APP下载

利津洼陷北部陡坡带水下扇搬运机制及发育规律

2022-04-29杨保良邱隆伟杨勇强王晔磊南佳盟徐宁宁张华锋

关键词:砂砾砂岩沉积

杨保良, 邱隆伟, 杨勇强, 王晔磊, 南佳盟, 徐宁宁, 徐 爽, 张华锋

(1.中国石油大学(华东)地球科学与技术学院, 山东青岛 266580; 2.中国石油大学(华东)深层油气重点实验室,山东青岛 266580; 3.中国石化石油物探技术研究院, 江苏南京 211103; 4.中国石化胜利油田分公司东辛采油厂,山东东营 257061; 5.中国石化胜利油田分公司勘探开发研究院,山东东营 257000)

1 地质概况

东营凹陷呈东北—西南走向,位于渤海湾盆地济阳坳陷东南部,具有北断南超、盆地基底北陡南缓的典型箕状凹陷特征[7-8]。利津地区位于东营凹陷北部陡坡带中段、滨南—利津断裂带的东端,北邻陈家庄凸起,西邻滨县凸起,勘探面积近300 km2(图1);控盆断层为一条沿陈家庄凸起南侧古断剥蚀面发育的陈南断裂带,断距一般为200~400 m[9-10]。利津洼陷在构造应力和基底断裂系统的控制下,经历了张扭断陷和压扭坳陷演化阶段,古近系沉积时期可划分为初始沉降期、加速沉降期、湖盆萎缩期[11]。地层自东向西、从南向北逐渐抬升,超覆在陈家庄凸起太古界基底上;古近系自下而上依次发育孔店组、沙河街组和东营组地层,沙河街组分为沙四段、沙三段、沙二段、沙一段;沙四段分为沙四上亚段和沙四下亚段两个亚段,沙四上亚段进一步分为纯上和纯下两个次亚段。目的层段沙四上亚段纯下次亚段时期,利津洼陷处于初始沉降期,受区域性拉张作用的影响,利津洼陷整体呈北陡南缓、北深南浅的趋势,主要以滨浅湖浅水为沉积背景,深湖区局限在利津沉积区及其东侧[12];该时期气候由半干旱向半湿润转变[13],沉积物源主要由陈家庄凸起方向的洪水及山区河流携带大量粗碎屑沉积进入湖盆, 在利津断裂带下降盘形成砂砾岩扇体群,成因类型主要为近岸水下扇[10,14-16]。

图1 东营凹陷利津地区位置(据文献[15],有修改) 及井位图Fig.1 Regional location(After citation[15], modified)and wells location of Lijin area in Dongying depression

2 地球物理特征

依据地震轴的叠置组合样式及倾斜角度等特征,识别出高角度退积反射相、低角度退积反射相、前积反射相等3种地震相类型。图2为利津地区顺物源方向地震剖面及地震正演模拟(SP为自然电位,AC为声波时差),剖面位置见图1。如图2(a),在过L95-L94井顺物源方向剖面中,底部旋回Ⅰ为低角度退积反射相-前积反射相组合(L94井2 928~3 150 m),上部旋回Ⅱ为低角度退积反射相(L95井,2 709~2 875 m);低角度退积反射相对应SP曲线为钟形组合。如图2(b),过L563-L565井顺物源方向剖面中发育高角度退积反射相-前积反射相组合(L565井,2 810~3 050 m;L563井,2 500~2 930 m),高角度退积反射相,地震轴倾角较大,垂向上呈退积式叠置,近源端L563井下部(2 755~2 930 m)SP曲线形态为箱型,发育厚层砾岩;远源端L565井上部(2 810~2 900 m)SP曲线形态为钟形,底部为砾岩夹薄层砂岩,上部为含砾砂岩、砂岩,夹薄层泥岩。前积反射相振幅强,连续性好,顶积层产状平缓,沉积于前期退积地震相之上;对应L563井上部(2 500~2 755 m)SP曲线形态为漏斗形,录井上岩性为砂砾岩。据此本文中设计了研究区砂砾岩地震模型(图2(c)),其中沙四上纯下亚段泥岩、砂砾岩平均速度分别是5 880和2 602 m/s,砂砾岩体速度随深度增加而增大。对沉积模型进行地震正演模拟(图2(d)),可以看出两条相邻地震轴之间至少对应一期的砂砾岩扇体,与研究区地震资料相符。依据地层叠置样式将利津地区沙四上纯下亚段分为3个旋回,旋回界面之上地震轴上超,界面之下地震轴下超;在图2(a)中,剖面上部旋回Ⅱ、旋回Ⅲ均为退积式组合的扇体反射特征,每个旋回顶部地震轴振幅强于下部地震轴反射。

