APP下载

环状RNA Lrp6调控过氧化氢诱导的H9c2心肌细胞凋亡*

2022-03-28丁林李萌阳王梦宇法鸿鸽房芯羽王建勋

中国病理生理杂志 2022年3期
关键词:心肌细胞引物心肌

丁林, 李萌阳, 王梦宇, 法鸿鸽, 房芯羽, 王建勋

环状RNA Lrp6调控过氧化氢诱导的H9c2心肌细胞凋亡*

丁林, 李萌阳, 王梦宇, 法鸿鸽, 房芯羽, 王建勋△

(青岛大学基础医学院,山东 青岛 266021)

探究环状RNA Lrp6(circLrp6)对过氧化氢(H2O2)诱导的H9c2心肌细胞凋亡的影响。通过Sanger测序和RNase R酶切验证circLrp6的环状结构;细胞荧光原位杂交分析circLrp6的亚细胞定位;通过RT-qPCR检测H2O2处理的H9c2细胞和缺血再灌注损伤的小鼠心脏组织中circLrp6的差异表达水平;采用TUNEL染色检测circLrp6是否影响H2O2诱导的心肌细胞凋亡水平;通过生物信息学的方法预测与circLrp6相互结合的下游靶点及其结合位点。circLrp6具有环状结构,定位于细胞核,它在H2O2处理后的H9c2心肌细胞和缺血再灌注的心脏组织中表达水平下调(<0.05),过表达circLrp6对H2O2处理的心肌细胞具有保护作用,表现为TUNEL染色阳性率下降(<0.05)。另外,circLrp6具有结合miRNA和蛋白质的潜能。circLrp6对H2O2诱导的心肌细胞凋亡具有抑制作用。

环状RNA Lrp6;心肌细胞;过氧化氢;细胞凋亡

近年来,以冠心病为代表的缺血性心脏病已成为全球主要的死亡原因之一,严重威胁着人类的生命健康。研究表明,由于机体内异常的脂质代谢而引起的冠状动脉粥样硬化是诱发冠心病的主要原因。血液中的脂质附着在动脉壁上会引起血管闭塞,血流受阻,严重时会引起心肌缺血,危及生命[1]。尽管临床上经皮冠状动脉介入联合药物恢复血流灌注的治疗方法已逐渐成熟,但急性冠状动脉综合征的死亡率仍然很高。这是由于心肌缺血后再灌注会产生大量的活性氧(reactive oxygen species, ROS),造成缺血再灌注损伤,最终导致心律失常、心功能障碍和梗死后心脏重构[2-3]。细胞凋亡是心肌缺血再灌注损伤过程中心肌细胞的死亡方式之一[4]。目前,调控该过程的分子机制尚未完全阐明。因此,深入研究调控心肌细胞凋亡的分子机制将对治疗缺血再灌注损伤和冠心病具有重要的意义。

环状RNA(circular RNAs, circRNAs)是一类由前体mRNA(pre-mRNA)通过反向剪接而形成的共价闭合的单链环状非编码RNA,它在真核生物中含量丰富、结构稳定、进化保守,通常以组织特异性的方式表达,在心血管疾病、神经退行性疾病和肿瘤等多种疾病中发挥重要的调控作用[5-6]。近年来,研究者利用新一代高通量测序技术在心脏中鉴定出大量的circRNA,其中一部分在心肌细胞中高表达的circRNA已被证明在极大程度上能决定心肌细胞的命运,调控心肌细胞的增殖、衰老和死亡等过程[7]。例如心肌梗死的成年小鼠在缺失由超级增强子调控的circNfix后,可促进心肌细胞增殖和血管生成,抑制心肌细胞凋亡,减轻预后不良[8]。在老年人和老年鼠中高表达的circFoxo3与细胞衰老有关,沉默内源性的能抑制细胞衰老,缓解阿霉素诱导的心肌病[9]。抑制小鼠心脏中高表达的circNCX1(又称circSLC8A1)可减弱缺血性心肌损伤、心肌肥厚和阿霉素诱导的心肌毒性[10-12]。circRNA_001131通过结合微小RNA-25-3p(microRNA-25-3p, miR-25-3p)抑制心肌成纤维细胞中纤维化相关基因的表达[13]。然而,还有很多高表达于心脏的circRNA,其功能和作用机制尚不清楚,值得我们进一步探索。

