量。【本研究切入点】前人对生物炭在甘蔗生产上应用的研究大多局限于新植甘蔗,而针对生物炭施用对宿根甘蔗生长、土壤养分及微生物多样性影响的研究鲜见报道。【拟解决的关键问题】通过分析多年宿根甘蔗生长、土壤理化性质和微生物群落对生物炭的响应,明确施用生物炭对宿根甘蔗生长的积极作用,为缓解甘蔗连作障碍、宿根蔗病害及生物炭在甘蔗栽培上的应用提供科学依据。

1 材料与方法

1. 1 试验区概况及试验材料

试验于2020年4月—2021年1月在广西扶绥县东亚集团甘蔗地(东经107°53′52″、北纬22°30′26″)进行。蔗地为山坡地,坡度5°~10°。试验区属亚热带季风气候,年均气温约21.7 ℃,年均降水量约1300.0 mm,年无霜期达342 d以上。2020年该区遭遇严重季节性干旱,年降水量为737.6 mm,其中甘蔗拔节的快速生长期(6—9月)降水量仅215.8 mm,占年降水量的29.3%。

供试土壤为第四纪红土发育的赤红壤,试验前0~20 cm土层土壤pH 4.0、有机质24.4 g/kg、全氮1.4 g/kg、碱解氮128 mg/kg、速效磷69 mg/kg、速效钾223 mg/kg。供试甘蔗品种为广西主栽品种桂糖42号,由广西农业科学院甘蔗研究所提供。宽窄行(1.35 m+0.50 m)种植,为种植第4年(1年新植3年宿根)的宿根甘蔗。由于甘蔗宿根年限久,疏于管理,梢腐病发生严重。试验用生物炭为草本生物炭(湖南百威生物科技有限公司生产),稻壳材料制作,养分含量为全氮3.08 g/kg、全磷3.81 g/kg、全钾14.3 g/kg、全碳55.3%。

1. 2 试验方法

试验设2个处理:不施用生物炭对照(CK)和施用生物炭处理(T,用量为3 t/ha)。每处理3个重复,共6个小区,小区面积0.13 ha。生物炭施用量依据前期甘蔗产量效应和生物炭施用量预试验结果确定。2020年4月17日,甘蔗处于苗期,将生物炭均匀撒施在甘蔗种植垄上,培土覆盖。大田管理按当地传统方法进行。在甘蔗生长旺盛期、成熟期时进行农艺性状调查,成熟期进行产量测定和土壤样品采集与分析。

1. 3 测定项目及方法

甘蔗农艺性状:于2020年7月13日和11月12日,选择小区内长势处于平均水平的连续20株甘蔗植株测定株高和茎径。株高从地面测量到第1片见肥厚带的叶鞘处(罗霆等,2021)。茎径于距离地面1 m的节间中部测量。

甘蔗经济性状:2021年1月7日选取3行调查小区甘蔗有效茎,测算单位面积有效茎数;每小区选取株高大于1 m的连续蔗茎10根,采用ATAGO手持式折光仪测定甘蔗锤度。

病害调查:于2021年1月7日,在甘蔗收获前,沿着甘蔗种植行向,调查连续100株甘蔗的梢腐病发病株数,并统计发病率。

土壤养分及生物学性状:2021年1月7日,按照五点采样法采集0~20 cm土层土壤样品,混匀后采用四分法保留土壤样品装入密封袋中,放入冰盒,带回实验室用于土壤养分及生物学指标分析。土壤养分及土壤酶活性测定参照林先贵(2010)、鲁如坤(2000)、李科和李志军(2019)的方法。其中土壤过氧化氢酶、酸性磷酸酶、蔗糖酶、脲酶活性分别采用高锰酸钾滴定法、磷酸苯二钠比色法、3,5-二硝基水杨酸比色法、苯酚钠—次氯酸钠比色法测定;碱解氮采用碱解扩散法测定;有效磷采用碳酸氢钠浸提—钼锑抗比色法测定;速效钾采用1 mol/L NHOAc浸提,火焰光度法测定;有机质采用KCrO-HSO消煮,FeSO容量法测定;pH采用pH计测定(土水比1∶2.5);阳离子交换量采用氯化钡—硫酸强迫交换法测定。土壤微生物多样性采用高通量测序技术测定,由生工生物工程(上海)股份有限公司完成。

1. 4 统计分析

试验数据利用Excel 2007进行计算整理并作图,采用SPSS 22.0进行统计分析。

2 结果与分析

2. 1 生物炭对宿根甘蔗土壤养分、土壤pH和酶活性的影响

由表1可知,与CK相比,施用生物炭的T处理显著增加了土壤碱解氮、速效钾和有机质含量(P<0.05,下同),增幅分别为34.6%、23.2%和11.7%;同时显著降低了有效磷含量,降幅为10.4%。施用生物炭对土壤阳离子交换量和土壤pH影响不显著(P>0.05,下同)。说明施用生物炭有助于提高土壤有效氮、有效钾及有机质含量。

