APP下载

不同前处理对测定甜高粱茎秆汁液3种糖含量的影响

2022-05-23周振祥王唯先仝骁鹏郑剑波李艳红高建明孙守钧裴忠有

草业科学 2022年5期
关键词:总糖茎秆果糖

周振祥,赵 博,王唯先,仝骁鹏,郑剑波,李艳红,高建明,罗 峰,孙守钧,裴忠有

(天津农学院, 天津 300384)

甜高粱(Sorghum dochna)作为普通高粱的变种,因其抗逆、耐旱、适应能力强,且植株高大、茎秆富含糖分,是我国重要的能源作物和优质饲料作物,其茎秆的糖分主要由蔗糖、果糖、葡萄糖组成[1-2]。根据品种的不同,一般占可溶性总糖的95%以上。甜高粱茎秆含糖量是衡量其利用价值的重要标准。而准确测定甜高粱茎秆的可溶性糖含量,是甜高粱茎秆可溶性糖QTL定位的基础和甜高粱茎秆糖分相关基因的克隆并进行功能验证的前提。

育种者习惯用汁液锤度(Brix)和出汁量来估算可溶性糖产量[3]。但通过锤度法衡量茎秆可溶性总糖含量时,除了没有统一的估算方法外,还存在无法分析糖组分的缺点。目前,在对可溶性糖进行分析时分别采用了不同的测定方法,方法各有优缺点。孟利等[4]在分析甜高粱茎秆可溶性糖组分时,分别运用了蒽酮比色法、3,5-二硝基水杨酸法和离子色谱法测定了茎秆可溶性总糖含量、还原糖含量和可溶性糖的种类,均取得了较好的结果。赵大云等[5]在研究苜蓿多糖的测定方法中,对蒽酮硫酸法和苯酚硫酸法进行了对比,结果显示,蒽酮硫酸法的稳定性和重现性则均优于苯酚硫酸法,而且苯酚硫酸法在测定过程中存在反应液体容易飞溅等试验安全性问题[6];宋占午等[7]对3,5-二硝基水杨酸法和蒽酮硫酸法进行了对比,结果显示,3,5-二硝基水杨酸法的灵敏度要低于蒽酮比色法,而且3,5-二硝基水杨酸法的反应试剂需要在室温下保存7~10 d后才可使用,存在配制麻烦、耗时的缺点[8];在使用斐林试剂比色法的显色试剂次甲基蓝与空气接触容易发生氧化,易对显色结果造成影响[9];在使用高效液相色谱法测定甜高粱茎秆中的可溶性糖含量存在仪器昂贵,维护复杂[10]等缺点。综上所述,蒽酮比色法操作简便、反应快速等优缺点[11],但对糖组分含量的测定存在问题还需改进[12-14]。因此本研究在蒽酮比色法基础上通过优化反应条件和样品处理方法,对测定总糖、蔗糖、果糖的条件进行探究,为甜高粱茎秆可溶性糖含量测定寻找最便捷有效方法。

1 材料与方法

1.1 试验试验材料

‘忻粱52’与‘W452’重组自交系群体F8代255个于2019年4月30日于天津静海区良种场种植,行长2.5 m,行间距0.5 m,株距0.2 m进行,田间管理同常规大田生产。于蜡熟期收获去掉叶、叶鞘和穗柄,留下茎秆部分用榨汁机对其进行2次榨汁,测定锤度后收集至5 mL离心管作为待测样本。

1.2 溶液配制

1) 85%硫酸:取780 mL浓硫酸(98%),缓慢加入水中,定容至1 L。

2) 0.1%蒽酮溶液:取0.1 g蒽酮溶于100 mL 85%的硫酸中(现配现用)。

3)葡萄糖、果糖、蔗糖标准糖液:准确称取1 g葡萄糖、果糖、蔗糖分别溶于1 000 mL容量瓶中并用蒸馏水稀释至刻度线,摇匀后置于冰箱中冷藏备用,浓度为1 000 g·L-1。