根据Werfel等[14]的测序结果,我们发现一个在人类、小鼠和大鼠心脏中都高度保守且高表达的circRNA,命名为circLrp6。circLrp6可在多种癌症发生中发挥致癌作用,促进细胞增殖和侵袭,抑制细胞凋亡[15-18],但其在心脏中是否发挥功能尚不清楚。因此,本研究旨在探讨circLrp6对过氧化氢(hydrogen peroxide, H2O2)诱导的心肌细胞凋亡的影响。

材料和方法

1 实验动物及分组

将8周龄的C57BL/6J雄性小鼠[许可证号为SCXK(鲁)2019-0003]随机分为两组:实验组小鼠结扎冠状动脉左前降支(left anterior descending, LAD)30 min,再灌注3 h;假手术组小鼠只穿线不结扎。所有动物实验均得到青岛大学医学部伦理委员会的批准。

2 细胞、主要试剂和仪器

大鼠心肌细胞系H9c2购于上海生命科学研究院。DMEM培养基(Gibco);胎牛血清(北京全式金);0.25%胰蛋白酶(武汉赛维尔);30% H2O2(国药);Trizol试剂(Invitrogen);反转录和实时荧光定量PCR试剂盒(南京诺唯赞);转染试剂Lipofectamine 3000(Invitrogen);RNase R(Invitrogen);TUNEL细胞凋亡检测试剂盒(上海翌圣);荧光原位杂交(fluorescencehybridization, FISH)试剂盒(上海吉玛);引物和荧光探针由深圳华大基因和北京擎科生物公司合成;circLrp6的siRNA和过表达质粒由上海吉玛制药技术有限公司合成。倒置荧光显微镜(Olympus);倒置双光子激光共聚焦扫描显微镜(Leica);实时荧光定量PCR仪(Bio-Rad);NanoDrop分光光度计(Thermo Fisher)。

3 主要方法

3.1细胞培养和处理H9c2细胞用含10%胎牛血清、1×105U/L青霉素和100 mg/L链霉素的DMEM培养基,并置于37 ℃、5% CO2的恒温培养箱中培养。当细胞密度达到80%~90%时,用0.25%胰蛋白酶消化再传代,使用100 μmol/L H2O2对细胞进行处理。

3.2细胞转染委托上海吉玛制药技术有限公司构建circLrp6过表达质粒并合成用于特异性沉默的小干扰RNA(small interfering RNA, siRNA)和阴性对照(negative control, NC)序列。siRNA序列为5'-AUCAAGUGGCGGCCCCUUUTT-3'和5'-AAAGGGGCCGCCACUUGAUTT-3';NC序列为5'-UUCUCCGAACGUGUCACGUTT-3'和5'-ACGUGACACGUUCGGAGAATT-3'。然后,按照Lipofectamine 3000说明书的操作步骤转染质粒或siRNA。

3.3RT-qPCR按照Trizol试剂说明书的步骤提取心肌细胞和心脏组织中的总RNA;利用NanoDrop分光光度计测定RNA的浓度与纯度;根据反转录试剂盒的说明书将RNA反转录为cDNA,再进行qPCR;使用2-ΔΔCt公式计算相对表达量,相应引物序列见表1。

表1 RT-qPCR引物序列

F: forward; R: reverse.

3.4circRNA成环验证(1)反向PCR扩增:分别提取H9c2细胞中的基因组DNA(gDNA)和总RNA,并将总RNA反转录为cDNA,设计并合成用于扩增circLrp6的收敛引物和发散引物,以gDNA和cDNA为模板,用两种不同的引物进行PCR扩增。收敛引物的正向序列为5'-TGTAGTTGGAGGCTTGGAGGAT-3',反向序列为5'-CACTTGATGGATCTAAGGCAATAGC-3';发散引物的正向序列为5'-GGTCATGGCTTGATATACTGGAGTG-3',反向序列为5'-CCAACTACAATCGTCGCATTCTCT-3'。对PCR扩增产物进行琼脂糖凝胶电泳检测,并将反向扩增产物进行Sanger测序。(2)RNase R耐受实验:每组5 μg总RNA,对照组不加RNase R,实验组加15 U RNase R,37 ℃金属浴孵育10~15 min。之后用Trizol试剂按照说明书从反应体系中纯化RNA,再进行RT-qPCR。