由表2可知,与CK相比,T处理土壤中脲酶和过氧化氢酶活性分别降低61.2%和14.5%,土壤蔗糖酶和酸性磷酸酶活性分别增加40.7%和1280.0%,差异均达显著水平。

2. 2 生物炭对宿根甘蔗土壤微生物多样性的影响

2. 2. 1 样本测序结果 图1-A显示,土壤细菌分类单元(OTUs)总数为2445,CK和T处理共有细菌OTUs数为1604,二者特有细菌OTUs数分别为517和324。图1-B显示,土壤真菌OTUs总数为529,CK和T处理共有真菌OTUs數为312,二者特有真菌OTUs数分别为147和70。可见,施用生物炭后土壤中的细菌和真菌OTUs总数均减少,其中细菌总OTUs数减幅较真菌多。

2. 2. 2 土壤细菌和真菌群落结构分析 微生物群落结构分析结果表明,在门水平(图2-A),CK和T处理根际土壤中各优势细菌门相对丰度变化不明显,变形菌门(Proteobacteria)、放线菌门(Acidobacteria)、绿弯菌门(Chloroflexi)、酸杆菌门(Actinobacteria)均为土壤的优势细菌门。从相对丰度来看,CK土壤中变形菌门和酸杆菌门的相对丰度高于T处理,而放线菌门和绿弯菌门的相对丰度低于T处理。总体来看,相对丰度变化幅度不大,为1.0%~7.0%。

由图2-B可看出,各优势真菌门相对丰度变化较大。子囊菌门(Ascomycota)和担子菌门(Basidiomycota)为CK的优势真菌门,子囊菌门和接合菌门(Zygomycota)为T处理的优势真菌门。从相对丰度来看,CK和T处理土壤子囊菌门的相对丰度分别为67.0%和43.0%,T处理相对降低35.8%;接合菌门相对丰度分别为2.0%和55.0%,T处理相对增加2650.0%;土壤担子菌门相对丰度分别为31.0%和1.0%,T处理相对降低96.7%。

在属水平(图3-A),CK和T处理土壤检测到10个优势细菌属,各细菌属的相对丰度在0.6%~7.0%,CK和T处理土壤中各细菌属差异不大。CK和T处理土壤中检测到5个优势真菌属(图3-B),其中有3个优势真菌属在2个处理间变化明显。CK土壤中毛壳菌属(Chaetomium)的相对丰度为3.0%,T处理为20.0%,较CK增加566.7%;CK土壤中被孢霉属(Mortierella)相对丰度为0.2%,T处理为18.0%,较CK增加8900.0%。CK土壤中淀粉藻(Amyloflagellula)相对丰度为12.0%,T处理接近0。CK土壤中镰刀菌属(Fusarium)相对丰度为6.0%,T处理为3.0%,较CK减少50.0%。

2. 3 生物炭对宿根甘蔗生长的影响

由表3可知,与CK相比,T处理不同生长时期的甘蔗株高有所降低、茎径略有变细,但成熟期(2021年1月7日)的有效茎数较多,锤度也略高于CK。施用生物碳后,T处理的梢腐病发生率为23.1%,显著低于CK的发病率(38.8%),且T处理预估产量也较CK显著增加5.2%。说明施用生物炭可明显降低甘蔗梢腐病发生率并提高甘蔗产量。

3 讨论

3. 1 施用生物炭对旱坡地宿根甘蔗土壤养分和土壤酶活性的影响

土壤养分是土壤肥力的重要指标,其含量高低直接影响作物生长。前人研究表明,施用生物炭可不同程度地提高土壤养分含量,如李明等(2016)、涂玉婷等(2021)研究发现施用生物炭不同程度地提高了土壤碱解氮、速效磷、速效钾和有机质含量。但也有学者的研究结果与上述结论不尽一致,如吕波等(2018)认为施加生物炭可增加土壤速效磷、速效钾及有机质含量,但显著降低土壤碱解氮含量;魏永霞等(2019)在黑土区施用生物炭,发现土壤有效磷无显著变化。由于生物炭自身的分解,生物炭施用下黑土的碳氮增幅显著高于潮棕壤(刘兴等,2021)。在本研究中,施用生物炭显著增加旱坡地宿根甘蔗的土壤碱解氮、速效钾和有机质含量,降低速效磷含量。说明生物炭施用促进了土壤氮钾的有效性,降低了磷的有效性。施用生物炭对土壤养分影响不同的原因可能与生物炭原料、土壤性质和生物炭施用量等有关。

