APP下载

逐级递进射流冲击破碎废弃混凝土分离骨料可行性试验

2022-04-29汤积仁章文峰卢义玉张洋凯

关键词:吸水率射流扇形

汤积仁, 姚 奇, 章文峰, 卢义玉, 张洋凯, 汪 壘

(1.重庆大学煤矿灾害动力学与控制国家重点实验室,重庆 400044; 2.重庆大学复杂煤气层瓦斯抽采国家地方 联合工程实验室,重庆 400044; 3.重庆渝湘复线高速公路有限公司,重庆 408500)

随着中国城镇化进程发展,拆除、扩建等建筑活动产生了大量废弃混凝土,专家预计中国废弃混凝土年产量将超过6.38亿t[1]。目前废弃混凝土主要采取运往郊外露天堆放或填埋等方式处理,不仅占用土地资源,还产生有害成分造成地下水和土壤污染,严重危害生态环境和人民健康。同时,随着混凝土用量的逐年增长,对骨料的需求也在逐年增加,专家预计在未来20~30 a内,全球每年需要消耗400亿t骨料[2]。天然骨料属于不可再生资源,一直以来被随意开采,导致天然骨料资源枯竭,造成山体滑坡、河床改道等生态环境破坏问题。Guo等[3]研究表明,利用废弃混凝土制备再生骨料生产再生混凝土可节省约60%的石灰石资源,减少15%~20%的CO2排放量。因此将废弃混凝土制成再生骨料,不仅有助于减少对天然骨料的开采,降低大量开采天然骨料对生态环境的破坏,还可以从源头上解决废弃混凝土堆放、占地及由此带来的生态环境问题,是提高废弃混凝土利用层次与利用率的最有效途径[4-6]。目前,再生骨料主要通过机械破碎法得到[7],但由于机械破碎法无法有效分离固化为一体的骨料与砂浆,导致砂浆大量残留于骨料表面,研究[8-9]表明,再生骨料残余砂浆含量高达25%~60%。残余砂浆的存在导致再生骨料存在吸水率高、表观密度低等固有缺陷[10-11],使得大部分再生骨料只能作为道路基层材料或路面填充材料[12],这大大降低了再生骨料的应用价值,不利于提高废弃混凝土资源化率。针对机械破碎法制备再生骨料的不足,笔者基于废弃混凝土内骨料与砂浆基质不同力学特性,以及扇形射流速度分布均匀、作用面积大等特点,提出逐级递进射流冲击破碎废弃混凝土分离骨料方法,借助逐级递进射流破碎废弃混凝土分离骨料试验对该方法的可行性进行验证,通过测定再生骨料残余砂浆含量、吸水率及表观密度等性能验证该方法的可靠性。

1 逐级递进射流冲击破碎废弃混凝土分离骨料方法提出

1.1 废弃混凝土特点

从细观角度来看,废弃混凝土是由砂浆基质、骨料、孔隙等组成的复合材料,其组成如图1所示。砂浆基质是一种典型的多孔脆性材料,而骨料则是一种相对致密的均质材料,《普通混凝土用砂、石质量及检验方法标准》JGJ 52-2006中规定,骨料抗压强度是混凝土强度的1.2倍,因此在宏观力学性质方面,骨料的抗冲击破碎能力比砂浆基质的强。

图1 废弃混凝土组成示意图Fig.1 Schematic diagram of waste concrete composition

1.2 扇形射流特点

扇形水射流是高压水经扇形喷嘴(图2(a))喷出之后形成的形态类似于扇形的纯水射流,属于异形水射流,其外部形态如图2(b)所示,具有形态扁平、速度分布均匀、作用面积广等特点[13-14]。

往扇形水射流中添加一定数量的磨料后形成的扇形水射流,即为扇形磨料水射流。在扇形磨料水射流内,磨料速度的获取是通过与水进行动量交换之后得到的,因此磨料速度应该具有与扇形水射流相似的速度分布规律(图2(c))[15-16]。经过加速后,磨料颗粒具备较高的动能,由于磨料颗粒通常为不规则、具有棱角、有一定硬度的材料,扇形磨料水射流切割破碎能力主要依靠磨料颗粒的冲蚀作用,因此与扇形水射流相比扇形磨料水射流可在较低压力下对材料进行高效破碎。