3.5FISH检测在24孔板中,将H9c2细胞接种在1 cm×1 cm的玻片上,当细胞密度为70%左右,吸弃培养基,用PBS清洗两遍,用4%的多聚甲醛固定。然后,按照FISH试剂盒的说明书进行实验,最后用含DAPI染液的封片剂固定。用倒置双光子激光共聚焦扫描显微镜对染好的玻片进行拍照。荧光探针序列为5'-FAM-AGCAACAAAGGGGCCGCCACTTGATGGATCT-3'。

3.6TUNEL细胞凋亡检测在24孔板中,将H9c2细胞接种在1 cm×1 cm的玻片上。然后,吸弃培养基,用PBS清洗两遍,用4%的多聚甲醛对已处理的细胞室温固定15 min。按照TUNEL细胞凋亡检测试剂盒的说明书进行实验,最后用含DAPI染液的封片剂封片固定。使用倒置荧光显微镜对染好的玻片进行观察拍照,计算TUNEL阳性细胞核占总细胞核的比例,得出细胞凋亡率。

4 统计学处理

所有数据都用GraphPad Prism 8进行统计学分析,以均数±标准差(mean±SD)表示。两组间比较采用检验,多组间比较采用单因素方差分析,组间的两两比较采用Tukey检验。以<0.05为差异有统计学意义。

结果

1 circLrp6是一个在心肌细胞中高表达的保守circRNA

首先,分析Werfel等[14]的测序结果,我们发现了一个来源于基因2号外显子、剪接后成熟序列长度为394 nt的circRNA,它在人类、大鼠和小鼠的心脏中都高表达且保守性高,将其命名为circLrp6(图1A)。使用circLrp6的收敛引物和发散引物,以H9c2的cDNA和gDNA为模板进行扩增,收敛引物可将cDNA和gDNA扩增出条带,而发散引物只能将cDNA扩增出条带(图1B)。Sanger测序结果显示,反向扩增产物的序列与公开的circLrp6序列相一致且5'和3'末端相连(图1C)。结合PCR结果可知,circLrp6序列末端相连来源于反向剪切,并非基因组重排。由于circRNA没有末端,所以circLrp6相比于线性的GAPDH和Lrp6更耐受核酸外切酶RNase R的消化,结构更加稳定(<0.05),见图1D。我们还检测了新生大鼠心肌细胞和成纤维细胞中circLrp6的表达丰度。与成纤维细胞相比,circLrp6在心肌细胞中表达丰度更高(<0.05),见图1E。FISH检测结果证明,circLrp6主要定位于细胞核中(图1F)。因此,circLrp6是一个在心肌细胞中高表达且进化保守的circRNA。

Figure 1.circLrp6 is a conserved cardiac circRNA. A: sequence analysis of phyloP showed that circLrp6 is conserved. B: circLrp6 was a back-splicing formed loop. It was amplified from the cDNA of H9c2 cells by divergent primers, while it could not be amplified from gDNA. C: circLrp6 was generated from the 2nd exon of the Lrp6 gene, and the back-splice junction of circLrp6 was identified by Sanger sequencing. D: total RNA extracted from H9c2 cells was incubated with or without RNase R. RT-qPCR showed the disappearance of GAPDH and linear Lrp6 by RNase R treatment, whereas circLrp6 was not affected. E: relative expression level of circLrp6 in cardiomyocytes and cardiac fibroblasts. F: subcellular localization of circLrp6 was identified by fluorescence in situ hybridization (FISH). Green: circLrp6 probes were labeled with FITC; blue: nuclei were stained with DAPI. Scale bar=20 µm. Mean±SD. n=3. *P<0.05 vs mock; #P<0.05 vs cardiomyocyte.

2 circLrp6在凋亡的心肌细胞中表达水平降低

心脏缺血再灌注后,过度释放的ROS会造成心肌细胞损伤和死亡。有研究报道,100 μmol/L H2O2处理H9c2心肌细胞可体外模拟缺血再灌注损伤[19]。为了探究circLrp6是否与心肌细胞凋亡相关,我们用100 μmol/L H2O2处理H9c2心肌细胞0、1、3、6和12 h后,检测circLrp6的表达量变化,结果显示H9c2细胞中circLrp6的表达量在H2O2处理后持续下降(<0.05),见图2A。我们进一步检测了circLrp6在小鼠心肌缺血再灌模型中的表达,与体外处理结果一致,较于对照组来说,小鼠心肌缺血再灌后circLrp6表达量减少(<0.05),见图2B。综上所述,circLrp6在凋亡的心肌细胞和缺血再灌注损伤的心肌中表达水平降低,提示circLrp6可能在心肌细胞凋亡过程中发挥重要的作用。