土壤酶在维持土壤健康和养分循环方面发挥重要作用,可作为衡量土壤质量的生物指标(Ghani et al.,2019;Wang et al.,2019)。脲酶在土壤尿素水解中发挥重要作用,其水解产物是植物生长发育的氮源之一(Teng and Zhou,2018)。蔗糖酶促进土壤中蔗糖水解成单糖,为微生物提供能量。生物炭施入土壤后,其丰富的多孔结构既能为微生物繁殖提供良好的生存空间,又能吸附反应底物有助于酶促反应而提高土壤酶活性。相反,酶分子也能被生物炭吸附从而隐蔽酶促反应结合位点,抑制酶促反应(丁艳丽等,2013)。不同土壤条件下,生物炭施用对土壤酶的影响不同。Wang等(2019)研究表明,在苹果土壤中施用生物炭后,土壤转化酶、脲酶、蛋白酶和过氧化氢酶活性增强。Pokharel等(2020)研究发现,生物炭可增加土壤微生物生物量及脲酶、碱性磷酸酶和脱氢酶活性,增幅分别为22%、23%、25%和20%。Wu等(2020)通过盆栽试验,研究4种生物炭对桃树幼苗土壤酶活性的影响,结果显示施用生物炭可增加土壤脲酶活性,抑制土壤过氧化氢酶和中性磷酸酶活性。本研究结果表明,生物炭的施用增加了宿根甘蔗土壤蔗糖酶和酸性磷酸酶活性,但降低了脲酶和过氧化氢酶活性。其原因可能与生物炭提高土壤有机质含量有关,有机质含有较多可利用的碳源,从而为土壤微生物生长提供营养物质。本研究中土壤有效磷含量降低说明生物炭通过对磷的吸附促进了酸性磷酸酶活性。然而,可能由于脲酶和过氧化氢酶本身分子结构的复杂性,导致土壤脲酶和过氧化氢酶与土壤蔗糖酶和酸性磷酸酶活性的变化存在差异。

3. 2 施用生物炭对旱坡地宿根甘蔗土壤微生物多样性的影响

土壤是土壤微生物的生活场所,土壤结构对土壤微生物群落结构有较大影响。生物炭可通过吸附和封存作用降低土壤养分,导致微生物丰度降低(Kaewpradit and Toomsan,2019)。生物炭造就的土壤环境能促进一部分微生物群体快速增殖成为竞争优势群落,进而改变群落组成(雷海迪等,2016)。Zhang等(2021)研究表明,生物炭施用降低了细菌和真菌的多样性。Hassink等(1993)认为添加生物炭后土壤真菌多样性减少的原因,可能是生物炭中有效碳含量太少,从而抑制了担子菌门和变型菌门的生长繁殖。本研究结果显示,施用生物炭改变了旱坡地宿根甘蔗土壤微生物群落结构,不仅减少了土壤中细菌和真菌OTUs总数,同时降低了子囊菌门和担子菌门的相对丰度,与Zheng等(2016)、Li等(2020)的研究结果一致。

3. 3 施用生物炭对旱坡地宿根甘蔗病害的影响

宿根甘蔗种植能减少劳作和投入成本,但多年的单一种植结构,蔗地土壤退化严重,病害发生风险加剧(宋洁,2016)。其中宿根蔗病害程度高于新植蔗(刘晓燕等,2015)。生物炭可影响通过植物叶面和土壤传播的病害(Jaiswal et al.,2017),对空气传播(如灰霉病菌及不同种类的白粉病)和土壤传播(镰刀菌属、疫霉属、立枯丝核菌)的病原体也有显著抑制作用(Bonanomi et al.,2015)。眾多研究表明,生物炭可有效抑制镰刀菌引起的土传疾病(Gu et al.,2017;Jaiswal et al.,2018;Zhao et al.,2019;Lucas et al.,2020)。生物炭通过吸收根系分泌物直接或间接地吸引病原体,显著降低细菌性枯萎病发病率(Gu et al.,2017),长期施用生物炭可减少番茄单一栽培引起的枯萎病(Zhao et al.,2019),增强番茄幼苗抗病性,减少病害发生的严重程度(Jaiswal et al.,2018;Lucas et al.,2020)。Tian等(2021)也发现生物炭应用能有效防治西洋参镰刀菌根腐病。甘蔗梢腐病是真菌性病害,病原菌的有性态属于子囊菌亚门,主要致病菌为镰刀菌,该病菌侵染甘蔗后会引起甘蔗产量降低和糖分下降(Wang et al.,2017)。本研究中,宿根甘蔗第4年梢腐病发生严重,施用生物炭后甘蔗梢腐病发病率显著降低。结合高通量技术下细菌16S rDNA和真菌ITS1基因扩增子测序分析,生物炭施用对细菌门的影响不明显,而对真菌门影响较大,在真菌属中甘蔗梢腐病的致病菌(镰刀菌属)相对丰度减少。说明施用生物炭可抑制蔗地土壤梢腐病病原菌的繁衍,减少甘蔗梢腐病的发病率,提高甘蔗产量。Frenkel等(2017)研究表明低浓度(≤1%)的生物炭施用可抑制多种病害,但较高浓度(≥3%)生物炭施用对大多数病害无效或诱发植物病害,建议合理控制生物炭施用量。本研究中生物炭施用量为3 t/ha,对甘蔗梢腐病发病抑制作用明显,可作为甘蔗梢腐病防控的合理施用量。

