APP下载

葡萄酒生产废弃物与剩余污泥厌氧共消化研究进展

2022-02-06于莉芳马芷萱杨佳毅郑兰香

农业工程学报 2022年20期
关键词:产甲烷菌产甲烷乙酸

于莉芳,王 泽,马芷萱,范 烨,蒋 睿,杨佳毅,郑兰香

葡萄酒生产废弃物与剩余污泥厌氧共消化研究进展

于莉芳1,王 泽1,马芷萱1,范 烨1,蒋 睿1,杨佳毅1,郑兰香2,3

(1. 西安建筑科技大学环境与市政工程学院,西安 710055;2. 宁夏大学生态环境学院,银川 750021;3. 中国葡萄酒产业技术研究院,银川 750021)

厌氧消化技术被广泛应用于多种行业废弃物的处置。然而,葡萄酒生产废弃物浓度高、pH值低以及季节性变化的特性容易造成负荷冲击,导致反应器微生物流失、运行不稳定。同时,剩余污泥组分复杂、水解率低导致产气效率低。厌氧共消化具有均衡营养素、减缓抑制效应、丰富菌群多样性和提高甲烷产量等优势,也逐渐成为一种重要的葡萄酒生产废弃物与剩余污泥的处置方式。尽管已有二者在不同运行策略下共消化性能的研究,但仍未有报道阐明其共消化的影响因素以及基于葡萄酒生产废弃物特性建立直接种间电子传递的研究进展。因此,该文介绍了葡萄酒生产废水与剩余污泥、葡萄酒生产固体废弃物与剩余污泥的共消化进展,并分别归纳了2种体系中影响消化效能的主要因子;随后总结了共消化体系中基于乙醇建立的直接种间电子传递的研究进展;最后,围绕以上内容展望了共消化技术在葡萄酒生产废弃物与剩余污泥协同处理的前景。

废弃物;污泥;厌氧共消化;乙醇;直接种间电子传递

0 引 言

截止2021年全球葡萄种植面积达到7.34×106hm2,葡萄酒产量超过2.5×1010L[1]。据国家统计局数据,全国葡萄酒企业超800家,产量峰值达1.148×109L。葡萄酒生产过程需消耗大量的水和能源并伴随相当大的废物生成。通常,每生产1 L葡萄酒会伴随生成0.5~14 L的有机废水[2]和0.5~1.5 kg 固体废弃物[3]。随排放标准逐渐提高的同时酒厂对生产废物的处置成本也逐年增加,寻求一种高效、节能的生物处置方式尤为重要。

中国剩余污泥(Waste Activated Sludge,WAS)生成量逐年增加,预计2025年将达到9×107t[4]。剩余污泥中不仅富含有机物,还携带病原体、重金属、抗生素等有毒有害物质,需妥善处理避免二次污染[5-6]。厌氧消化技术能将污泥资源化、稳定化和无害化处理,但受限于污泥的低水解率和毒性物质等因素的影响导致消化效率低。通常,为改善污泥厌氧消化性能常采用机械破碎、超声、热碱和电化学等方式进行预处理[7-9],但预处理仍会生成抑制性副产物,如热水解产生苯酚和难溶的氮磷化合物[10-11]等影响后续的产酸和产甲烷过程。

葡萄酒生产废弃物与剩余污泥厌氧共消化(Anaerobic co-Digestion,AcoD)可通过稀释毒性、均衡营养素等方式营造适宜的环境来丰富菌群的数量和多样性,从而增强消化效率和系统稳定性[12-13]。此外,据报道称AcoD技术已成功应用于餐饮业[14]、畜牧业[15]和农业[16]等多种行业废水的处置。然而,AcoD仍无法突破产酸的热力学限制。近年来,随厌氧消化中存在直接种间电子传递(Direct Interspecies Electron Transfer,DIET)途径被证实,即产甲烷菌接受产酸菌释放的电子并将CO2还原为CH4。为进一步提高厌氧消化效率提供了新的解决思路。然而,DIET机制建立的条件较为苛刻,大多仅存在于以乙醇为底物或导电材料为介质的体系[17-18]。

葡萄酒生产废弃物季节性产生无疑会显著影响与剩余污泥共消化的运行,因此在总结葡萄酒生产废弃物与剩余污泥厌氧AcoD研究进展的同时,介绍了影响AcoD性能的关键参数,并分析了AcoD体系中潜在的、基于乙醇建立的DIET机制,最后展望共消化技术在剩余污泥与葡萄酒生产废弃物协同处理的研究方向。

1 葡萄酒生产废弃物特性及与污泥共消化机制

葡萄酒生产过程中产生的有机废水主要来源于加工设备的清洗和残液的排出。废水主要由醇、糖和有机酸组成的溶解性有机物、微量营养素、多酚类化合物、无机盐以及残留的肥料和农药等组成[19-20],呈现可生化性好、高化学需氧量(Chemical Oxygen Demand,COD)、高悬浮固体(Suspended Solids,SS)、高色度和低pH值等特征,且水质水量随季节性波动巨大。葡萄酒固体废弃物(酒糟(Wine Lee,WL))主要来自压榨、倒灌和过滤等工序,由葡萄渣(45%)、葡萄茎梗(7.5%)和葡萄籽(6%)等组成[21],基本特性与生产废水类似、但COD浓度(>20 g/L)、总多酚(Total Polyphenols,TPP)浓度(>1.0 g/L)和钾离子(K+)浓度(>2.5 g/L)较高[3,22](图1)。排放未处理的葡萄酒生产废物易造成土壤退化、水体污染等问题[34]。