Figure 2.The expression level of circLrp6 decreased in apoptotic cardiomyocytes. A: the expression level of circLrp6 in H9c2 cells with 100 μmol/L H2O2 treatment for indicated times; B: RT-qPCR assay of cardiac circLrp6 in the ischemic zone adjacent to the infarction region of rat hearts; C and D: the expression levels of circLrp6 (C) and Lrp6 mRNA (D) in H9c2 cells transfected with circLrp6 siRNA (si-circLrp6) were detected; E and F: the expression levels of circLrp6 (E) and Lrp6 mRNA (F) in H9c2 cells transfected with circLrp6 overexpression vector (OE-circLrp6) were detected. Mean±SD. n=3. *P<0.05 vs 0 h group; #P<0.05 vs sham group; ▲P<0.05 vs negative control (NC) or empty vector (EV).

3 circLrp6对心肌细胞凋亡具有抑制作用

为了检测circLrp6在心肌细胞凋亡过程中发挥的功能,我们合成了针对的特异性siRNA和过表达质粒。首先,我们证明了siRNA和过表达载体分别能在H9c2细胞中显著敲减和过表达(<0.05),见图2C、D,并对线性Lrp6 mRNA的表达量没有影响(图2E、F)。在此基础上,我们用50 μmol/L H2O2诱导细胞凋亡,通过TUNEL染色检测心肌细胞的凋亡水平。结果显示,敲减可促进H2O2诱导的心肌细胞凋亡,表现为TUNEL染色阳性率升高(<0.05),见图3A。而过表达可抑制100 μmol/L H2O2诱导的心肌细胞凋亡,表现为TUNEL染色阳性率降低(<0.05),见图3B。综上所述,circLrp6可显著抑制H2O2诱导的心肌细胞凋亡。

Figure 3.circLrp6 inhibited hydrogen peroxide (H2O2)-induced cardiomyocyte apoptosis in vitro. A: H9c2 cells transfected with circLrp6 siRNA (si-circLrp6) were treated with 50 μmol/L H2O2 for 12 h; B: H9c2 cells transfected with circLrp6 overexpression vector (OE-circLrp6) were treated with 100 μmol/L H2O2 for 12 h. Scale bar=50 µm. Mean±SD. n=3. *P<0.05 vs negative control (NC) or empty vector (EV).

4 circLrp6具有结合miRNA和蛋白的潜能

通过生物信息学分析,我们发现miR-330-5p和miR-326具有与circLrp6相互作用的潜能。CircInteractome数据库[20]预测结果显示,miR-330-5p与circLrp6有1个潜在的结合位点,miR-326与circLrp6有2个潜在的结合位点(图4A)。另外,我们在CircInteractome、catRAPID[21]和RBPsuite[22]数据库中分别预测可以与circLrp6相互结合的蛋白质,发现EIF4A3和LIN28A在3个数据库中都被预测为能与circLrp6结合的蛋白(图4B),结合位点如表2所示。综上所述,circLrp6具有与miRNA和蛋白结合的潜力。

Figure 4.The potential miRNAs and proteins interacting with circLrp6. A: the putative binding sites between circLrp6 and miR-330-5p or miR-326; B: Venn diagram revealing the overlap of the potential targeted proteins interacting with circLrp6 from CircInteractome, catRAPID and RBPsuite datasets.

表2 预测的与circLrp6结合的蛋白质及其结合位点

讨论

临床上,治疗冠心病主要采用抗血栓药物、经皮冠状动脉介入、搭桥手术等方法对闭塞动脉进行血运重建。然而,这些治疗只能降低冠心病的严重程度,并不能恢复梗死心脏的收缩能力;同时,缺血后的再灌注导致了严重的心功能障碍[2]。所以,寻找抑制心肌细胞死亡或刺激心脏再生的新型治疗策略对临床上治疗冠心病具有深远的意义。