4 结论

施用生物炭可改良甘蔗土壤,改变土壤微生物群落结构,提高宿根甘蔗抗梢腐病能力和甘蔗产量。因此,生物炭应用有利于广西旱坡地宿根甘蔗生长及提高抵御病害的能力。

参考文献:

安宁,李冬,李娜,吴正超,任彬彬,杨劲峰,韩巍,韩晓日. 2020. 长期不同量秸秆炭化还田下水稻土孔隙结构特征[J]. 植物营养与肥料学报,26(12):2150-2157. [An N,Li D,Li N,Wu Z C,Ren B B,Yang J F,Han W,Han X R. 2020. Characterization of soil pore structure of paddy soils under different long-term rice straw biochar incorporation[J]. Journal of Plant Nutrition and Fertilizers,26(12):2150-2157.] doi:10.11674/zwyf.20403.

白珊,倪幸,杨瑗羽,方先芝,柳丹,叶正钱. 2021. 不同原材料生物炭对土壤重金属Cd、Zn的钝化作用[J]. 江苏农业学报,37(5):1199-1205. [Bai S,Ni X,Yang Y Y,Fang X Z,Liu D,Ye Z Q. 2021. Immobilization of soil cadmium and zinc by different raw material derived biochars[J]. Jiangsu Journal of Agricultural Sciences,37(5):1199-1205.] doi:10.3969/j.issn.1000-4440.2021.05.015.

陈心想,耿增超,王森,赵宏飞. 2014. 施用生物炭后塿土土壤微生物及酶活性变化特征[J]. 农业环境科学学报,33(4):751-758. [Chen X X,Geng Z C,Wang S,Zhao H F. 2014. Effects of biochar amendment on microbial biomass and enzyme activities in loess soil[J]. Journal of Agro-Environment Science,33(4):751-758.] doi:10.11654/jaes. 2014.04.019.

戴皖宁,王丽学,Ismail Khan,王晓帆,李振华. 2019. 秸秆覆盖和生物炭对玉米田间地温和产量的影响[J]. 生态学杂志,38(3):719-725. [Dai W N,Wang L X,Khan I,Wang X F,Li Z H. 2019. Effects of straw mulching and biochar addition on soil temperature and maize yield[J]. Chinese Journal of Ecology,38(3):719-725.] doi:10. 13292/j1000-4890.201903.031.

丁艳丽,刘杰,王莹莹. 2013. 生物炭对农田土壤微生物生态的影响研究进展[J]. 应用生态学报,24 (11):3311-3317.[Ding Y L,Liu J,Wang Y Y. 2013. Effects of biochar on microbial ecology in agriculture soil:A review[J]. Chinese Journal of Applied Ecology,24(11):3311-3317.] doi:10. 13287/j.1001-9332.2013.0560.

冯慧琳,徐辰生,何欢辉,曾强,陈楠,李小龙,任天宝,姬小明,刘国顺. 2021. 生物炭对土壤酶活和细菌群落的影响及其作用机制[J]. 环境科学,42(1):422-431. [Feng H L,Xu C S,He H H,Zeng Q,Chen N,Li X L,Ren T B,Ji X M,Liu G S. 2021. Effect of biochar on soil enzyme activity & the bacterial community and its mechanism[J]. Environmental Science,42(1):422-431.] doi:10.13227/ j.hjkx.202005285.

郭怀刚,付东波,林俊俊,王智慧,殷大伟,徐晶宇,李佐同,赵长江. 2020. 土壤中添加生物炭对玉米幼苗纹枯病抗性的影响[J]. 河南农业科学,49(4):78-86. [Guo H G,Fu D B,Lin J J,Wang Z H,Yin D W,Xu J Y,Li Z T,Zhao C J. 2020. Effect of adding biochar in soil on resistance of maize seedling to sheath blight[J]. Journal of Henan Agricultural Sciences,49(4):78-86.] doi:10.15933/j.cnki. 1004-3268.2020.04.011.

焦敏娜,周鹏,孙权,姬强. 2020. 不同改性生物炭及施用量对风沙土土壤团聚体及牧草产量的影响[J]. 中国土壤与肥料,(6):34-40. [Jiao M N,Zhou P,Sun Q,Ji Q. 2020. Effects of different modified biochars and application rates on soil aggregates and forage yield in aeolian sandy soil[J]. Soil and Fertilizer Sciences in China,(6):34-40.] doi:10.11838/sfsc.1673-6257.19520.