AcoD经过水解、酸化、产氢产乙酸和产甲烷四个过程将多糖、蛋白质和乙醇等转化成CH4、CO2和有机肥等(图2)。水解阶段,在水解菌分泌的水解酶和蛋白酶的作用下将多糖和蛋白质等大分子降解为单糖和氨基酸等小分子物质。其中包括多酚化合物在内的难生物降解有机物会限制水解效率[22]。酸化阶段,将水解产物进一步转化为挥发性脂肪酸(Volatile Fatty Acids,VFAs)和醇类物质。因发酵细菌比生长和代谢速率快,该阶段容易导致体系中VFAs的积累[10]。产氢产甲烷阶段,在产氢产乙酸菌的参与下降解乙醇和转化VFAs为乙酸、H2和CO2,体系中存在的嗜氢产乙酸菌则进行同型产乙酸过程还原H2为乙酸。产甲烷过程主要是嗜氢产甲烷和嗜乙酸产甲烷两种途径,嗜氢产甲烷途径是利用H2和CO2产甲烷,嗜乙酸产甲烷途径是转化乙酸产甲烷。产甲烷菌对环境变化敏感,常成为厌氧消化的限速步骤[5]。

a. pH值a. pH valueb. 总多酚浓度b. Tatal Polyphenols(TPP) concentrationc. 乙醇浓度c. Ethanol concentration

d. COD浓度d. Chemical Oxygen Demand(COD) concentratione. 总氮浓度e. Tatal Nitrogen (TN) concentrationf. 总磷浓度f. Total Phosphorus(TP) concentration

图2 葡萄酒废弃物与剩余污泥厌氧共消化示意图[1,24,27]

2 葡萄酒生产废水与剩余污泥共消化

有研究表明,AcoD体系中底物混合比对消化性能影响显著,而葡萄酒生产废水与不同底物(牛粪、猪粪和微藻)AcoD体系的最佳混合比存在差异[15,35-36]。因此,针对葡萄酒生产废水与剩余污泥AcoD需确定最佳混合比来提供适宜营养物浓度和碳氮比(C/N)等,还需探究采摘季(9—11月)短期大量高浓度有机废水对AcoD体系的冲击影响。

2.1 混合比例

研究发现,增加AcoD体系中葡萄酒生产废水比例会促进COD、VS(Volatile Solid,挥发性固体)的去除,但随体积比超过50%后消化效率又逐渐下降[12,24,37]。说明混合比例会影响共消化效果,且葡萄酒生产废水与剩余污泥最佳混合比为1∶1,见表1。

表1 葡萄酒生产废水与剩余污泥共消化特性

注:WW:葡萄酒生产废水,WAS:剩余污泥,下同。

Note:WW:wine wastewater,WAS:waste activated sludge, the same below.

底物混合比例主要改变体系碳氮比,从而影响厌氧消化效率以及体系的稳定性。低C/N比虽能增强体系的缓冲能力并适应低pH的环境,但污泥中有机质水解后会释放游离氨,游离氨(FAN)透过细胞膜进入细胞后破坏胞内外质子和pH平衡[38]。葡萄酒生产废水高C/N比的水质与剩余污泥混合后可提高体系的C/N比、降低游离氨浓度。然而,C/N比过高时体系容易因中间产物挥发性脂肪酸转化不及时而积累,从而抑制产甲烷活性和降低体系稳定性[39]。

此外,改变体系C/N比将显著影响代谢途径和微生物群落结构。Zheng等[40]指出随C/N降低产甲烷途径逐渐从嗜乙酸产甲烷向嗜氢产甲烷转移,并富集出互营乙酸氧化菌,即在高氨氮-厌氧体系中“互营乙酸氧化-嗜氢产甲烷”途径会替代嗜乙酸产甲烷途径[41]。同时,随着C/N降低,产氢产乙酸菌、嗜丙酸产乙酸菌和嗜丁酸产乙酸菌分别增加了1.97、2.67和1.76倍,而嗜乙酸产甲烷菌减少了43.8%[12]。高温下C/N降低后,产氢产乙酸菌和嗜氢产甲烷菌分别增加了116.5和89.5%[37](表2)。中高温环境群落结构随C/N比降低有相同趋势的演替,即产酸菌增加和嗜氢产甲烷菌增加。

表2 共消化与单一消化的菌群演替

2.2 水力停留时间

水力停留时间(Hydraulic Residence Time,HRT)作为厌氧消化过程中的关键参数,直接决定了底物与微生物接触时间以及系统有机负荷,从而影响有机物的降解效率。总体上,适当延长HRT可进一步提高甲烷产率[25-26],而缩短HRT意味着提高有机负荷。高负荷下产酸菌将有机物降解产酸后使体系pH值迅速降低,容易形成对产甲烷菌的抑制从而减少碱度的产生、增加酸化的风险[42]。

另外,改变HRT的改变同样影响微生物群落结构。Esteban-Gutiérrez等[43]发现缩短HRT会抑制产乙酸菌活性,导致丙酸、丁酸积累,从而抑制嗜乙酸型产甲烷菌活性、增加嗜氢产甲烷菌丰度。Peces等[44]缩短HRT后发现,嗜氢产甲烷菌丰度增加、嗜氢产甲烷途径占比增加,使得嗜氢产甲烷菌与同型产乙酸菌竞争H2时更有优势,一定程度上缓解了体系乙酸积累速度,但仍存在甲烷产率降低、VFAs积累等现象。这是核心微生物群为应对系统负载冲击做出的群体响应[45],即增加相关功能菌数量(互营乙酸氧化菌和嗜氢产甲烷菌等)加快VFAs向甲烷的转化,从而维持群落结构和消化系统的稳定。

3 葡萄酒固体废弃物与剩余污泥共消化

酒糟是葡萄酒生产过程中主要的固体废弃物,由未发酵果汁残留物(茎、梗、籽)、发酵后残留的沉淀物(废酵母)和过滤剂(硅藻土)3种类型的物质组成,含有高浓度的K+和总多酚化合物(TPP)[2,22]。众所周知,剩余污泥的低水解率以及大量积累的重金属及抗生素限制消化效率。因此,需深入探究扩散限制和抑制因子对酒糟与剩余污泥AcoD体系的影响。