越来越多的研究发现circRNA参与心血管疾病的调控,具有作为血清诊断标志物和治疗药物的潜力。例如,一项由642名急性心肌梗死患者参与的研究发现circRNA MICRA是左心室功能障碍的一个强有力的预测因子,MICRA表达量低的患者发生左心室功能障碍的风险较高[23];另一项研究发现,hsa_circRNA_0124644是一种预测冠心病的潜在生物标志物[24]。线粒体分裂和凋亡相关的circRNA MFACR通过结合miR-652-3p抑制基因的翻译,进而抑制线粒体分裂和细胞凋亡,最终抑制心肌梗死[25]。心肌纤维化是心肌肥大的重要病理特征,过表达circYAP可促进TMP4和ACTG相互结合,抑制微丝聚集,进而抑制纤维化的发生[26]。也有研究报道circPan3和circITCH参与调控阿霉素诱导的心肌毒性[27-28]。

本研究发现的circLrp6是一种来源于基因2号外显子、长度为394 nt的circRNA,它在心肌细胞中高表达且定位于细胞核。通过构建H2O2诱导的心肌细胞凋亡和小鼠心肌缺血再灌模型,发现circLrp6在凋亡发生后呈现时间依赖性下降。过表达和敲减H9c2细胞中的会对H2O2诱导的心肌细胞凋亡产生影响,表现为敲减可促进H2O2诱导的心肌细胞凋亡,而过表达可抑制H2O2诱导的心肌细胞凋亡。

已有研究报道circLrp6在前列腺癌细胞和组织中高表达,通过竞争性结合miR-330-5p而抑制NRBP1的降解,最终促进前列腺癌细胞的增殖和侵袭,敲减可促进癌细胞凋亡,抑制癌症的发生[18]。另外,miR-330-5p在心血管疾病中也发挥重要的作用,沉默miR-330-5p可抑制阿霉素诱导的心肌毒性[28]。也有研究发现miR-326通过靶向MDK和抑制JAK/STAT和MAPK信号通路抑制心肌肥厚[29],还可以靶向Wnt1显著增强内皮祖细胞的血管生成能力[30]。除此之外,内源性真核起始因子4A-III对维持体内动脉粥样硬化斑块稳定性[31]和缺氧诱导的H9c2细胞损伤都有影响[32]。LIN28A对糖尿病心肌病、缺血再灌注损伤和心肌肥大等多种心脏疾病具有调控作用[33-35]。这些预测的下游靶点都已经被证明在心血管疾病中发挥调控作用,它们能否作为circLrp6的下游调控靶点在心肌缺血再灌注过程中影响心肌细胞凋亡将是我们下一步研究的方向。

我们首次研究了circLrp6在心血管疾病中的作用,证明circLrp6具有抑制心肌细胞凋亡的作用,通过生物信息手段预测到circLrp6可能通过与miRNA或蛋白质结合而影响心肌细胞凋亡。circLrp6定位于细胞核中,这表明circLrp6可能通过调控DNA复制、基因转录等发生于细胞核的生物学过程影响细胞死亡,具体机制我们将在后续工作中进行探索和验证,此外,circLrp6是否参与坏死、铁死亡或焦亡等其他细胞死亡的调控,是否在心肌肥厚、心肌毒性、心律失常等其他心血管疾病中也发挥作用都值得进一步研究。

综上所述,本研究表明circLrp6在H2O2诱导心肌细胞凋亡和小鼠心肌缺血再灌模型中表达明显下降,过表达circLrp6可抑制心肌细胞凋亡。

[1] Libby P, Theroux P. Pathophysiology of coronary artery disease[J]. Circulation, 2005, 111(25):3481-3488.

[2] Weintraub WS, Daniels SR, Burke LE, et al. Value of primordial and primary prevention for cardiovascular disease: a policy statement from the American Heart Association[J]. Circulation, 2011, 124(8):967-990.

[3] Libby P. Mechanisms of acute coronary syndromes and their implications for therapy[J]. N Engl J Med, 2013, 368(21):2004-2013.

[4] Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance[J]. Annu Rev Physiol, 2010, 72:19-44.

[5] Kristensen LS, Andersen MS, Stagsted L, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11):675-691.

[6] Patop IL, Wust S, Kadener S. Past, present, and future of circRNAs[J]. EMBO J, 2019, 38(16):e100836.

[7] Tan WL, Lim BT, Anene-Nzelu CG, et al. A landscape of circular RNA expression in the human heart[J]. Cardiovasc Res, 2017, 113(3):298-309.

[8] Huang S, Li X, Zheng H, et al. Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice[J]. Circulation, 2019, 139(25):2857-2876.

[9] Du WW, Yang W, Chen Y, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses[J]. Eur Heart J, 2017, 38(18):1402-1412.