1.3 逐级递进射流冲击破碎废弃混凝土分离骨料方法原理

逐级递进射流冲击破碎废弃混凝土分离骨料方法利用扇形磨料水射流冲蚀固化为一体的砂浆基质与骨料,由于骨料较砂浆基质抗冲击特性强,骨料具有更强的抵抗磨料冲蚀能力。基于砂浆基质与骨料不同的抗冲击特性,即可通过控制压力,在尽量避免骨料损伤的前提下,利用磨料颗粒的冲蚀作用冲击破碎砂浆基质,通过剥离大部分包裹骨料的砂浆基质,将砂浆基质对骨料的全方位立体黏接作用减弱为部分砂浆基质对骨料黏接作用;利用扇形水射流冲击被扇形磨料水射流冲蚀后的废弃混凝土,扇形水射流内高压水的冲击作用产生的准静态压力克服剩余部分砂浆基质对骨料的黏接作用,从而实现骨料与砂浆基质有效分离。

逐级递进射流冲击破碎废弃混凝土分离骨料方法分离骨料的过程如图3所示,该方法包含两个过程,第一个过程是砂浆基质在扇形磨料水射流内磨料颗粒的冲击作用下被破碎剥离,骨料与砂浆基质黏接面积减少,砂浆基质对骨料黏接作用减弱过程(图3(a)、(b)和(c));第二个过程是在扇形水射流冲击作用下高压水进入废弃混凝土的孔隙、裂隙内,产生准静态压力,克服剩余砂浆基质对骨料的黏接作用,骨料从砂浆基质分离过程(图3(d))。

图3 逐级递进射流破碎废弃混凝土分离骨料过程Fig.3 Process of aggregate separation by progressive jet crushing waste concrete

2 试 验

2.1 逐级递进射流破碎废弃混凝土分离骨料试验

本试验是在重庆大学煤矿灾害动力学与控制国家重点实验室完成的,该系统主要由扇形喷嘴(图4)、高压泵、高压磨料罐、电机、高压胶管等组成,试验系统如图5所示。

图4 扇形喷嘴结构参数Fig.4 Structural parameters of fan-shaped nozzle

图5 逐级递进射流破碎混凝土分离骨料试验系统Fig.5 Experimental system of progressive jet crushing concrete to separate aggregate

废弃混凝土试件来自重庆大学A区废弃房屋的混凝土支撑梁,强度约为40 MPa,尺寸约为800 mm×500 mm×150 mm。磨料选用粒径为0.198~0.350 mm陶粒,磨料密度为2.7×103kg/m3,磨料质量浓度约为10%,靶距为200 mm,扇形喷嘴移动速度为10 mm/s;扇形磨料射流工作压力为15 MPa,扇形水射流工作压力为25 MPa。

2.2 再生骨料性能测定试验

再生骨料(RA)性能好坏直接决定了再生骨料的使用价值,在评价再生骨料性能方面,残余砂浆含量被认为是影响再生骨料性能的最主要因素[17],而表观密度和吸水率是评价再生骨料性能的重要指标。因此,为了评价逐级递进射流冲击破碎废弃混凝土分离骨料方法的可靠性,开展再生骨料残余砂浆含量、表观密度和吸水率测定试验。

2.2.1 再生骨料残余砂浆含量

目前对于再生骨料砂浆含量的测量没有标准测试方法,根据参考文献[18]中使用的热处理方法,可测得再生骨料残余砂浆含量。

2.2.2 再生骨料表观密度及吸水率

再生骨料表观密度和吸水率可以按照GBT25177-2010《混凝土用再生粗骨料》中的方法测量得到。

3 结果与讨论

3.1 废弃混凝土破坏形貌分析

扇形磨料水射流冲蚀后的废弃混凝土表面形貌如图6所示。从图6中可以看出,废弃混凝土表面的砂浆基质被破碎分离,原本被砂浆基质完全包裹住的骨料已经暴露出来,而且骨料表面较为光滑,无砂浆基质残留;同时骨料完整性较好,未出现断裂情况。这说明逐级递进射流冲击破碎废弃混凝土分离骨料方法对骨料的损伤较小。