1.3 标准曲线的绘制

分别配制0、10、20、40、60、80、100 mg·L-1葡萄糖、果糖、蔗糖溶液,各自吸取1 mL到7个比色管中,然后加入蒽酮试剂4 mL,然后将系列标准溶液在100 ℃水浴10 min的条件进行反应,在620 nm的波长下测定吸光值,并另取一组果糖的一系列标准糖溶液以50 ℃水浴3 min的条件进行反应,在620 nm的波长下测定吸光值,并与100 ℃水浴后的果糖标液进行对比,若两者显色的吸光值一致,则可以直接采用50 ℃水浴3 min这组标液所绘制的标准曲线,否则应对结果计算进行矫正,并以含糖量为横坐标,吸光值为纵坐标,并通过Excel软件绘制标准曲线(图1)。

图1 葡萄糖、果糖、蔗糖的标准曲线Figure 1 Standard curve of glucose, fructose and sucrose

1.4 材料处理

1)去蛋白:吸取甜高粱汁液置于2 mL离心管中,12 000 r·min-1离心1 min,吸取上清液置于2 mL离心管中,放入水浴锅中100 ℃水浴10 min,再置于冰上冷却5 min,112 000 r·min-1离心1 min,吸取上清液置于2 mL离心管中后。

2)去色素:向2 mL离心管中加入一小勺活性炭粉末(加入的量可以视颜色的深浅而定),震荡后65℃水浴加热10 min,12 000 r·min-1离心1 min,吸取上清液2 mL离心管中,低温保存,作为待测样品。

3)确定稀释倍数:选择5组锤度从小到大的样品,分别吸取1、2、4、6、8、10 μL原液,加入蒸馏水配至1 mL,用传统蒽酮比色法进行测定,选出最合适的反应体系。

1.5 测定方法的优化

1.5.1可溶性总糖显色条件的优化

1)筛选合适的反应温度

向试管中加入1 mL标准葡萄糖溶液,然后加入蒽酮试剂4 mL,分别于50、60、70、80、90、100 ℃下水浴10 min,冷却后于620 nm波长下测定吸光值,分析温度对吸光值的影响。

2)筛选合适的反应时间

向试管中加入1 mL标准葡萄糖溶液,然后加入蒽酮试剂4 mL,于100 ℃分别水浴0、1、4、7、10、13、16 min,冷却后于620 nm波长下测定吸光值,分析时间对吸光值的影响。

1.5.2蔗糖处理条件的优化

1)筛选合适稀碱浓度

以加入KOH的浓度为变量,向含有1 mL蔗糖、果糖、葡萄糖标准溶液的试管中分别加入浓度为1、2、3、4、5 mol·L-1的KOH溶液1 mL,再加入3 mL蒸馏水,放入水浴锅中加热10 min,去除果糖和葡萄糖,定容至10 mL,然后取1 mL样品加入比色管中,再加入蒽酮试剂4 mL,然后加入沸水浴中加热10 min,冷却后于620 nm波长下测定吸光值,选出KOH最佳的处理的浓度。

2)筛选合适的稀碱处理时长

以加热时间为变量,向含有1 mL蔗糖、果糖、葡萄糖标准溶液的试管中分别加入浓度为1 mol·L-1的KOH溶液1 mL,放入水浴锅中分别加热0、2、4、6、8、10、12 min,去除果糖和葡萄糖,定容至10 mL,然后取1 mL样品加入比色管中,再加入蒽酮试剂4 mL,然后放入沸水浴中加热10 min,冷却后于620 nm波长下测定吸光值,选出最佳的处理时长。