[10] Li M, Ding W, Tariq MA, et al. A circular transcript ofgene mediates ischemic myocardial injury by targeting miR-133a-3p[J]. Theranostics, 2018, 8(21):5855-5869.

[11] Lim TB, Aliwarga E, Luu T, et al. Targeting the highly abundant circular RNA circSlc8a1 in cardiomyocytes attenuates pressure overload induced hypertrophy[J]. Cardiovasc Res, 2019, 115(14):1998-2007.

[12] 法鸿鸽, 李萌阳, 常文光, 等. circNCX1通过miR-103-3p调节阿霉素诱导的心肌细胞凋亡[J]. 中国病理生理杂志, 2021, 37(3):450-457.

Fa H, Li M, Chang W, et al. Circular RNA NCX1 regulates doxoruicin-induced H9c2 cell apoptosis via miR-103-3p[J]. Chin J Pathophysiol, 2021, 37(3):450-457.

[13] 潘蓉, 杨静, 张铭, 等. circRNA_001131通过结合miR-25-3p抑制心肌成纤维细胞中纤维化相关基因的表达[J]. 中国病理生理杂志, 2020, 36(1):1-8.

Pan R, Yang J, Zhang M, et al. circRNA_001131 inhibits expression of fibrosis-related genes in cardiac fibro⁃blasts via sponging miR-25-3p[J]. Chin J Pathophysiol, 2020, 36(1):1-8.

[14] Werfel S, Nothjunge S, Schwarzmayr T, et al. Characterization of circular RNAs in human, mouse and rat hearts[J]. J Mol Cell Cardiol, 2016, 98:103-107.

[15] Zheng S, Qian Z, Jiang F, et al. CircRNA LRP6 promotes the development of osteosarcoma via negatively regulating KLF2 and APC levels[J]. Am J Transl Res, 2019, 11(7):4126-4138.

[16] Xue J, Chen C, Luo F, et al. CircLRP6 regulation of ZEB1 via miR-455 is involved in the epithelial-mesenchymal transition during arsenite-induced malignant transformation of human keratinocytes[J]. Toxicol Sci, 2018, 162(2):450-461.

[17] Wang J, Zhu W, Tao G, et al. Circular RNA circ-LRP6 facilitates Myc-driven tumorigenesis in esophageal squamous cell cancer[J]. Bioengineered, 2020, 11(1):932-938.

[18] Qin L, Sun X, Zhou F, et al. CircLRP6 contributes to prostate cancer growth and metastasis by binding to miR-330-5p to up-regulate NRBP1[J]. World J Surg Oncol, 2021, 19(1):184.

[19] Wang JX, Zhang XJ, Li Q, et al. MicroRNA-103/107 regulate programmed necrosis and myocardial ischemia/reperfusion injury through targeting FADD[J]. Circ Res, 2015, 117(4):352-363.

[20] Dudekula DB, Panda AC, Grammatikakis I, et al. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs[J]. RNA Biol, 2016, 13(1):34-42.

[21] Agostini F, Zanzoni A, Klus P, et al. catRAPID omics: a web server for large-scale prediction of protein-RNA interactions[J]. Bioinformatics, 2013, 29(22):2928-2930.

[22] Pan X, Fang Y, Li X, et al. RBPsuite: RNA-protein binding sites prediction suite based on deep learning[J]. BMC Genomics, 2020, 21(1):884.

[23] Vausort M, Salgado-Somoza A, Zhang L, et al. Myocardial infarction-associated circular RNA predicting left ventricular dysfunction[J]. J Am Coll Cardiol, 2016, 68(11):1247-1248.

[24] Zhao Z, Li X, Gao C, et al. Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease[J]. Sci Rep, 2017, 7:39918.

[25] Wang K, Gan T Y, Li N, et al. Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression[J]. Cell Death Differ, 2017, 24(6):1111-1120.

[26] Wu N, Xu J, Du WW, et al. YAP circular RNA, circYap, attenuates cardiac fibrosis via binding with tropomyosin-4 and gamma-actin decreasing actin polymerization[J]. Mol Ther, 2021, 29(3):1138-1150.

[27] Ji X, Ding W, Xu T, et al. MicroRNA-31-5p attenuates doxorubicin-induced cardiotoxicity via quaking and circular RNA Pan3[J]. J Mol Cell Cardiol, 2020, 140:56-67.