3.1 温度

众多研究表明,提高温度可通过影响功能菌活性、代谢活性、化学平衡、传质等促进厌氧水解过程[33,46-47]。Da Ros团队发现[13,28-30],升高温度后酒糟和剩余污泥AcoD体系容易酸化,且高温下提高有机负荷后系统也难以成功运行。与高温AcoD体系相比,中温环境下产气量和挥发性固体、COD去除率以及总碱度和氨氮浓度降低。这是因为升高温度可提高有机物水解率、减少固体废物量从而增加产气量。高温下对有机氮矿化程度高[48],向体系中释放的NH4+-N浓度较高。但是,在系统稳定性和多酚类化合物去除方面明显强于高温环境(表3)。促进水解过程的同时大量的VFAs产生并积累,严重抑制产甲烷菌活性。中温环境下微生物群多样性高[12,46],各类微生物群分布较为均衡(表2),对多酚化合物去除效果更好。

表3 葡萄酒固体废弃物与污泥共消化

注:WL:酒糟,CSTR:完全混合反应器,TS为总固体,下同。

Note:WL:wine lee,CSTR:continuous stirred tank reactor,TS is Total Solid, the same below.

3.2 葡萄酒固体废弃物和剩余污泥中主要的抑制因子

葡萄酒固体废弃物中高浓度的K+和TPP对厌氧微生物具有毒性。据报道称,一定范围的K+浓度可以缓解氨抑制,Lin等[50]发现,添加0.58~0.6 g/L K+能够缓解高浓度氨对厌氧产酸的影响。但是,酒糟中K+浓度常超过2.5 g/L,容易使产甲烷菌中毒凋亡,而且VFAs积累和甲烷产量降低的现象在中温环境中更突出[2,22,51]。多酚类化合物通常分为类黄酮类物质和非类黄酮类物质两大类,前者包括花色苷及衍生物、黄酮醇类和黄烷醇类,后者中含有酚酸类、芪类[52],种类繁多、组分复杂。具有植物毒性的多酚类化合物存在于葡萄皮和籽中,并能抑制产甲烷菌等微生物的酶活性,是共消化的抑制性底物[53-54]。Mkruqulwa等[55]将木薯废水与酒糟AcoD发现,多酚类化合物抑制了产甲烷菌活性。

剩余污泥积累的重金属及抗生素。剩余污泥中重金属的积累主要因胞外聚合物表面的羟基、羧基、磷酰基等基团吸附或螯合金属离子所致[56]。高浓度重金属(Ni、Co、和Zn等)能够与蛋白质氨基酸中的巯氢基和辅酶M中巯基结合导致功能蛋白和关键酶失活[57]。抗生素广泛应用疾病的治疗,并随排污系统最终积累在剩余污泥中[58]。研究表明,抗生素通过抑制细胞组分合成来破坏细菌生长,且产甲烷菌受其影响大,从而导致VFAs积累、甲烷产量降低[59]。

4 基于乙醇建立的DIET

众多研究表明,厌氧消化涉及的胞外电子传递体系包括:MIET(Mediated Interspecies Electron Transfer,间接种间电子传递)和DIET 2种机制[17-18,60]。其中,MIET依靠H2和甲酸盐两种方式传递电子(图3a),DIET依靠细菌的导电鞭毛(e-pili)和细胞色素(OmcS)传递电子。与MIET相比,产酸菌通过DIET无需载体即将电子传递给产甲烷菌,传递效率更高。同时,对缓解无机离子、有机物的抑制和强化难生物降解物质的降解作用效果显著[61]。然而,DIET机制难以在常规厌氧消化体系中建立,但有研究表明可添加乙醇或与碳基材料共同来建立DIET机制[18,62]。

4.1 乙醇与剩余污泥共消化建立DIET

针对复杂的脂肪酸或难生物降解有机物存在的降解难、处理时间长等问题。向消化体系添加乙醇进行AcoD是一种有效的方式,这是因为乙醇不仅可作为消化底物,还可作为“刺激因子”促进电活性微生物(产电细菌和嗜电古菌)的富集,从而建立DIET机制强化对物质的去除(图3b)。Zhao等[63]先将WAS生物发酵(pH值4.0~4.5)增加乙醇浓度,再将发酵液与WAS进行AcoD,产甲烷速率和COD去除率分别增加了25.1%和21.4%,电子传递活性提高了6.7倍,并富集出和等菌属。Li等[64]将餐厨垃圾预发酵产乙醇后再与WAS进行AcoD,甲烷产率增加68%,电子传递活性提高2.2倍(表4)。

图3 种间电子传递机制图

表4 乙醇与不同底物AcoD性能

注:UASB:上流式厌氧污泥床,AFBR:厌氧流化床。

Note:UASB:upflow anaerobic sludge blanket,AFBR:anaerobic fluidized bed reactor.

代谢乙醇产生的能量主要用于微生物生长,细胞物质合成和参与生化反应三个方面。作为典型的DIET产电菌在大多数传统的厌氧反应器菌群中难以被检出,但是在乙醇与WAS的AcoD体系中得到富集[61,63]。乙醇可刺激等产电菌分泌能与嗜电古菌形成DIET所需的导电菌丝等细胞物质[68]。代谢乙醇产生的能量(-31.6 kJ/mol)可用于抵消短链脂肪酸(丙酸/丁酸等)转化为乙酸所需能量(+76.2/+48.4 kJ/mol),从而促进VFAs降解和增加甲烷产量[65,69]。

4.2 乙醇与碳基材料协同促进DIET

碳基材料(活性炭、生物炭、石墨烯和碳布等)因其优异的物化性质(存在碱性官能团、具备氧化还原特性、比表面积大等)在维持消化系统稳定及微生物活性和提高种间电子转移效率等方面发挥重要作用[70-71]。尤其是碳基材料的导电性,可代替/弥补e-pili和OmcS蛋白等细胞物质在产电细菌和嗜电古菌之间建立DIET并富集相关功能菌[70-73](图 3c,3d)。