图2 利津地区顺物源方向地震剖面及地震正演模拟Fig.2 Seismic profile and seismic forward modeling along source direction in Lijin area

3 沉积特征

3.1 岩相类型及特征

依据岩性、粒度、沉积结构、构造等特征,开展了研究区岩相类型的识别,共划分出11种主要岩相类型(图3、4;表 1),包括碎屑流、浊流、滑塌以及洪水成因的重力流等4大成因类型。

3.1.1 碎屑流

包括颗粒/基质支撑砾岩相、块状含砾砂岩相、块状砂岩相。颗粒/基质支撑砾岩相,块状构造,砾石为中砾—细砾,呈棱角状—次棱角状,分选差,无明显定向性,砂质基质含量高(图3(a)~(c))。块状含砾砂岩相、块状砂岩相(图3(d)),岩性为细砂岩—含砾砂岩,块状构造,分选好,为砂质碎屑流沉积[17]。

3.1.2 浊 流

Lowe[18]依据沉积物颗粒、流体密度、沉积物支撑机制将浊流分为砾质高密度浊流、砂质高密度浊流和低密度浊流。粒序层理砾岩—砂岩、含砾砂岩相—砂岩相、砂岩相均为高密度浊流。粒序层理砾岩相—砂岩发育正粒序层理和反粒序层理;反粒序层理砾岩相(图3(e))由底部细砾岩向上过渡为含中砾细砾岩,砾石呈叠瓦状排列,为牵引毯沉积。粒序层理砂岩相发育正粒序层理和反粒序层理。反粒序层理砂岩相(图3(f)),底部为细砂岩向上过渡为粗砂岩、含砾砂岩,发育牵引毯构造和内部侵蚀,为高密度浊流;正粒序层理砂岩(图3(g)、(h))由底部含砾砂岩或粗砂岩向上过渡为细砂岩、粉砂岩,为砂质高密度浊流重力作用下悬浮沉降。

3.1.3 滑 塌

包括变形层理砂岩相。扇体远源端与泥岩互层或者夹于厚层泥岩中砂岩可见变形构造发生揉皱变形(图3(i)~(k)),层内小断裂(图3(h)),侧向侵入泥岩(图3(l))等。

3.1.4 洪水成因重力流

(1)牵引负载搬运。叠瓦状砾岩相,砾石为中砾—细砾,呈次棱角—次圆状,块状构造,叠瓦状排列,砾质支撑、砂质支撑均发育,并侵蚀下伏砂岩(图4(a)、(b)),洪水能量增强时以推移负载的方式进行搬运,为牵引负载牛顿流体成因。含砾砂岩相中砾石在砂质基质中呈“漂浮”状,顺层叠瓦状排列,磨圆较高(图4(e)、(f)),表明碎屑可以在提供剪切力的持续流动的基础上自由旋转地流体流动,随着洪水能量减弱,运载力和剪切力减小,过路紊流搬运来的砾石逐个排列沉积[19];砾石分布于逆正粒序组合含砾砂岩—砂岩岩相的中部,顶部砂岩夹泥质纹层(图4(f)),反映洪水能量的先增强后减弱的过程。

(2)悬浮载荷搬运。正粒序层理砾岩—砂岩相(图4(c)、(d))由底部细砾岩向上过渡为含砾砂岩、砂岩,砾石呈次圆状,叠瓦状排列,按照重力分异作用而依次沉积形成正粒序,反映洪水能量减弱过程,为洪水成因悬浮载荷搬运,与高密度浊流沉积机制类似[18]。砂岩分选较好,发育较多流动成因沉积构造。平行层理(图4(g))在细砂岩、中砂岩中常见,分选好,夹泥质纹层;低角度交错层理(图4(h))发育于细砂岩底部,夹泥质纹层,纹层倾角不超过20°,向底部渐进收敛,呈上凸状,纹层组界面侵蚀早期纹层界面,为高悬浮载荷准稳态流沉降形成底部呈渐近收敛的交错层理[20];爬升沙纹层理(图4(i)、(j)),发育在细砂岩中,沉积于持续沉积物供给,且沉积速率大于搬运速率条件下[21]。