1.5.3果糖显色条件的优化

1)筛选合适的显色时长

以反应时间为变量,分别向试管中加入1 mL标准葡萄糖、果糖、蔗糖溶液,并加入4 mL蒽酮试剂后,放入50 ℃水浴锅中分别处理0、1、2、3、4、5、6、7、8、9、10 min后,冷却后于620 nm波长下测定吸光值,选出最佳的显色时长。

2)筛选合适显色温度

以反应温度为变量,分别向试管中加入1 mL标准葡萄糖、果糖、蔗糖溶液,并加入4 mL蒽酮试剂,分别放入35、50、65、80、100 ℃水浴锅中加热,分别加热5 min后冷却,于620 nm波长下测定吸光值,选出最佳显色温度。

1.6 葡萄糖的含量换算公式

将处理好的汁液按照最佳的试验条件进行测定。依次测出样品的总糖、蔗糖、果糖的吸光值,再通过公式估算出葡萄糖的含量。计算公式如下:

式中:G为在标准曲线上查出的总糖的含量(mg);S为在标准曲线上查出的蔗糖的含量(mg);F为在标准曲线上查出的果糖的含量(m);Vs为提取液的总体积(m);D为稀释倍数;Vt为反应体系的总体积。

1.7 数据分析

采用SPSS 17.0软件对所测数据统计分析,显著性差异分析采用t检验,差异显著设置为P< 0.05,差异极显著设置为P< 0.01。分别对锤度和可溶性糖总量、可溶性糖、蔗糖、葡萄糖、果糖进行相关性分析,采用Excel 2020制图。

2 结果与分析

2.1 甜高粱茎秆汁液样品的前处理

2.1.1去除茎秆汁液中的蛋白质

为了降低甜高粱汁液样品中蛋白质对显色反应的影响,通过煮沸处理达到去除蛋白的目的。通过蛋白质与考马斯亮蓝显色反应在分光光度计595 nm波长下吸光值建立蛋白的标准曲线,得到回归方程为y= 0.598 6x+ 0.002 3,回归系数为R2= 0.99。然后通过回归方程计算部分样品处理前后的蛋白含量(图2),可以看出,经煮沸法处理后样品的蛋白质含量明显下降。

图2 样品处理前后的蛋白质含量对比Figure 2 Comparison of protein content of samples before and after treatment

2.1.2样品的脱色处理

为了降低色素对显色结果的影响,通过往样品中加入活性炭粉末的方式来去除色素。随机挑选10个颜色深浅不一的样品进行处理,样品经处理后最终效果(图3)表明,浑浊有色液体变得澄清透明,脱色效果明显。

图3 样品脱色处理前后的对比Figure 3 Comparison of samples before and after decolorization

2.1.3样品的稀释处理

随机挑选5组糖锤度差异较大的样品分别稀释不同倍数后测定吸光值,所有测定均重复 3次。当稀释倍数为500~1 000倍时,各个锤度的样品测得的吸光值都在标准曲线的线性范围内,但考虑到加入样品的浓度太小,会导致误差加大,本试验选择将处理后的样品稀释500倍后用于蒽酮比色法的测定(表1)。

表1 不同样品的稀释后的吸光值Table 1 Dilution results of different samples (Abs)

2.2 可溶性糖蒽酮比色法测定条件优化

2.2.1可溶性总糖显色条件的优化

通过改变反应温度和反应时间得到可溶性总糖吸光值变化趋势曲线(图4),控制反应时间为10 min,改变处理温度,样品所测得的吸光值随反应温度的升高而升高,在100 ℃水浴条件下吸光值达到最大,因此试验中选择的反应温度为100 ℃。控制反应温度为100 ℃,改变处理时间,当加热时间达到7 min时,吸光值达到最大值,显色反应完全,因此本试验选择100 ℃水浴7 min为可溶性总糖测定的最佳反应条件。

图4 可溶性总糖测定中不同反应条件对吸光值的影响Figure 4 Influence of different reaction conditions on absorbance value in the determination of soluble total sugar