Liu等[74]以乙醇为唯一碳源纯培养.和.,添加颗粒活性炭发现乙醇代谢速率加快、甲烷产量增加14倍。同时,还发现生物炭[75]、碳布[76]等碳基材料在.和.纯培养体系中起到加速乙醇代谢产甲烷的作用。乙醇与碳基材料积极的协同效果在多种废水处理系统中被体现,Zhao等[77]在处理生物乙醇型发酵产物发现,添加250 g/L 颗粒活性炭后COD去除率和甲烷产量分别增加6.4和8.7%;Zhao等[78]向含乙醇的甘蔗渣中加入100 g/L颗粒活性炭发现,甲烷产量和产甲烷速率分别增加3.1和3.3倍。碳基材料添加后体系常表现出产甲烷速率加快、甲烷产量增加,这得益于碳基材料通过自身的导电性建立DIET从而促进底物降解和提高代谢速率,与乙醇共同缩短DIET功能菌的富集时间和加快底物利用速率。

表5 乙醇与多种碳材料共同促进DIET

5 展 望

5.1 明晰代谢机制

欧洲及南非等传统产酒国对葡萄酒废弃物厌氧处理研究起步早,对现有葡萄酒生产废物与剩余污泥的AcoD研究已初步实现工程化。然而,AcoD效果仍取决于微生物群之间的代谢和协同能力。利用宏基因组和代谢组学等多组学技术深入解析AcoD体系中“菌群-底物”随C/N比和温度等运行工况改变的代谢偶联,为定向培养、调控微生物和强化消化性能提供微观指导。

5.2 DIET机制的建立和确定

葡萄酒生产废弃物中含有乙醇且其浓度随生产工艺和季节变化明显(图1c)。因此,AcoD体系中是否能够富集以和等典型DIET功能菌,并以此建立DIET机制仍有待确定。

与此同时,越来越多的学者认为具备参与DIET的电活性微生物种类远比已被证实的更广泛,而且嗜氢产甲烷菌也参与DIET。例如,Rotaru等[81]于2014年进行的与.共培养实验证实不具备DIET的能力。但是,最近Zheng等人发现属中一株被命名为“YSL”的菌株可通过DIET与.共培养[82]。Zhao等[83]认为与在乙醇与剩余污泥AcoD体系建立了DIET。然而,嗜氢产甲烷菌主导/参与的体系中难以运用常规手段验证DIET的存在,需使用宏基因组等高级别方法检测其代谢途径来确定是否存在DIET。

5.3 建立共消化模型

厌氧消化模型(Anaerobic Digestion Model No 1,ADM1)通过设定模型组分、建立动力学方程来描述反应过程中参与的生化和物化进程,广泛用于厌氧消化工艺的设计、模拟和预测[84]。Garcia-Gen等[85]在上流式厌氧污泥床中混合葡萄酒废水、明胶和猪粪,并基于ADM1模型建立了一套AcoD模型。Ripoll等[86]建立葡萄酒生产废水与剩余污泥中温半连续混合消化模型,并由此探究有机负荷对有机物去除、甲烷产量及代谢动力学的影响。但是,采摘季与非采摘季葡萄酒废弃物的水质、水量差异大,且中、高温环境中微生物活性也明显不同,需分别针对性的建立AcoD模型。为进一步阐明不同运行参数对AcoD性能影响机制和提高AcoD效能提供有效的依据。

6 结 论

葡萄酒生产废弃物与剩余污泥AcoD是一种高效的废物利用和资源回收策略。国外众多中试及以上规模的试验研究证实,通过调控AcoD的运行工况显著影响系统的效率和稳定性。却未深入解释运行工况改变后底物降解与微生物代谢的内在联系,也无法克服热力学限制进一步提高消化性能。有待进一步研究的问题是:表征和量化AcoD体系中水解速率、产甲烷活性及相关酶活性或浓度随运行工况的变化;建立并改进AcoD模型从而更准确地预测AcoD体系中存在的多种相互作用;探索AcoD体系建立DIET机制的可行性并确定最佳条件和各代谢途径贡献率。

[1] OIV, 2021. OIV Statistical report on world vitiviniculture[EB/OL]. (2021-07-16)[2022-08-12] https: //www.oiv.int.

[2] Bolzonella D, Papa M, Da Ros C, et al. Winery wastewater treatment: A critical overview of advanced biological processes[J]. Critical Reviews in Biotechnology, 2019, 39(4): 489-507.

[3] Ioannou L A, Puma G L, Fatta-Kassinos D, et al. Treatment of winery wastewater by physicochemical, biological and advanced processes: A review[J]. Journal of hazardous materials, 2015, 286: 343-368.

[4] 戴晓虎. 我国污泥处理处置现状及发展趋势[J]. 科学,2020,72(6):30-34.

Dai Xiaohu. Applications and perspectives of sludge treatment and disposal in China[J]. Science, 2020, 72(6): 30-34. (in Chinese with English abstract)

[5] Wu B, Dai X, Chai X. Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations[J]. Water Research, 2020, 180: 115912.

[6] Ziemba C, Peccia J. Net energy production associated with pathogen inactivation during mesophilic and thermophilic anaerobic digestion of sewage sludge[J]. Water Research, 2011, 45(16): 4758-4768.

[7] Nabi M, Liang J S, Zhang P Y, et al. Anaerobic digestion of sewage sludge pretreated by high pressure homogenization using expanded granular sludge blanket reactor: Feasibility, operation optimization and microbial community[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104720.

[8] Liu X, Wang Q, Tang Y, et al. Hydrothermal pretreatment of sewage sludge for enhanced anaerobic digestion: Resource transformation and energy balance[J]. Chemical Engineering Journal, 2021, 410: 127430.