图3 利津地区沙四上纯下亚段碎屑流主控重力流典型沉积特征Fig.3 Typical characteristics of debrite dominated gravity flow of in Lijin area

表1 利津地区沙四上纯下亚段岩相类型描述及解释

图4 利津地区沙四上纯下亚段洪水成因重力流典型沉积特征Fig.4 Typical characteristics of flood-induced gravity flow of in Lijin area

3.1.5 岩相组合特征

在岩相类型识别基础上,划分出10种主要岩相组合类型(图5)。岩相组合 LA1-LA3主要由砾岩相组成,岩相组合LA4、LA5为砂岩相、砾岩相共同组成,岩相组合LA6-LA9主要由砂岩相组成,岩相组合LA10主要由泥岩相组成。

岩相组合LA1包括块状基质/颗粒支撑砾岩相,夹薄层砂岩相,砾石分选差,棱角状—次棱角状,定向性差,为砂砾质碎屑流。

岩相组合LA2包括叠瓦状砾岩相,粒序特征不明显,基质/颗粒支撑,砾石磨圆好,呈叠瓦状排列,夹薄层砂岩相,为洪水能量增强的阶段底载搬运。

岩相组合LA3由下块状砾岩向上过渡为粒序层理砾岩—砂岩,内部发育冲刷、侵蚀,反映洪水能量逐渐减弱的洪水成因重力流底载搬运组分与悬浮搬运组分组合,或者为砾质碎屑流与砂砾质高密度浊流组合。

岩相组合LA4为粒序层理砾岩—砂岩,包括反粒序层理砾岩相、正粒序砂岩相,底部为砾质高密度浊流牵引毯层,上部为悬浮沉积。

岩相组合LA5为粒序层理砾岩—砂岩,包括正粒序层理砾岩—砂岩相、正粒序含砾砂岩—砂岩相,为砾质高密度浊流悬浮沉积。

岩相组合LA6逆正粒序砂岩—含砾砂岩,内部不发育冲刷侵蚀,逆粒序与正粒序转换处沉积叠瓦状排列砾石,为洪水成因底载和悬浮共同作用沉积。

岩相组合LA7包括正粒序层理砂岩、逆正粒序组合层理砂岩、平行层理砂岩,为洪水成因悬浮载荷搬运组分。

岩相组合LA8包括爬升层理砂岩、低角度交错层理砂岩,为洪水成因重力流悬浮载荷搬运组分。

岩相组合LA9为正粒序层理砂岩夹薄层泥岩组合,为砂质高密度浊流成因或为洪水能量减弱阶段悬浮搬运组分。

岩相组合LA10为泥岩夹薄层砂岩,发育正粒序砂岩、变形构造砂岩,为沉积末期的低密度浊流沉积,伴随发生沉积物失稳。

图5 利津地区沙四上纯下亚段岩相组合类型Fig.5 Lithofacies associations of in Lijin area

3.2 沉积成因类型及沉积单元划分

3.2.1 高角度退积扇

高角度退积扇主要发育重力流沉积,可划分为主水道、分支水道、扇体侧缘等沉积单元。主水道为厚层岩相组合LA1,包括厚层块状颗粒/基质支撑砾岩组合(图6(a)、(b)),厚度大。分支水道为岩相组合LA4和LA9,由底部LA4向上过渡为LA9,即由底部砾质高密度浊流向上过渡为砂质高密度浊流。扇体侧缘(图6(c))发育岩相组合LA10,为泥岩夹薄层砂岩组合,变形构造砂岩、砂岩倾斜侧向侵入黑色泥岩现象常见,表明扇体侧缘发生滑塌沉积。

3.2.2 低角度退积扇

低角度退积扇发育大量牵引流作用沉积,可识别出主水道、分支水道等微相沉积单元。主水道(图6(d))为岩相组合LA2,发育叠瓦状砾岩,为洪水底载搬运。分支水道(图6(d)、(e))为岩相组合LA5和LA6,包括正粒序层理含砾砂岩—砂岩相组合、逆正粒序层理含砾砂岩—砂岩组合,砾石呈次圆状、叠瓦状排列,砂岩分选好,悬浮组分砂岩中可见碳屑,为洪水底载搬运组分和悬浮搬运组分组合。