雷海迪,尹云锋,刘岩,万晓华,马红亮,高人,杨玉盛. 2016. 杉木凋落物及其生物炭对土壤微生物群落结构的影响[J]. 土壤学报,53(3):790-799. [Lei H D,Yin Y F,Liu Y,Wan X H,Ma H L,Gao R,Yang Y S. 2016. Effects of fir(Cunninghamia Lanceolata) litter and its biochar on soil microbial community structure[J]. Acta Pedologica Sinica,53(3):790-799.] doi:10.11766/trxb201509050424.

李科,李志军. 2019. 土壤农化分析方法[M]. 北京:中国农业科学技术出版社. [Li K,Li Z J. 2019. Analytical me-thods for soil and agro-chemistry[M]. Beijing:China Agricultural Science and Technology Press.]

李明,胡云,黃修梅,张清梅,尹春. 2016. 生物炭对设施黄瓜根际土壤养分和菌群的影响[J]. 农业机械学报,47 (11):172-178. [Li M,Hu Y,Huang X M,Zhang Q M,Yin C. 2016. Effect of biological carbon on nutrient and bacterial communities of rhizosphere soil of facility cucumber[J]. Transactions of the Chinese Society for Agricultural Machinery,47(11):172-178.] doi:10.6041/j.issn. 1000-1298.2016.11.023.

林先贵. 2010. 土壤微生物研究原理与方法[M]. 北京:高等教育出版社. [Lin X G. 2010. Principles and methods of soil microbiology research[M]. Beijing:Higher Education Press.

刘领,马宜林,悦飞雪,乔鑫鑫,尹飞,王艳芳. 2021. 生物炭对褐土旱地玉米季氮转化功能基因丛枝菌根真菌及N2O释放的影响[J]. 生态学报,41(7):2803-2815.[Liu L,Ma Y L,Yue F X,Qiao X X,Yin F,Wang Y F. 2021. Effects of biochar on nitrogen transformation functional genes abundances,arbuscular mycorrhizal fungi and N2O emission of rainfed maize season in cinnamon soil[J]. Acta Ecologica Sinica,41(7):2803-2815.] doi:10.5846/stxb 202006041438.

刘晓燕,梁强,李毅杰,董文斌,谢金兰,李长宁,朱秋珍,王维赞. 2015. 2012—2013年广西甘蔗品种区试南宁点试验报告[J]. 中国糖料,37(2):10-12. [Liu X Y,Liang Q,Li Y J,Dong W B,Xie J L,Li C N,Zhu Q Z,Wang W Z. 2015. Report on Nanning regional sugarcane varieties trial of Guangxi in 2012-2013[J]. Sugar Crops of China,37(2):10-12.] doi:10.13570/j.cnki.scc.2015.02.004.

刘兴,武国慧,张玉兰,解宏图,陈振华,陈利军. 2021. 生物炭施用方式对黑土和潮棕壤养分及氮磷转化相关酶活性的影响[J]. 应用生态学报,32(8):2693-2702. [Liu X,Wu G H,Zhang Y L,Xie H T,Chen Z H,Chen L J. 2021. Effects of biochar application patterns on soil nutrients and nitrogen-and phosphorus-related enzyme activities in phaeozem and luvisol[J]. Chinese Journal of Applied Ecology,32(8):2693-2702.] doi:10.13287/j.1001-9332.202108.041.

鲁如坤. 2000. 土壤农业化学分析方法[M]. 北京:中国农业科学技术出版社. [Lu R K. 2000. Analytical methods for soil and agro-chemistry[M]. Beijing:China Agricultural Science and Technology Press.]

罗霆,邓宇驰,丘立杭,陈荣发,范业赓,周慧文,闫海锋,黄杏,周忠凤,吴建明. 2021. 宿根黄花对甘蔗主要农艺性状及内源激素的影响[J]. 热带作物学报,42(12):3559-3565. [Luo T,Deng Y C,Qiu L H,Chen R F,Fan Y G,Zhou H W,Yan H F,Huang X,Zhou Z F,Wu J M. 2021. Effects of chlorosis on main agronomic traits and endogenous hormones of ratoon sugarcane[J]. Chinese Journal of Tropical Crops,42(12):3559-3565.] doi:10. 3969/j.issn.1000-2561.2021.12.024.

吕波,王宇函,夏浩,姚子涵,姜存仓. 2018. 不同改良剂对黄棕壤和红壤上白菜生长及土壤肥力影响的差异[J]. 中国农业科学,51(22):4306-4315. [Lü B,Wang Y H,Xia H,Yao Z H,Jiang C C. 2018. Effects of biochar and other amendments on the cabbage growth and soil fertility in yellow-brown soil and red soil[J]. Scientia Agricultura Sinica,51(22):4306-4315.] doi:10.3864/j.issn.0578-1752. 2018.22.009.