[9] Tian X B, Wang C, Trzcinski A P, et al. Insights on the solubilization products after combined alkaline and ultrasonic pre-treatment of sewage sludge[J]. Journal of Environmental Sciences, 2015, 29(3): 97-105.

[10] Li C X, Zhang G Y, Zhang Z K, et al. Alkaline thermal pretreatment at mild temperatures for biogas production from anaerobic digestion of antibiotic mycelial residue[J]. Bioresource Technology, 2016, 208: 49-57.

[11] Zhang D, Feng Y M, Huang H B, et al. Recalcitrant dissolved organic nitrogen formation in thermal hydrolysis pretreatment of municipal sludge[J]. Environment International, 2020,138:105629.

[12] Ripoll V, Garcia-Agabo C, Perez M, et al. Improvement of biomethane potential of sewage sludge anaerobic co-digestion by addition of “sherry-wine” distillery wastewater[J]. Journal of Cleaner Production, 2020, 251: 119667.

[13] Da Ros C, Cavinato C, Pavan P, et al. Mesophilic and thermophilic anaerobic co-digestion of winery wastewater sludge and wine lees: An integrated approach for sustainable wine production[J]. Journal of Environmental Management, 2017, 203: 745-752.

[14] 袁海荣,王奎升,朱保宁,等. 果蔬垃圾与餐厨垃圾混合厌氧消化产气性能[J]. 农业工程学报,2011,27(增刊1):91-95.

Yuan Hairong, Wang Kuisheng, Zhu Baoning, et al. Anaerobic digestion performances of fruit and vegetable waste and kitchen waste[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(Supp.1): 91-95. (in Chinese with English abstract)

[15] Akassou M, Kaanane A, Crolla A, et al. Statistical modelling of the impact of some polyphenols on the efficiency of anaerobic digestion and the co-digestion of the wine distillery wastewater with dairy cattle manure and cheese whey[J]. Water Science and Technology, 2010, 62(3): 475-483.

[16] 宁静,朱葛夫,吕楠,等. 碳氮比对猪粪与玉米秸秆混合厌氧消化产沼气性能的影响[J]. 农业工程学报,2018,34(增刊1):93-98.

Ning Jing, Zhu Gefu, Lv Nan, et al. Effects of C/N ratio on biogas production by anaerobic co-digestion of pig manure and corn straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018,34(Supp.1): 93-98. (in Chinese with English abstract)

[17] Feng D, Guo X B, Lin R C, et al. How can ethanol enhance direct interspecies electron transfer in anaerobic digestion?[J]. Biotechnology Advances, 2020, 52, 107812.

[18] Yin Q D, Wu G X. Advances in direct interspecies electron transfer and conductive materials: Electron flux, organic degradation and microbial interaction[J]. Biotechnology Advances, 2019, 37(8): 107443.

[19] Beck C, Prades G, Sadowski A G, et al. Activated sludge wastewater treatment plants optimisation to face pollution overloads during grape harvest periods[J]. Water Science and Technology, 2005, 51(1): 81-88.

[20] Bustamante M, Paredes C, Moral R, et al. Uses of winery and distillery effluents in agriculture: Characterisation of nutrient and hazardous components[J]. Water Science and Technology, 2005, 51(1): 145-151.

[21] Broome J C, Warner K D. Agro-environmental partnerships facilitate sustainable wine-grape production and assessment[J]. California Agriculture, 2008, 62, 133–141.

[22] Bustamante M A, Moral R, Paredes C, et al. Agrochemical characterisation of the solid by-products and residues from the winery and distillery industry[J]. Waste Management, 2008, 28(2): 372-380.

[23] Montalvo S, Martinez J, Castillo A, et al. Sustainable energy for a winery through biogas production and its utilization: A Chilean case study[J]. Sustainable Energy Technologies and Assessments, 2020, 37: 100640.

[24] Rodriguez L, Villasenor J, Fernandez F J, et al. Anaerobic co-digestion of winery wastewater[J]. Water Science and Technology, 2007, 56(2): 49-54.

[25] Zahedi S, Solera R, Perez M, et al. An eco-friendly way to valorize winery wastewater and sewage sludge: Anaerobic co-digestion[J]. Biomass and Bioenergy, 2020, 142, 105779.

[26] Ripoll V, Garcia-Agabo C, Solera R, et al. Modelling of the anaerobic semi-continuous co-digestion of sewage sludge and wine distillery wastewater[J]. Water Research and Technology, 2020, 6: 1880-1889.

[27] Vlyssides A G, Barampouti E M, Mai S, et al. Wastewater characteristics from Greek wineries and distilleries[J]. Water Science and Technology, 2005, 51(1): 53-60.

[28] Da Ros C, Cavinato C, Pavan P, et al. Winery waste recycling through anaerobic co-digestion with waste activated sludge[J]. Waste Management, 2014, 34(11): 2028-2035.

[29] Da Ros C, Cavinato C, Cecchi F, et al. Anaerobic co-digestion of winery waste and waste activated sludge: assessment of process feasibility[J]. Water Science and Technology, 2014, 69(2): 269-277.

[30] Da Ros C, Micolucci F, Gottardo M, et al. Development and application of an automatic feeding control to manage anaerobic co-digestion of winery wastes[J]. Journal of Cleaner Production, 2017, 161: 75-83.

[31] Zacharof M P. Grape winery waste as feedstock for bioconversions: applying the biorefinery concept[J]. Waste and Biomass Valorization, 2017, 8(4): 1011-1025.

[32] Welz P J, Holtman G, Haldenwang R, et al. Characterisation of winery wastewater from continuous flow settling basins and waste stabilisation ponds over the course of 1 year: Implications for biological wastewater treatment and land application[J]. Water Science and Technology, 2016, 74(9): 2036-2050.