3.2.2 进积扇

进积扇中重力流和牵引流均发育,可识别出主水道、分支水道和席状砂等沉积单元。主水道(图6(f)、(g))发育岩相组合LA1、LA2,为砾质碎屑流、洪水牵引负载组分组合。分支水道(图6(f)、(g))发育岩相组合LA3、LA6,包括粒序层理含砾砂岩—砂岩,为洪水牵引负载搬运、洪水悬浮载荷搬运组分组合。水道外围席状砂岩相组合LA7和LA8,发育逆正粒序层理砂岩及流动成因沉积构造砂岩组合(图6(h)、(i)),为洪水悬浮载荷搬运组分。

图6 利津地区沙四上纯下亚段沉积单元划分及岩相组合特征Fig.6 Sedimentary unit division and lithofacies associations characteristics of in Lijin area

3.3 砂砾岩分布特征

如图7(a),在顺物源方向上,砂砾岩水下扇垂上一个完整沉积序列具有二元结构,即底部发育退积扇,上部发育进积扇。如图7(b),在垂直物源方向地震剖面上,旋回Ⅰ早期古地貌起伏大,为砂砾岩填平补齐阶段,横向主要分布于L565-L567井区,而在L94井区物源供给弱;底部晚期古地貌相对平缓,进积扇体横向展布范围扩大,在L94区物源供给逐渐充足。旋回Ⅱ主要在靠近东侧凸起处沉积高角度退积扇,横向展布范围又缩小。

图7 利津地区沙四上纯下亚段沉积相连井剖面Fig.7 Well-logging section of sedimentary facies of in Lijin area

如图8所示,在地震资料解释基础上,结合钻井资料获取东营凹陷北带利津地区沙四上纯下亚段砂地比平面分布图及平面沉积相图。研究区沙四上纯下亚段旋回Ⅰ早期发育退积扇,晚期发育进积扇,以L563-L565井区沉积厚度大。旋回Ⅱ时期发育退积扇;旋回Ⅱ晚期L95-L94井区沉积退积扇,以L563-L565井区沉积进积扇,由早期至晚期沉积中心向东移动。

图8 利津地区沙四上纯下亚段砂地比平面分布图及平面沉积相图Fig.8 Plane distribution of sand/strata ratio and sedimentary facies distribution of in Lijin area

4 砂砾岩搬运过程及发育规律

4.1 砂砾岩搬运过程

结合前人异重流研究成果[19,21-22],综合对砂砾岩岩相类型、流体特征、典型沉积序列及其分布规律的认识,明确了利津地区沙四上纯下亚段砂砾岩搬运机制(图9)。研究区砂砾岩垂向序列典型特征是底部发育厚层块状中砾岩,砾石呈角砾状,混杂堆积,垂向上多期叠置,并冲刷下伏砂岩;指示了瞬时能量增强,表明其可能与地震活动相关;缺少反映洪水能量由弱逐渐增强的反粒序沉积序列,与前人描述的地震活动相关的突发性洪水触发的异重流相符[21]。牵引负载搬运的叠瓦状砾岩相,悬浮成因和底载成因共同作用形成的逆正粒序含砾砂岩—砂岩相,悬浮成因搬运的低角度交错层理砂岩相、爬升层理砂岩相等流水成因沉砂岩相;这些特征与前人描述正常洪水异重流相符[22]。扇体末端发育低密度浊流与湖相沉积,伴随少量滑塌沉积。

图9 利津地区沙四上纯下亚段砂砾岩搬运机制(据文献[21],有修改)Fig.9 Transport mechanism of sandy conglomerate of in Lijin area(After citation[21],modified)

4.2 控制因素

4.2.1 构造活动及其控制的古地貌

断陷湖盆中构造活动是控制砂砾岩地层发育的主要因素[1,3,23];断层活动控制古地貌演化,将直接影响沉积物堆积及分布规律[23-24]。利津洼陷沙四上纯下亚段时期陈南断层活动速率约为250 m/Ma[5]。利用高精度三维地震资料结合Geoframe软件,通过对粗碎屑岩扇体内部结构解剖基础上,在顺物源方向地震剖面上,结合东营时深关系公式及三角函数公式D=tan-1(Δy/Δh)(Δy为两个相邻转折点间y坐标轴方向距离,Δh为两个地形转折点间高程差),计算现今陡坡带不同位置斜坡坡度变化。