吕泽先. 2017. 施用生物质炭和生物质炭基肥对作物产量及经济效益的影响[D]. 南京:南京农业大学. [Lü Z X. 2017. Effects of biochar and compound fertilizer application on crop yield and economic benefits[D]. Nanjing:Nanjing Agricultural University.]

孟博,周一帆,戰健,杨林生,邓燕. 2021. 广西蔗区土壤和叶片养分状况调查研究[J]. 中国土壤与肥料,https://kns.cnki.net/kcms/detail/11.5498.S.20210906.1116.002.html. [Meng B,Zhou Y F,Zhan J,Yang L S,Deng Y. 2021. Investigation on soil and sugarcane leaf nutrient status in Guangxi[J]. Soil and Fertilizer Sciences in China,https://kns.cnki.net/kcms/detail/11.5498.S.20210906.1116.002. html.] doi:10.11838/sfsc.1673-6257.20656.

宋潔. 2016. 连作土壤寄生真菌多样性及对大豆胞囊线虫抑制作用[D]. 哈尔滨:东北农业大学. [Song J. 2016. Diversity and suppressive effect of parastic fungi on soyrean cyst nematode in Soybean Monoculture soil[D]. Harbin:Northeast Agricultural University.]

涂玉婷,黄继川,彭智平,吴雪娜,廖伟杰. 2021. 生物炭对酚酸胁迫下番茄生长和土壤微生态的影响[J]. 广东农业科学,48 (1):94-103. [Tu Y T,Huang J C,Peng Z P,Wu X N,Liao W J. 2021. Effect of biochar on tomato growth and soil microecology under phenolic acid stress[J]. Guangdong Agricultural Sciences,48(1):94-103.] doi:10.16768/j.issn.1004-874X.2021.01.012.

王彩云,武春成,曹霞,贺字典,曾晓玉,姜涛. 2019. 生物炭对温室黄瓜不同连作年限土壤养分和微生物群落多样性的影响[J]. 应用生态学报,30(4):1359-1366. [Wang C Y,Wu C C,Cao X,He Z D,Zeng X Y,Jiang T. 2019. Effects of biochar on soil nutrition and microbial community diversity under continuous cultivated cucumber soils in greenhouse[J]. Chinese Journal of Applied Eco-logy,30(4):1359-1366.] doi:10.13287/j.1001-9332.201904. 036.

魏永霞,石国新,冯超,吴昱,刘慧. 2019. 黑土区坡耕地施加生物炭对土壤结构、肥力与大豆产量的影响[J]. 农业机械学报,50(8):309-320. [Wei Y X,Shi G X,Feng C,Wu Y,Liu H. 2019. Effects of applying biochar on soil structure and soybean yield on slope farmland in black soil region[J]. Transactions of the Chinese Society for Agricultural Machinery,50(8):309-320.] doi:10.6041/j.issn.1000-1298.2019.08.034.

谢国雪,黄启厅,曾志康,覃泽林,张秀龙,苏秋群. 2018. 丘陵县域地块尺度的甘蔗产业精准规划研究[J]. 中国农业资源与区划,39(5):154-163. [Xie G X,Huang Q T,Zeng Z K,Qin Z L,Zhang X L,Su Q Q. 2018. Precision planing of sugarcane industry in scale of hilly area[J]. Chinese Journal of Agricultural Resources and Regional Planning,39(5):154-163.] doi:10.7621/cjarrp.1005-9121. 20180521.

殷全玉,李想,王典,张明月,王兆双,云菲,王新发,刘国顺. 2021. 连续4年施用生物炭对土壤细菌多样性及其群落结构的影响[J]. 河南农业大学学报,55(4):752-760.[Yin Q Y,Li X,Wang D,Zhang M Y,Wang Z S,Yun F,Wang X F,Liu G S. 2021. Effects of continuous application of biochar for 4 years on soil bacterial diversity and community structure[J]. Journal of Henan Agricultural University,55(4):752-760.] doi:10.16445 /j.cnki.1000-2340.20210512.001.

Alvarez-Camposa O,Lang T A,Bhadha J H,McCray J M,Glaz B,Daroub S H. 2018. Biochar and mill ash improve yields of sugarcane on a sand soil in Florida[J]. Agriculture,Ecosystems and Enviroment,253:122-130. doi:org/10.1016/j.agee.2017.11.006.

Bonanomi G,Ippolito F,Scala F. 2015. A “black” future for plant patholagy biochar as a new soil amendment for controlling plant diseases[J]. Journal of Plant Pathology,97(2):223-234. doi:10.4454/jpp.v97i2.3381.