[33] Buitrón G, Francisco J, Ojeda F, et al. Biogas production from a highly organic loaded winery effluent through a two-stage process[J]. BioEnergy Research, 2019, 12(3): 714-721.

[34] Liang X Y, Rengasamy P C, Smernik R, et al. Does the high potassium content in recycled winery wastewater used for irrigation pose risks to soil structural stability?[J]. Agricultural Water Management, 2021, 243: 106422.

[35] Riano B, Molinuevo B, Garcia-Gonzalez M C, et al. Potential for methane production from anaerobic co-digestion of swine manure with winery wastewater[J]. Bioresource Technology, 2011, 102: 4131-4136.

[36] Mader A E, Holtman G A, Welz P J, et al. Treatment wetlands and phyto-technologies for remediation of winery effluent: Challenges and opportunities[J]. Science of the Total Environment, 2022, 807, 150544.

[37] Agabo-Garcia C, Perez M, Solera R, et al. Adaptation of thermophilic sludge-inoculum to co-digestion with Sherry-wine distillery waste-water[J]. Biomass and Bioenergy, 2020, 139: 105628.

[38] Capson-Tojo G, Moscoviz R, Astals S, et al. Unraveling the literature chaos around free ammonia inhibition in anaerobic digestion[J]. Renewable and Sustainable Energy Reviews, 2020, 117: 109487.

[39] Cai Y F, Zheng Z H, Wei L X E, et al. The characteristics of multi-substrates (low and high C/N) anaerobic digestion: Focus on energy recovery and the succession of methanogenic pathway[J]. Bioresource Technology, 2022, 343: 125976.

[40] Zheng Z H, Cai Y F, Zhang Y, et al. The effects of C/N (10–25) on the relationship of substrates, metabolites, and microorganisms in “inhibited steady-state” of anaerobic digestion[J]. Water Research, 2021, 188: 116466.

[41] Pan X F, Zhao L X, Li C X, et al. Deep insights into the network of acetate metabolism in anaerobic digestion: focusing on syntrophic acetate oxidation and homoacetogenesis[J]. Water research, 2021, 190: 116774.

[42] Rui X, Yang Z H, Chen T, et al. Anaerobic co-digestion of municipal wastewater sludge with food waste with different fat, oil, and grease contents: Study of reactor performance and extracellular polymeric substances[J]. Rsc Advances, 2015, 5(125): 103547-103556.

[43] Esteban-Gutirrez M, Garcia-Aguirre J, Irizar I, et al. From sewage sludge and agri-food waste to VFA: Individual acid production potential and up-scaling[J]. Waste Management, 2018, 77: 203-212.

[44] Peces M, Astals S, Jensen P D, et al. Transition of microbial communities and degradation pathways in anaerobic digestion at decreasing retention time[J]. New Biotechnology, 2021, 60: 52-61.

[45] Xu R, Yang Z H, Zheng Y, et al. Organic loading rate and hydraulic retention time shape distinct ecological networks of anaerobic digestion related microbiome[J]. Bioresource Technology, 2018, 262: 184-193.

[46] Yu J, Zhao Y, Zhang H, et al. Hydrolysis and acidification of agricultural waste in a non-airtight system: Effect of solid content, temperature, and mixing mode[J]. Waste Management, 2017, 59: 487-497.

[47] Zeshan, Karthikeyan O P, Visvanathan C, et al. Effect of C/N ratio and ammonia-N accumulation in a pilot-scale thermophilic dry anaerobic digester[J]. Bioresource Technology, 2012, 113: 294-302.

[48] Capson-Tojo G, Moscoviz R, Astals S, et al. Unraveling the literature chaos around free ammonia inhibition in anaerobic digestion[J]. Renewable and Sustainable Energy Reviews, 2020, 117: 109487.

[49] Aylin-Alagoz B, Yenigiin O, Erdincler A, et al. Ultrasound assisted biogas production from co-digestion of wastewater sludges and agricultural wastes: Comparison with microwave pre-treatment[J]. Ultrasonics Sonochemistry, 2018, 40: 193-200

[50] Lin L, Wan C L, Liu X, et al. Anaerobic digestion of swine manure under natural zeolite addition: VFA evolution, cation variation, and related microbial diversity[J]. Applied Microbiology and Biotechnology, 2013, 97(24): 10575-10583

[51] Wu D, Li L, Zhao X F, et al. Anaerobic digestion: A review on process monitoring[J]. Renewable and Sustainable Energy Reviews, 2019, 103: 1-12.

[52] 张欣珂,赵旭,成池芳,等. 葡萄酒中的酚类物质Ⅰ:种类,结构及其检测方法研究进展[J]. 食品科学,2019,40(15):255-268.

Zhang Xinke, Zhao Xu, Cheng Chifang, et al. Phenolics in wines: A review of categories, structures and detection methods[J]. Food Science, 2019, 40(15): 255-268.

[53] Battista F, Fino D, Erriquens F, et al. Scaled-up experimental biogas production from two agro-food waste mixtures having high inhibitory compound concentrations[J]. Renewable Energy, 2015, 81: 71-77.

[54] Tabassum M R, Xia A, Murphy J D, et al. Seasonal variation of chemical composition and biomethane production from the brown seaweed Ascophyllum nodosum[J]. Bioresource Technology, 2016, 216: 219-226.

[55] Mkruqulwa U, Okudoh V, Oyekola O, et al. Optimizing methane production from co-digestion of cassava biomass and winery solid waste using response surface methodology[J]. Waste and Biomass Valorization, 2020, 11(9): 4799-4808.

[56] Cai Y F, Hua B B, Gao L J, et al. Effects of adding trace elements on rice straw anaerobic mono-digestion: Focus on changes in microbial communities using high-throughput seq-uencing[J]. Bioresource Technology, 2017, 239: 454-463.

[57] Cai Y F, Zheng Z H, Wang X F, et al. Obstacles faced by methanogenic archaea originating from substrate-driven toxicants in anaerobic digestion[J]. Journal of Hazardous Materials, 2021, 403: 123938.