如图2(a),过L94-L95井地震剖面旋回Ⅰ底部退积扇对应边界断层倾角约为32.07°,上部进积扇对应断层倾角为15.87°;旋回Ⅱ和Ⅲ对应边界断层倾角平均为18.73°,仅发育退积扇(图3(a))。如图2(b)边界断层倾角在26~29°,进积扇上覆于前期退积扇之上,表明幕式构造活动期,陡峭古地貌,发育退积扇,随着沉积物不断堆积,地貌逐渐变缓,发育进积扇。对比研究区西侧过L94-L95井地震剖面和东侧过L565-L563井地震剖面计算的边界断层倾角,可以推断出研究区东侧陈南边界断层活动强度强于西侧,导致了两个剖面处砂砾岩垂向叠置样式存在差异。

4.2.2 洪水注入强度

沙四上纯下亚段时期半湿润气候保证了充足的入湖水体[13]。含砂率可以反映物源供给的强弱[25];通过测井、录井资料求得东段过L563-L565井剖面区平均砂地比约为93.34%,西段过L95-L94井剖面区平均砂地比约为64.18%,可知东段区域物源供给强度大于西段。旋回Ⅱ时期晚期,东段过L563-L565井剖面发育进积扇,西段过L95-L94井剖面仅发育退积扇;由于东段断层活动强度更大,即可容空间增加速率更快,扇体进积叠置样式表明东段可容空间增加速率小于沉积物供给速率,可以认为东段洪水携带沉积物注入速率大于西段。研究区砂砾岩地层发育除受断层控制外,还受洪水注入强度影响。

4.3 沉积模式

如图10所示,利津断陷陡坡带沙四上纯下亚段砂砾岩发育受控于断层幕式构造活动和洪水注入强度。构造旋回初期,构造活跃,伴随边界断裂幕式活动,基底快速沉降,湖平面快速上升,可容空间迅速增大,形成落差大的古地形;可容空间增加速率远大于沉积物供给速率,发育高角度退积扇。构造旋回中期—晚期构造衰退至稳定,随着早期沉积物填充陡峭古地形,地形变平缓,洪水携带的沉积物注入速率大于容空间增加速率,发育进积扇。下一个构造旋回开始,边界断层低强度活动,若季节性洪水携带的沉积物注入速率小于可容空间增加速率,主要发育低角度退积扇(同L95-L94地震剖面Ⅱ);若边界断裂强烈活动,可容空间增加速率远大于沉积物供给速率,则发育高角度退积扇(同L563-L565地震剖面旋回Ⅱ)。

图10 利津地区沙四上纯下亚段砂砾岩沉积模式Fig.10 Sedimentary model of in Lijin area

5 结 论

(1)利津地区砂砾岩存在高角度退积反射相、前积反射相、低角度退积反射相等地震相类型。高角度退积反射相对应SP曲线近源端呈箱型,远源端为钟形组合;前积反射相对应SP曲线为漏斗形组合;低角度退积反射相对应SP曲线为钟形组合。

(2)利津地区砂砾岩主要发育地震活动相关的突发性洪水触发的异重流,特征是底部发育厚层块状砾岩组合,指示了瞬时能量增强;缺少反映洪水能量由弱逐渐增强的反粒序沉积序列。其上发育正常洪水重力流沉积,其特征是发育牵引负载叠瓦状砾岩相,砾石磨圆较好,叠瓦状排列;逆正粒序组合砂岩相发育,分选较好;发育平行层理砂岩相、波状层理砂岩相、交错层理砂岩相等流动成因岩相类型。

(3)研究区砂砾岩发育受控于断层幕式构造活动和洪水注入强度;早期伴随边界断裂幕式活动,基底沉降速率快,砂砾岩垂向上呈退积式叠置;边界断层倾角约为26°~32°。晚期构造活动减弱至稳定,随着早期扇体沉积,地形逐渐变缓,陡坡面斜坡角度小于18°,洪水注入强度影响砂砾岩垂上叠置样式。

猜你喜欢

砂砾砂岩沉积
电沉积新型纳米复合MCrAl(Y)涂层的研究进展
醇基电解液中锕的电沉积条件
干燥和饱水状态下砂岩力学特性试验
高堆石坝砂砾石料的细观参数反演及三轴试验模拟
选择性电沉积方法用于回收锂离子电池中的钴和镍
火星上的漩涡层状砂岩
砂砾制备无机高分子金属絮凝剂方法研究
新型电动轮滑
砂岩型矿矿床地质特征及控矿因素