Frenkel O,Jaiswal A K,Elad Y,Lew B,Kammann C,Graber E R. 2017. The effect of biochar on plant diseases:What should we learn while designing biochar substrates?[J]. Journal of Encironmental Engineering and Landscape Management,25(2):105-113. doi:10.3846/16486897.2017. 1307202.

Ghani M I,Ali A,Atif M J,Ali M,Amin B,Anees M,Khurshid H,Cheng Z H. 2019. Changes in the soil microbiome in eggplant monoculture revealed by high-throughput Illumina MiSeq sequencing as inflfluenced by raw garlic stalk amendment[J]. International Journal of Molecular Sciences,20(9):2125. doi:10.3390/ijms20092125.

Gu Y,Hou Y G,Huang D P,Hao Z X,Wang X F,Wei Z,Jousset A,Tan S Y,Xu D B,Shen Q R,Xu Y C,Friman V P. 2017. Application of biochar reduces Ralstonia solanacearum infection via effects on pathogen chemotaxis,swarming motility,and root exudate adsorption[J]. Plant and Soil,415(1-2):269-281. doi:10.1007/s11104-016-3159-8.

Hassink J,Bouwman L A,Zwart K B,Brussaard L.1993. Relationships between habitable pore space,soil biota and mineralization rates in grasslandsoils[J]. Soil Biology and Biochemistry,25(1):47-55. doi:10.1016/0038-0717(93)90240-C.

Hu L,Li S L,Li K,Huang H Y,Wan W X,Huang Q H,Li Q Y,Li Y F,Deng H,He T G. 2020. Effects of two types of straw biochar on the mineralization of soil organic carbon in farmland[J]. Sustainability,12(24):1-18. doi:10. 3390/SU122410586.

Jaiswal A K,Elad Y,Paudel I,Graber E R,Cytryn E,Frenkel O. 2017. Linking the belowground microbial composition,diversity and activity to soilborne disease suppression and growth promotion of Tomato amended with biochar[J]. Scientific Reports,7:44382. doi:10.1038/srep 44382.

Jaiswal A K,Frenkel O,Tsechansky L,Elad Y,Graber E R. 2018. Immobilization and deactivation of pathogenic enzymes and toxic metabolites by biochar:A possible mecha-nism involved in soilborne disease suppression[J]. Soil Biology and Biochemistry,121:59-66. doi:10.1016/j.soibio.2018.03.001.

Kaewpradit W,Toomsan B. 2019. Impact of Eucalyptus biochar application to upland rice-sugarcane cropping systems on enzyme activities and nitrous oxide emissions of soil at sugarcane harvest under incubation experiment[J]. Journal of Plant Nutrition,42(4):362-373. doi:10.1080/01904167.2018.1555849.

Li S,Wang S,Fan M,Wu Y,Shang G Z. 2020. Interactions between biochar and nitrogen impact soil carbon mineralization and the microbial community[J]. Soil and Tillage Research,196:104437. doi:10.1016/j.still.2019.104437.

Li X N,Song Y,Wang F,Bian Y R,Jiang X. 2019. Combined effects of maize straw biochar and oxalic acid on the dissipation of polycyclic aromatic hydrocarbons and microbial community structures in soil:A mechanistic study[J]. Journal of Hazardous Materials,364:325-331. doi:10.1016/j.jhazmat.2018.10.041.

Liu L Y,Tan Z X,Gong H B,Huang Q Y. 2019. Migration and transformation mechanisms of nutrient elements(N,P,K)within biochar in straw-biochar-soil-plant systems:A review[J]. ACS Sustainable Chemistry & Engineering,7:22-32. doi:10.1021/acssuschemeng.8b04253.

Lopes É M,Reis M M,Frazão L A,Terra L E,Lopes E F,Santos M M,Fernandes L A. 2021. Biochar increases enzyme activity and total microbial quality of soil grown with sugarcane[J]. Environmental Technology & Innovation,21:101270. doi:10.1016/j.eti.2020.101270.

Lucas G S,Cristiano A,Wagner B. 2020. Biochar amendment increases soil microbial biomass and plant growth and suppresses Fusarium wilt in tomato[J]. Tropical Plant Pathology,45(1):73-83. doi:10.1007/s40858-020-00332-1.

Munir A,Shahzada S I,Muhammad A,Qaiser H,Asma H,Muhammad A,Muhammad T,Muhammad I,Kashif B,Sanaur R. 2019. Impact of biochar with different organic materials on carbon fractions,aggregate size distribution,and associated polysaccharides and soil moisture retention in an arid soil[J]. Arabian Journal of Geosciences,12:626. doi:10.1007/s12517-019-4792-3.

Pokharel P,Ma Z L,Chang S X. 2020. Biochar increases soil microbial biomass with changes in extra-and intracellular enzyme activities:A global meta-analysis[J]. Biochar,(1):1-15. doi:10.1007/s42773-020-00039-1.