图6 扇形磨料水射流冲蚀后废弃混凝土形貌Fig.6 Morphology of waste concrete eroded by fan-shaped abrasive water jet

3.2 再生骨料外观形貌

利用逐级递进射流冲击破碎废弃混凝土分离骨料方法获得的再生骨料见图7。从图7中可以明显看出,利用逐级递进射流冲击破碎废弃混凝土分离骨料方法获得的再生骨料附着砂浆明显比机械破碎法制备的再生骨料附着砂浆少。

图7 再生骨料外观形貌对比Fig.7 Comparison of morphology of recycled aggregate

3.3 再生骨料残余砂浆含量、表观密度和吸水率

逐级递进射流冲击破碎废弃混凝土分离骨料方法制备的再生骨料残余砂浆含量测试结果如图8所示。从图8中可知,与参考文献[18]~[20]中的再生骨料残余砂浆含量相比,利用逐级递进射流冲击破碎废弃混凝土分离骨料方法得到的再生骨料残余砂浆质量分数显著降低,约为6.53%,分别降低了83.1%、86.2%及74.4%。

图8 再生骨料残余砂浆含量对比Fig.8 Comparison of RA residual mortar content

逐级递进射流冲击破碎废弃混凝土分离骨料方法得到的再生骨料表观密度如图9所示。从图9中可以看出,与参考文献[20]和[21]中再生骨料表观密度以及国家标准《混凝土用再生粗骨料》(GBT25177-2010)相比,利用逐级递进射流冲击破碎废弃混凝土分离骨料方法得到的再生骨料表观密度为2 723 kg/m3,分别增加了7.63%和3.78%,表观密度有所增加,而且明显高于国家I类标准。

逐级递进射流冲击破碎废弃混凝土分离骨料方法制备的再生骨料吸水率测试结果如图10所示。从图10中可以看出,与参考文献[18]、[20]和[21]中的再生骨料吸水率以及国家标准《混凝土用再生粗骨料》(GBT25177-2010)相比,利用逐级递进射流冲击破碎废弃混凝土分离骨料方法得到的再生骨料吸水率显著降低,约为1.13%,分别降低了84.41%、76.46%和74.72%,而且明显低于国家I类标准。

图9 再生骨料表观密度对比Fig.9 Comparison of RA apparent density

图10 再生骨料吸水率对比Fig.10 Comparison of RA water absorption

综上所述,与机械破碎制备再生骨料法相比,逐级递进射流冲击破碎废弃混凝土分离骨料方法能够高效分离骨料与砂浆,而且得到再生骨料残余砂浆含量明显减少,再生骨料品质明显提高。由于逐级递进射流冲击破碎废弃混凝土分离骨料方法制备的再生骨料品质较高,应用该法破碎废弃混凝土制备再生骨料将有助于再生混凝土技术的推广,提高废弃混凝土资源化率。

4 结 论

(1)与机械破碎法相比,逐级递进射流冲击破碎废弃混凝土分离骨料方法能够高效分离骨料与砂浆,显著降低再生骨料残余砂浆含量,提高再生骨料表观密度,降低再生骨料吸水率。

(3)试验结果验证了逐级递进射流冲击破碎废弃混凝土分离骨料方法的可行性和可靠性,利用该法能够获得高品质再生骨料,将有助于提高再生混凝土技术的推广,提高废弃混凝土资源化率。

猜你喜欢

吸水率射流扇形
超声速气流中激波/边界层干扰微射流控制研究进展
真空度不足对陶瓷砖吸水率的影响
深海逃逸舱射流注水均压过程仿真分析
低压天然气泄漏射流扩散特性研究
各种各样的扇形
扇形统计图 教学设计
热固复合聚苯板吸水率快速测试方法及其影响因素分析
浅谈外加剂和配合比对泡沫混凝土降低吸水率的影响
高、低吸水率抛釉砖变形控制的区别
彩色小鱼