2.2.2蔗糖含量测定的条件优化

通过改变KOH处理样品的浓度,可溶性糖吸光值变化趋势不同(图5),当加入浓度为1 mol·L-1的KOH溶液1 mL后,样品中葡萄糖和果糖的吸光值已经基本上接近于0,而蔗糖吸光值不受影响,因此1 mol·L-1的KOH溶液加入可以有效去除汁液中葡萄糖和果糖,减少葡萄糖和果糖对蔗糖含糖测定的影响。通过加入1 mol·L-1的KOH溶液1 mL后进行不同时长处理,测得可溶性糖吸光值变化趋势(图5),当反应时长达到8 min时,葡萄糖和果糖溶液的吸光值已接近于0,而对蔗糖的吸光值没有影响,说明此时KOH溶液已经完全去除汁液中葡萄糖和果糖,因此后续蔗糖含量测定选择将反应时长控制在8 min。

图5 蔗糖含量测定前不同样品处理条件对吸光值的影响Figure 5 Effect of different sample treatment conditions on absorbance value before determination of sucrose

2.2.3果糖含量测定的条件优化

在果糖测定中,为了获得最佳的测定温度,采用不同温度处理来测定果糖吸光值的变化趋势(图6)。由图可以看出,当反应温度在35 ℃时,果糖达到最大吸光值,而葡萄糖和蔗糖的吸光值接近于0,因此,可以确定在测定样品中果糖含量时,温度应控制在35 ℃左右。控制反应温度为35 ℃时,对不同处理时长对果糖吸光值影响进行研究,当处理时长为3 min时,果糖溶液的吸光值达到最大值,因此本研究在测定果糖含量时应选择处理时长为3 min。

图6 果糖测定中不同反应条件对吸光值的影响Figure 6 Effect of different reaction conditions on absorbance value in determination of fructose

2.3 可溶性糖含量测定

2.3.1精密度试验

取同一样品平均分装成15份,以试验所得出的最佳条件分别测定可溶性总糖、蔗糖、果糖含量(表2),可溶性总糖、蔗糖、果糖测定方法相对标准偏差为0.96%、1.88%、2.63%,说明该方法具有较好的精密度。

表2 精密度试验结果Table 2 Precision experimental results

2.3.2重复性试验

选取9份已知含量的样品溶液,分为3组,分别加入葡萄糖、蔗糖、果糖对照样品10 μg,以试验所得出的方法进行测定吸光度,求出回收率,结果表明该方法稳定可靠(表3)。

表3 回收率试验结果Table 3 Recovery test results

2.3.3甜高粱群体茎秆汁液中可溶性总糖、果糖、蔗糖、葡萄糖含量的测定

在获得可溶性总糖、果糖、蔗糖、葡萄糖以上测定参数后,本试验对甜高粱群体后代282个样品的含糖量进行测定,将所测得的结果由Excel软件整理后导入SPSS工具进行作图(图7),可溶性糖、蔗糖、果糖、葡萄糖的变化趋势相同,可溶性糖含量较高的样品,蔗糖、果糖、葡萄糖的含量都相应较高,同时也可以看出汁液锤度和可溶性总糖含量之间存在相关性。通过使用SPSS工具对可溶性总糖与所有性状进行相关分析,相关系数分别为0.700、0.860、0.499,且呈极显著正相关(P< 0.01);蔗糖和果糖之间极显著正相关(P< 0.01),相关系数为0.956,但和葡萄糖间都存在显著负相关关系(P<0.01),相关系数为-0.459,果糖与葡萄糖之间相关不明显(P> 0.05)。同时对可溶性总糖含量与锤度之间进行相关性分析,锤度和可溶性糖总量之间的相关系数值为0.885,并且呈现出极显著正相关关系(P< 0.01)。通过线性回归分析,锤度和可溶性糖总量之间呈线性回归,回归方程为:锤度 = 37.082 × 可溶性糖总量 + 3.990,在测定甜高粱汁液锤度后,利用该公式可以估算出可溶性糖总量。

