APP下载

并行处理网络下水质污染物跟踪检测仿真

2021-11-17杨艳丽杨新吉勒图韩炜宏

计算机仿真 2021年2期
关键词:阳性率光谱污染物

杨艳丽,杨新吉勒图,韩炜宏

(1. 内蒙古工业大学经济管理学院,内蒙古 呼和浩特 010051;2. 蒙古国科技大学商业研究所,蒙古国 乌兰巴托 46520)

1 引言

在城市化和工业化的飞速发展下,废弃物和污染物的大量排放,导致江、河、湖、海等水环境受到了严重污染。水质污染物具有生物积累性的特点,甚至有些污染物的危害也很大,不断寻求水质污染物的检测方法是当今水质污染检测的主要任务[1-2],随着对环境监测工作高效率的要求和经济的发展,快速以及有效的水质污染物跟踪检测方法的研究成为国际环境问题所讨论的热点之一,为了能够快速发现、控制水质污染物,并行处理网络下水质污染物的跟踪检测十分必要。

吴德操等人提出基于二维重组的并行处理网络下水质污染物跟踪检测方法,结合去噪方法,对水样光谱做采样处理,并利用时间和光谱轴建立二维矩阵,二维小波变化之后,设置窗口,该窗口具有宽度可变的特点,根据窗口格中的小波系数计算获得去噪阈值,利用去噪阈值完成对水质污染物的跟踪检测,实验结果表明,该方法的水质数据去噪性能较好,但存在检测结果假阳性率高和平均检测时间长的问题[3]。刘杰恒等人提出气相色谱-微池电子捕获的并行处理网络下水质污染物跟踪检测方法,利用污染物分析方法对样品进行萃取,根据OV-1701色谱柱程序升温做分离处理,采用微池电子捕获检测器来实现对水质污染物的跟踪检测,实验结果表明,该方法的灵敏度高,但水质污染物跟踪检测结果的假阳性率较高,不能够准确的实现检测[4]。

针对上述两种研究方法中存在的问题,提出基于紫外光谱的水质污染物跟踪检测方法。

2 水质数据和异常

通常情况下,异常被定义为在某个时间中一种或很多种信号的变化情况,异常可能是短暂的或者是持续发生的。本文主要对水中是否有污染物进行研究,并假设水质污染物能够引起水质检测指标产生变化。污染物会使水质出现异常现象,并且持续一段时间[5]。

并行处理网络下水质数据的波动情况分为有四种,分别为水质污染物、噪声和离群点、工艺操作、背景数据所引起的变化,其中污染物导致的异常现象为水质异常,需要对其进行跟踪检测。

1)背景数据

水质的日常数据可以被当作背景数据,其特征为波动性,通常情况下,该数据会随着外界环境的变化而变化,例如时间和温度[6]。将水质背景数据当作时间序列数据,能够采用时间序列分析法,对预测和测量值进行差异比较,可以有效降低背景数据波动所带来的影响。

2)工艺操作

对于供水网的基本操作来说,设备维修和阀门水泵开关等均会导致水质数据出现波动,也可能导致水质指标发生突变,出现误报。添加模式库是一种降低异常干扰的通用方法,构建水质数据曲线模式库,其中包括机械操作、流速改变给水质指标变化带来的影响,需要不断的进行更新、完善。在模式库中找到接近异常的形态可以降低该类水质异常的干扰。

3)噪声和离群点

噪声会引起离群点,离群点是孤立的,通过对水质真实异常持续时间的分析,设置固定步长的时间窗,异常值小于时间窗的长度时,则水质污染物为异常。若是正常情况时,噪声和离群点导致出现异常的概率为10%,若连续10个时间步长存在6个异常情况,其概率为0.0001,若是通过污染物引起的异常则概率为0.9999,此时能够判断出水质污染物。

4)水质污染物异常

在一段时间内,当水质指标偏离预测值,并且不属于常规模式时,则该种模式属于异常情况[7]。在实验环境中,人为加入污染物将引起游离氯出现异常,在正常的水质下不会出现波动。在现场环境中,游离氯的变化十分复杂。实际上,经过大量研究证明,化学物质如果存在毒性都会导致游离氯指标发生变化。

3 基于紫外光谱的水质污染物跟踪检测

3.1 水质分析原理

1)紫外光谱

水质中的有机物在紫外的可见波段范围中,并且有吸收的特点,通过被测物质对紫外光谱的反射或者吸收性质分析的方法为紫外光谱法。

从分子结构来看,有机化合物中包括:不成键的孤对电子(n电子)、双键的π电子和单键的σ电子三种。

紫外光谱的分子跃迁:

σ→σ*跃迁。该种跃迁所需能量为最大,峰值吸收小于200nm,该种跃迁在饱和有机物中最为常见[8]。

π→σ*或者σ*→π跃迁。该种跃迁所需能量小于σ→σ*,峰值吸收同样小于200nm。

n→σ*跃迁。该种跃迁适用于杂原子的有机化合物,杂原子包含N、S、O、P等原子,峰值吸收大约在200nm左右。

π→π*跃迁。不饱和有机化合物将产生该种跃迁。

n→π*跃迁。不饱和有机化合物中包含杂原子时,产生该跃迁。

针对有机化合物来说,n→π*和π→π*两种跃迁可以用来检测有用的吸收光谱。

2)比尔定律

该定律属于光吸收基本定律,是比色分析法和吸收光度法研究的基础。该定律的物理意义为:对于有均匀非散射特性的吸光物质来说,当吸光物质被平行单色光经过时,吸光度的计算公式如下

(1)

其中,I0、It分别表示入射和投射光的强度,T表示透过率,K表示吸收系数,与入射光的温度和波长相关,L表示光程,c表示物质的浓度,并且c与L成正比,通过式(1)可以得到,光程一定的情况下,A与c呈线性关系。

当介质中有多种吸收光时,采用吸光度的加和性来定量分析光谱。假设组分物质均匀混合时,物质间无相互作用,并且不会与入射光间存在光化学反映,只有光吸收[9]。

对于多分组体系来说,能够按照吸光度的加和性对吸光度进行求解,设三种组分共同组成混合物,并且之间无相互作用,分别用向量s1、s2和s3来表示其对应的光谱吸光度,对应的浓度为c1、c2和c3,按照加合定律,该体系的A可以由下式求出

A=c1s1+c2s2+c3s3+e

(2)

式中,e表示仪器测量误差,则有:

A1=c1s11+c2s12+c3s13+e

A2=c1s21+c2s22+c3s23+e

Am=c1sm1+c2sm2+c3sm3+e

(3)

A=cs+e

(4)

对于包含p个组分样本n在m下数据的矩阵表达式如下

An×m=Cn×pSp×m+En×m

(5)

3.2 数据预处理

1)均值中心化

均值中心化可以联系待测物质和光谱吸收度的变化,对校正集的光谱进行求解,对样品和平均光谱做减法计算,可以获得经过变换之后的光谱,构建光谱定性或者定量模型之前,常见的数据预处理方法为均值中心化,该方法可以使样品光谱间的差异得到提升,大大提高了模型的分析能力。

对校正集样品的平均光谱进行计算

(6)

其中,n表示校正集的样品数量,k=1,2,…,m,对于未知的样品谱x来说,利用下式可以获得经过处理后的光谱:

(7)

2)标准化

标准化又可以称作均值方差化,首先对经过均值中心化处理所得的光谱和利用校正集光谱矩阵求得的标准偏差光谱进行求解,再利用前者对后者做除法运算。

标准偏差光谱的计算公式如下

(8)

经过标准化处理之后的光谱为

(9)

3.3 并行处理网络下水质污染物跟踪检测

利用紫外光谱来替代水质污染物当作报警参数,通过对水质异常的检测,可以实现对水质污染物的跟踪检测,光谱矩阵可以反映出水质中污染物的变化情况,利用紫外光谱检测水质异常的步骤如下:

1)学习阶段。测量历史光谱可以得到基准光谱,其中包含光谱的特征和形状。

2)报警参数的设置。利用统计和经验方法可以设置该参数,按照水质中的异常事件对其进行过调整。

3)水质异常判断。通过基线光谱和报警参数对水质的正常和异常情况进行判断,光谱的一阶和二阶导数以及吸光度也可以对水质异常数据进行判断,采用光谱矩阵导数对其判断时,可以消除掉光谱基线变化时带来的影响,完成对光谱基线的异常判断[10]。

4)处理报警事件。当水质异常数据与正常数据值相差不大时,可以对水质展开实验分析,再做下一步处理。当水质异常数据与正常数据值相差较大时,则需要对其采取紧急措施。

并行处理网络下水质污染物跟踪检测可以输出分类模型,分类模型则是对实例进行映射,并且映射到特定类中。对于水质污染物跟踪检测来说,输出结果有水质正常和异常两类,与水质本身的正常与否相结合,有四种判断:

1)真阳性:表示水质本身和检测结果均为异常。

2)伪阳性:表示水质本身正常,但结果为异常。

3)真阴性:表示水质本身和检测结果均为正常。

4)伪隐性:表示水质本身异常,但结果正常。

并行处理网络下水质污染物跟踪检测的性能指标有以下几种:

检出率:也可以称为真阳性率或者灵敏度,是指在检测水质污染物时,检测出的水质异常次数占异常总次数的百分比,检出率的具体计算公式如下

(10)

其中,TP表示水质异常次数,(TP+FN)表示异常总次数。

误报率:也可以称为假阳性率,是指在检测水质污染物时,其表达式为

(11)

式中,FP代表水质虚假异常次数,(TN+FP)代表全部决策次数。

平均检测时间:是指水质异常发生时间和给出报警时间之间差值的平均值,可以反映出水质污染物跟踪检测方法的平均延误率,表达式如下

(12)

式中,n′代表水质异常点数,tid代表检测出水质污染物的时间,tir代表实际发生异常的时间。

经过上述分析与计算,完成了对并行处理网络下水质污染物的跟踪检测。

4 仿真设计与结果分析

为了验证基于紫外光谱的水质污染物跟踪检测方法的准确性和有效性,需进行仿真。采用Agilentll00高效液相色谱仪进行水质样本污染提取,并配置自动进样器、紫外检测器;通过FA-2004N型电子天平(上海精密科学有限公司天平仪器厂)在呼和浩特某河道中量取污染水质,将提取到的水质污染物数值输入到MATLAB仿真软件中。在MATLAB的命令窗口输入simulink,生成Fuzzy函数,分别以方法的假阳性率、平均检测时间为指标,测试水质污染物跟踪检测方法的准确性和有效性。对提出方法、方法一(基于二维重组的并行处理网络下水质污染物跟踪检测方法)和方法二(提出气相色谱-微池电子捕获的并行处理网络下水质污染物跟踪检测方法)展开测试,对比三种方法水质污染的检测结果的假阳性率,其中,假阳性率可通过式(11)进行计算,并得到对比结果,对比结果如图1所示。

图1 不同方法的假阳性率对比结果

分析图1可知,提出方法的30次迭代中,水质污染物跟踪检测结果的假阳性率在50%以下变化,方法一和方法二的30次迭代中,水质污染物跟踪检测结果的假阳性率则在60~90%和80~100%之间变化,根据上文可知,假阳性率即为误报率,误报率越低准确性越好,则假阳性率越低方法检测结果的准确性越好,对比可知,提出方法的水质污染物跟踪检测结果更加准确。

在对水质污染物跟踪检测假阳性率测试的基础上,测试方法的平均检测时间,平均检测时间越高,方法的延误率越低,测试结果如图2、图3所示。

图2 提出方法的平均检测时间测试结果

图3 方法一的平均检测时间测试结果

分析图2、图3可知,30次迭代中,提出方法水质污染物的平均跟踪检测时间整体变化范围为0.2~0.3s,方法一水质污染物的平均跟踪检测时间整体变化范围为0.2~0.7s,提出方法和方法一的水质污染物最高平均检测时间分别约为0.28s和0.62s,通过对比可知,提出方法的水质污染物平均检测时间较短,说明提出方法的平均延误率较低。

5 结论

水质的好坏直接影响了人们的生活,水环境将受到污染的影响,因此,提出基于紫外光谱法的水质污染物跟踪检测方法,并对水质污染物跟踪检测结果的假阳性率以及平均检测时间展开实验研究,实验结果证明提出方法水质污染跟踪检测的准确性和有效性,提出方法还能够利用检测结果对水质常规波动的研究奠定基础。

猜你喜欢

阳性率光谱污染物
基于三维Saab变换的高光谱图像压缩方法
煤炭矿区耕地土壤有机质无人机高光谱遥感估测
破伤风抗毒素复温时间对破伤风抗毒素皮试阳性率的影响
视频宣教结合回授法对肺结核患者病原学阳性率的影响
Parkinson and Hypericum perforatum: a medical hypothesis
基于3D-CNN的高光谱遥感图像分类算法
不同取样方式下船机污染物排放结果的研究
你能找出污染物吗?
破伤风抗毒素复温时间对破伤风抗毒素皮试阳性率的影响
陆克定:掌控污染物寿命的自由基