[58] Song Y, Han Z, Song K, et al. Antibiotic consumption trends in China: Evidence from six-year surveillance sales records in Shandong Province[J]. Frontiers in Pharmacology, 2020, 11: 491

[59] Senta I, Kostanjevecki P, Krizman-Matasic I, et al. Occurrence and behavior of macrolide antibiotics in municipal wastewater treatment: Possible importance of metabolites, synthesis byproducts, and transformation products[J]. Environmental Science and Technology, 2019, 53(13): 7463-7472.

[60] Baek G, Kim J, Lee C, et al. Role and potential of direct interspecies electron transfer in anaerobic digestion[J]. Energies, 2018, 11(1): 1-18.

[61] 司哺春,刘凯强,林新宇,等. 直接种间电子传递对缓解厌氧消化抑制效应的研究进展[J]. 农业工程学报,2020,36(24):227-235.

Si Buchun, Liu Kaiqiang, Lin Xinyu, et al. Research progress of the relief of anaerobic digestion inhibitions based on direct interspecies electron transfer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(24): 227-235. (in Chinese with English abstract)

[62] Jeong-Hoon P, Hyun-Jin K, Kang-Hee P, et al. Direct interspecies electron transfer via conductive materials: a perspective for anaerobic digestion applications[J]. Bioresource Technology, 2018, 254: 300-311.

[63] Zhao Z Q, Li Y, He J Y, et al. Establishing direct interspecies electron transfer during laboratory-scale anaerobic digestion of waste activated sludge via biological ethanol-type fermentation pretreatment[J]. ACS Sustainable Chemistry Engineering, 2018, 6(10): 13066-13077.

[64] Li Y, Tang Y P, Xiong P, et al. High-efficiency methanogenesis via kitchen wastes served as ethanol source to establish direct interspecies electron transfer during anaerobic Co-digestion with waste activated sludge[J]. Water Research, 2020, 176: 115763.

[65] Zhao Z Q, Zhang Y B, Yu Q L, et al. Communities stimulated with ethanol to perform direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate[J]. Water Research, 2016, 102: 475-484.

[66] Wang C Q, Qiao W L, Chen H, et al. A short-term stimulation of ethanol enhances the effect of magnetite on anaerobic digestion[J]. Applied Microbiology and Biotechnology, 2019, 103: 1511-1522.

[67] Macedo T Z, Okada D Y, Delforno T P, et al. The comparative advantages of ethanol and sucrose as co-substrates in the degradation of an anionic surfactant: microbial community selection[J]. Bioprocess and Biosystems Engineering volume, 2015, 38: 1835-1844.

[68] Ueki T, Nevin A K P, Rotaru A E, et al. Geobacter Strains Expressing Poorly Conductive Pili Reveal Constraints on Direct Interspecies Electron Transfer Mechanisms[J]. mBio, 9(4): e01273-18.

[69] Zhao Z Q, Wang J F, Li Y, et al. Why do DIETers like drinking: Metagenomic analysis for methane and energy metabolism during anaerobic digestion with ethanol[J]. Water Research, 2020, 171: 115425.

[70] Wang C, Liu Y, Gao X, et al. Role of biochar in the granulation of anaerobic sludge and improvement of electron transfer characteristics[J]. Bioresource Technology, 2018, 268: 28-35.

[71] Chowdhury B, Lin L, Dhar B R, et al. Enhanced biomethane recovery from fat, oil, and grease through co-digestion with food waste and addition of conductive materials[J]. Chemosphere, 2019, 236: 124362.

[72] Yu N J W, Guo B, Zhang Y D, et al. Self-fluidized GAC-amended UASB reactor for enhanced methane production[J]. The Chemical Engineering Journal, 2021, 420(2): 127652.

[73] Zhao Z Q, Zhang Y B, Woodard T L, et al. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials[J]. Bioresource Technology, 2015, 191, 140-145.

[74] Liu F H, Rotaru A E, Shrestha P M, et al. Promoting direct interspecies electron transfer with activated carbon[J]. Energy and Environmental Science, 2012, 5: 8982.

[75] Chen S S, Rotaru A E, Shrestha P M, et al. Promoting interspecies electron transfer with biochar[J]. Scientific Reports, 2014, 4: 5019.

[76] Chen S S, Rotaru A E, Liu F H, et al. Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures[J]. Bioresource Technology, 2014, 173: 82-86.

[77] Zhao Z Q, Li Y, Quan X, et al. New application of ethanol-type fermentation: Stimulating methanogenic communities with ethanol to perform direct interspecies electron transfer[J]. ACS Sustainable Chemistry Engineering, 2017, 5(10): 9441-9453.

[78] Zhao Z Q, Zhang Y. Application of ethanol-type fermentation in establishment of direct interspecies electron transfer: A practical engineering case study[J]. Renewable Energy, 2019, 136: 846-855.

[79] Yuan H Y, Ding L J, Zama E F, et al. Biochar modulates methanogenesis through electron syntrophy of microorganisms with ethanol as a substrate[J]. Environmental Science and Technology, 2018, 52(21): 12198-12207.

[80] Lin R C, Cheng J, Zhang J B, et al. Boosting biomethane yield and production rate with graphene: The potential of direct interspecies electron transfer in anaerobic digestion[J]. Bioresource Technology, 2017, 239: 345-352.

[81] Rotaru A E, Shrestha P M, Liu F H, et al. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Energy and Environmental Science, 2014, 7: 408-415.

[82] Zheng S L, Liu F H, Wang B C, et al. Methanobacterium capable of direct interspecies electron transfer[J]. Environmental Science and Technology, 2020, 54(23): 15347-15354.