图7 甜高粱汁液中可溶性总糖、果糖、蔗糖、葡萄糖含糖量的测定结果Figure 7 Determination results of soluble total sugar,fructose, sucrose and glucose in sweet sorghum juice

3 讨论与结论

在果糖比色条件的优化过程中,甜高粱汁液样品在35 ℃的温度下反应3 min时所测得的结果并不理想,反应时试管中往往会产生黄绿色和白色絮状物,无法测定吸光值,通过延长反应时间和震荡无法消除这种絮状物,但可以通过提高反应温度来消除,推测该种絮状物可能是甜高粱汁液中某种糖的组分与硫酸发生不完全显色反应的结果。当反应温度提高至50 ℃,该种现象发生较少,且该条件下,葡萄糖和蔗糖对果糖的吸光值影响较小,可以忽略不计,可以选择50 ℃反应3 min作为果糖测定的反应条件。有学者研究发现,在室温时加入蒽酮试剂易使葡萄糖与之发生显色反应,而在冰水条件下加入蒽酮试剂可以降低葡萄糖与试剂发生显色反应的影响,能减少试验误差[15]。本研究采用文献[15]中的条件后,测得葡萄糖的吸光值减小,能降低葡萄糖对果糖测定的影响。硫酸的浓度和用量也会对显色结果产生影响[16],选用85%的硫酸能使得果糖充分脱水,效果最好,与本研究选用的条件相同。

本研究在可溶性糖和所有性状之间极显著正相关,且相关系数蔗糖、果糖、葡萄糖逐一增大,蔗糖和果糖之间极显著正相关,但与葡萄糖间存在显著负相关关系。毛鑫等[17]研究结果与本研究相反,甜高粱茎秆汁液中果糖含量与葡萄糖含量显著正相关,果糖与蔗糖则无显著相关性,葡萄糖与蔗糖间正相关,推测可能是由品种间的差异和环境因素引起的。有研究表明[2],在盐碱胁迫下,甜高粱茎秆汁液的组分将会受到影响,各种糖分之间的相关性系数将会降低。Guden[18]在甜高粱基因型对相关性状的影响中研究发现,果糖和葡萄糖浓度(r= 0.856**)极显著正相关。刘海波等[19]发现,总糖、蔗糖、果糖和葡萄糖含量会随盐胁迫程度加重呈先增加后降低的趋势,且盐胁迫会提高蔗糖的相对含量,但对葡萄糖和果糖的相对含量无影响。而本研究的甜高粱材料种植于天津静海,土壤的类型为盐化潮土,土壤含盐量较高,这可以解释为何本研究所得的结果会与其他学者的研究结果存在差异。

本研究通过对传统蒽酮比色法测糖的条件进行优化,寻找出了便捷有效的测定方法,解决了传统的蒽酮比色法无法测定果糖、蔗糖含量的问题,同时与传统的蒽酮比色法一样,具有较好的精密度和稳定性。而硫酸苯酚法[20-21]和3,5-二硝基水杨酸法[22-23]目前多用于多糖和可溶性总糖的测定,在果糖、蔗糖上的测定还尚无报道,相比之下,改良之后的蒽酮比色法更适用于甜高粱茎秆糖含量的测定。

猜你喜欢

总糖茎秆果糖
机械直播同步深施肥对冬油菜茎秆抗倒性和产量的影响
茶叶茎秆剪切力特性
乳果糖用于老年2型糖尿病高血压功能性便秘的临床治疗
带您认识果糖
果糖摄入量与高尿酸血症有何关系
果糖基转移酶及低聚果糖生产研究进展
黄酒中总糖与还原糖含量测定方法比较
传统客家黄酒的发酵条件优化
基于ADAMS的玉米割台的仿真测试
避雨栽培对川农泡椒1号品质的影响