Safrazr R,Shakoor A,Abdullam M,Arooj A,Hussain A,Xing S H. 2017. Impact of integrated application of biochar and nitrogen fertilizers on maize growth and nitrogen recovery in alkaline calcareous soil[J]. Soil Science and Plant Nutrition,63(5):488-498. doi:10.1080/00380768. 2017.1376225.

Smith P. 2016. Soil carbon sequestration and biochar as negative emission technologies[J]. Global Change Biology,22(3):1315-1324. doi:10.1111/gcb.13178.

Tafti N,Wang J,Gaston L,Park J H,Wang M,Pensky S. 2021. Agronomic and environmental performance of biochar amendment in alluvial soils under subtropical sugarcane production[J]. Agrosystems,Geosciences & Environment,4(3):1-14. doi:10.1002/agg2.20209.

Teng Y,Zhou Q X. 2018. Response of soil enzymes,functional bacterial groups,and microbial communities exposed to sudan I-IV[J]. Ecotoxicology and Environmental Safety,166:328-335. doi:10.1016/j.ecoenv.2018.09.102.

Tian G L,Bi Y M,JiaoX L,Zhang X M,Li J F,Niu F B,Gao W W. 2021. Application of vermicompost and biochar suppresses Fusarium root rot of replanted American ginseng[J]. Applied Microbiology and Biotechnology,105: 6977-6991. doi:10.1007/s00253-021-11464-y.

Wang Y F,Ma Z T,Wang X W,Sun Q R,Dong H Q,Wang G S,Chen X S,Yin C M,Han Z H,Mao Z Q. 2019. Effects of biochar on the growth of apple seedlings soil enzyme activities and fungal communities in replant disease soil[J]. Scientia Horticulturae,256:108641. doi:10.1016/scienta.2019.108641.

Wang Z P,Sun H J,Guo Q,Xu S Q,Wang J H,Lin S H,Zhang M Q. 2017. Artificial inoculation method of pokkah boeng disease of sugarcane and screening of resistant germplasm resources in subtropical China[J]. Sugar Tech,19(3):283-292. doi:10.1007/s12355-016-0465-7.

Weng Z,Liu X H,Eldridge S,Wang H R,Rose T,Rose M,Rust J,Singh B P,Tavakkoli E,Tang C X,Ou H P,Zwieten L V. 2020. Priming of soil organic carbon induced by sugarcane residues and its biochar control the source of plant uptake:A dual 13C and 15N isotope three-source-partitioning study[J]. Soil Biology and Biochemistry,146:107792. doi:10.1016/j.soilbio.2020.107792.

Wu C F,Hou Y F,Bie Y H,Chen X,Dong Y P,Lin L J. 2020. Effects of biochar on soil water-soluble sodium,calcium,magnesium and soil enzyme activuty of peach seedlings[J]. Earth and Environmental Science,446:032 007. doi:10.1088/1755-1315/446/3/03207.

Yang L,Liao F,Huang M,Yang L T,Li Y R. 2015. Biochar improves sugarcane seedling root and soil properties under a pot experiment[J]. Sugar Tech,17(1):36-40. doi:10.1007/s12355-014-0335-0.

Zhang H J,Wang S J,Zhang J X,Tian C J,Luo S S. 2021. Biochar application enhances microbial interactions in mega-aggregates of farmland black soil[J]. Soil & Tillage Research,213:105145. doi:10.1016/j.still.2021.105145.

Zhao F Y,Zhang Y Y,Dong W G,Zhang Y Q,Zhang G X,Sun Z P,Yang L J. 2019. Vermicompost can suppress Fusarium oxysporum f. sp. lycopersici via generation of beneficial bacteria in a long-term tomato monoculture soil[J]. Plant Soil,440:491-505. doi:10.1007/s11104-019-04104-y.

Zhao Y,Lin S,Liu Y,Li G,Butterbach K. 2020. Application of mixed straw and biochar meets plant demand of carbon dioxide and increases soil carbon storage in sunken solar greenhouse vegetable production[J]. Soil Use and Management,36(3):439-448. doi:10.1111/sum.12579.

Zheng J F,Chen J H,Pan G X,Liu X Y,Zhang X H,Li L Q,Bian R J,Cheng K,Zheng J W. 2016. Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China[J]. Science of the Total Environment,571(15):206-217. doi:10.1016/j.scitotenv.2016.07.135.

(責任编辑 王 晖)

猜你喜欢

生物炭甘蔗养分
为什么植物的根茎向上生长?
甘蔗的问题
甜甜的甘蔗
树木是怎样过冬的
为什么雨水多了瓜果会不甜
生物炭的制备与表征比较研究
黑熊吃甘蔗
生物炭的应用研究进展
基于生物炭的生态浮床设计
生物炭还田对固碳减排、N2O排放及作物产量的影响研究进展