[83] Zhao Z Q, Sun C, Li Y, et al. Upgrading current method of anaerobic co-digestion of waste activated sludge for high-efficiency methanogenesis: Establishing direct interspecies electron transfer via ethanol-type fermentation[J]. Renewable Energy, 2020, 148(C): 523-533.

[84] Maharaj B C, Mattei M R, Frunzo L, et al. ADM1 based mathematical model of trace element complexation in anaerobic digestion processes[J]. Bioresource Technology, 2018, 276: 253-259.

[85] García-Gen S, Lema J M, Rodríguez J, et al. Generalised modelling approach for anaerobic co-digestion of fermentable substrates[J]. Bioresource Technology, 2013, 147: 525-533.

[86] Ripoll V, Agabo C, Solera R, et al. Modelling of the anaerobic semi-continuous co-digestion of sewage sludge and wine distillery wastewater[J]. Environmental Science: Water Research and Technology, 2020, 6: 1880-1889.

Research progress of anaerobic co-digestion of winery waste and residue activated sludge

Yu Lifang1, Wang Ze1, Ma Zhixuan1, Fan Ye1, Jiang Rui1, Yang Jiayi1, Zheng Lanxiang2,3

(1.,,710055,; 2.,,750021,; 3.,750021,)

Anaerobic digestion has been widely used in the disposal of various industrial wastes. However, the load shock and microbial loss have been caused by the high chemical oxygen demand (COD) content, low pH, and seasonal production of winery waste. Meanwhile, the low methane production efficiency cannot fully meet the requirements, particularly for the complex components and low hydrolysis rate of the waste activated sludge. Anaerobic co-digestion (AcoD) can be expected to serve a pivotal disposal way for the winery waste and waste activated sludge, due to the balance nutrients, loss inhibitory effects, high microbial synergy, and methane production. A systematic review was made on the research progress in the AcoD process of the wine wastewater and waste activated sludge. Two systems were selected as the wine wastewater and waste activated sludge, as well as the wine solid waste and waste activated sludge. The main factors of two systems were summarized in the AcoD performance. The wine wastewater was mainly from the processes, such as pressing, pouring, filtering, and cleaning. At the same time, there were also the high COD content, low carbon/nitrogen (C/N) ratio, high generation, and seasonal production. Thus, the optimal mixing ratio was performed to determine the suitable contents of nutrients and C/N ratio. An investigation was also made on the impact of the short-term, large-scale high-concentrations wastewater in the AcoD system during the picking seasons (9~11). Three types of substances were consists of the unfermented juice residues (stems) sediments after fermentation (waste yeast), and filters (diatomaceous earth) in the wine lees, which was the main solid waste in the winery production process. Wine lees were characterized by the low pH, low C/N ratio, high total solids, as well as the high-concentrations of K+ and polyphenols. Generally, the hydrolysis was considered as the rate-limiting step for the WAS in the AcoD process. The approach was applied to raise the temperature for the better hydrolysis and solubilization of organic components. The impact of multiple toxic substances were investigated in the AcoD system. The accumulated antibiotics and heavy metals were considered as the negative for the microbes. Secondly, a summary was made on the ethanol-based direct interspecies electron transfer in the AcoD. The extracellular electron transfer system (EET) was involved two main types of mechanisms: the mediated interspecies electron transfer (MIET) and direct interspecies electron transfer (DIET) in the anaerobic digestion. Compared with the MIET, the DIET was considered to be a more efficient electron transfer pathway through the cell components (e-pili or cytochrome OmcS) without relying on the electron carriers. Although the DIET between the bacteria and methanogens was difficult to establish in the conventional anaerobic digestion system, the establishment of DIET can be promoted by adding ethanol or cooperating with the carbon-based materials. Ethanol was set as the substrate in the AcoD system functions, as the precursor to stimulate DIET by enriching the electroactive microbes for the co-digesting complex organic wastes. Therefore, the ethanol was widely applied as the electron donor in the presence of carbon-based materials to induce the DIET. The carbon-based materials presented the high conductivity to promote the DIET, in order to accelerate the substrates degradation for the less enrichment time of functional microbes. Ultimately, the omics technologies were used as the community-substrate metabolic coupling of the AcoD system. The finding can provide a strong reference to clarify the methanogenesis metabolic pathway for the co-digestion models, in order to characterize the metabolic kinetics in the AcoD process.

wastes; sludge; anaerobic co-digestion; ethanol; direct interspecies electron transfer

10.11975/j.issn.1002-6819.2022.20.023

X7

A

1002-6819(2022)-20-0199-10

于莉芳,王泽,马芷萱,等. 葡萄酒生产废弃物与剩余污泥厌氧共消化研究进展[J]. 农业工程学报,2022,38(20):199-208.doi:10.11975/j.issn.1002-6819.2022.20.023 http://www.tcsae.org

Yu Lifang, Wang Ze, Ma Zhixuan, et al. Research progress of anaerobic co-digestion of winery waste and residue activated sludge[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(20): 199-208. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.20.023 http://www.tcsae.org

2022-08-19

2022-10-05

国家重点研发计划项目(2019YFD1002500);陕西省教育厅重点科学研究计划项目(22JT024)

于莉芳,博士,副教授,主要研究方向为废水生物处理。Email:yulifang@xauat.edu.cn

猜你喜欢

产甲烷菌产甲烷乙酸
肠道产甲烷菌与肠道疾病的关系研究进展
乙醇和乙酸常见考点例忻
纳米半导体材料促进厌氧产甲烷过程的研究进展
泥炭发酵产甲烷过程中古菌群落结构演替
垃圾渗滤液厌氧系统重启前后污泥产甲烷活性研究
零价铁对城市污泥和餐厨垃圾联合厌氧消化产甲烷的影响
玉米淀粉水解液的制备及对油藏中产甲烷菌的激活
玉米淀粉水解液的制备及对油藏中产甲烷菌的激活
液相色谱法测定糕点中脱氢乙酸不确定度评定
DMAC水溶液乙酸吸附分离过程