[28] Han D, Wang Y, Wang Y, et al. The tumor-suppressive human circular RNA CircITCH sponges miR-330-5p to ameliorate doxorubicin-induced cardiotoxicity through upregulating SIRT6, survivin, and SERCA2a[J]. Circ Res, 2020, 127(4):e108-e125.

[29] Zhang J, Wei X, Zhang W, et al. MiR-326 targets MDK to regulate the progression of cardiac hypertrophy through blocking JAK/STAT and MAPK signaling pathways[J]. Eur J Pharmacol, 2020, 872:172941.

[30] Li X, Xue X, Sun Y, et al. MicroRNA-326-5p enhances therapeutic potential of endothelial progenitor cells for myocardial infarction[J]. Stem Cell Res Ther, 2019, 10(1):323.

[31] Yu F, Zhang Y, Wang Z, et al. Hsa_circ_0030042 regulates abnormal autophagy and protects atherosclerotic plaque stability by targeting eIF4A3[J]. Theranostics, 2021, 11(11):5404-5417.

[32] Li Y, Ren S, Xia J, et al. EIF4A3-Induced circ-BNIP3 aggravated hypoxia-induced injury of H9c2 cells by targeting miR-27a-3p/BNIP3[J]. Mol Ther Nucleic Acids, 2020, 19:533-545.

[33] Yuko AE, Carvalho RV, Kurian J, et al. LIN28a induced metabolic and redox regulation promotes cardiac cell survival in the heart after ischemic injury[J]. Redox Biol, 2021, 47:102162.

[34] You P, Cheng Z, He X, et al. Lin28a protects against diabetic cardiomyopathy through Mst1 inhibition[J]. J Cell Physiol, 2020, 235(5):4455-4465.

[35] Ma H, Yu S, Liu X, et al. Lin28a regulates pathological cardiac hypertrophic growth through pck2-mediated enhancement of anabolic synthesis[J]. Circulation, 2019, 139(14):1725-1740.

Circular RNA Lrp6 regulates H2O2-induced apoptosis of H9c2 cardiomyocytes

DING Lin, LI Meng-yang, WANG Meng-yu, FA Hong-ge, FANG Xin-yu, WANG Jian-xun△

(,,266021,)

To investigate the effect of circular RNA Lrp6 (circLrp6) on hydrogen peroxide (H2O2)-induced cardiomyocyte apoptosis.The circular structure of circLrp6 was verified by Sanger sequencing and RNase R digestion. The subcellular localization of circLrp6 was detected by fluorescencehybridization (FISH). RT-qPCR was used to detect whether H2O2and myocardial ischemia-reperfusion influenced the expression of circLrp6 in cardiomyocytes. TUNEL staining was used to detect the apoptosis of cardiomyocytes. The downstream targets and binding sites of circLrp6 were predicted by bioinformatic methods.Circularly structural circLrp6 was localized in the nucleus. circLrp6 was down-regulated after treated with H2O2in H9c2 cells (<0.05). The expression of circLrp6 was also decreased in cardiac tissues of the mice with myocardial ischemia-reperfusion. TUNEL staining showed that overexpression of circLrp6 attenuated the apoptosis of H9c2 cells induced by H2O2. In addition, circLrp6 has the potential to combine with miRNA and protein.circLrp6 inhibits H2O2-induced cardiomyocyte apoptosis.

Circular RNA Lrp6; Cardiomyocytes; Hydrogen peroxide; Apoptosis

R363.2; R542.2

A

10.3969/j.issn.1000-4718.2022.03.004

1000-4718(2022)03-0412-08

2021-12-04

2022-01-24

[基金项目]国家自然科学基金资助项目(No. 81900259)

Tel: 0532-83780070; E-mail: wangjx@qdu.edu.cn

(责任编辑:卢萍,罗森)

猜你喜欢

心肌细胞引物心肌
甜菜全基因组SSR引物的筛选与评价
超声诊断心肌淀粉样变性伴心力衰竭1例
玉米品种德美亚多重SSR-PCR系统的建立及应用
花菜类杂交种纯度鉴定SSR 核心引物筛选
科学思维视角下PCR 的深度学习
CCTA联合静息心肌灌注对PCI术后的评估价值
微小核糖核酸-125b-5p抑制Caspase 2蛋白酶活性缓解脂多糖诱导的心肌细胞凋亡和氧化应激的研究
高盐肥胖心肌重构防治有新策略
查出“心肌桥”怎么办
FGF21作为运动因子在有氧运动抑制心梗心肌细胞凋亡中的作用及其机制探讨