APP下载

油松林土壤有机碳储量变化及其影响因素

2021-10-22栾亚宁

浙江农林大学学报 2021年5期
关键词:郁闭度土壤有机全氮

王 越,栾亚宁,王 丹,戴 伟

(1. 北京林业大学 林学院,北京 100083;2. 北京松山国家级自然保护区管理处,北京 102115)

20世纪50年代以来,土壤有机碳含量和储量一直是研究焦点之一[1]。1982年,POST等[2]通过建立全球土壤碳密度的地理分布与气候因子和植被因子间的关系,估算全球1 m厚度土壤有机碳库存量约1 395 Pg。此后,国内外学者采取不同估算方法,推算出全球 1 m 土层中土壤有机碳库为 1 143~1 576 Gt[3−5];另有国内学者依据2次全国土壤普查所得的土壤属性数据,估算中国有机碳库为50.0~80.7 Gt[6]。为了掌握土壤有机碳累积变化特点,更多研究者在小尺度范围探讨土壤有机碳的相关影响因子,发现植被类型[7−8]、气候条件[9]、林龄[10−11]、造林[12]和抚育间伐措施[13−14]以及土壤理化性质[15]等都可能影响土壤有机碳累积。油松Pinus tabulaeformis是中国北方主要造林树种之一,分布面积约161×104hm2,其土壤有机碳储量及动态是影响土壤碳循环的重要因素。油松林地主要土壤类型为山地棕壤和褐土,其土层相对较薄[10],土壤有机碳的相关研究大多集中于60 cm以上土层,而其下土层数据多为估算值,实测数据极少。1996年,马钦彦等[16]以中国山西太岳山和北京西山油松天然纯林为研究对象,估算中国油松林0~130 cm土层深度的平均土壤有机碳含量为90 t·hm−2,但存在点位过少,研究尺度小等问题。此后相关研究多以小区域为基础,探讨不同因子对油松林土壤有机碳的影响[7, 10−11],而大尺度范围的相关研究鲜有报道。因此,从宏观角度量化油松林土壤有机碳变化及其影响因素,对今后探讨其在调节碳平衡中的作用和贡献具有重要意义。本研究通过收集1980−2017年油松林土壤有机碳和相关影响因子文献中实测数据,分析0~60 cm土层土壤有机碳质量分数和储量的垂直变化和时间变化特征及主要影响因子,旨在为今后估算及预测油松林有机碳质量分数和储量变化提供参考,也为揭示油松林土壤对碳循环的贡献提供理论支持。

1 研究方法

1.1 数据来源与收集

利用 Web of Science和中国知网、万方数据库等,分别以主题词“Pinus tabulaeformis & Soil organic carbon”和“油松&土壤有机碳”检索1980−2017年CSCD-E库及以上公开发表学术期刊,并设置筛选标准如下:①数据基于实测值;②土壤类型为棕壤和褐土。文献采集数据包括各层土壤有机碳质量分数、土壤理化性质(土壤容重、全氮、碳氮比和pH)、林木特征(凋落物、林分密度、郁闭度和林龄)以及气候因子(年均气温和年均降水量)共计10个因子的相关数据,当研究点没有年均气温和年均降水量信息时,根据研究点的经纬度及研究时间,通过使用中国气象数据网网站(http://data.cma.cn/site/index.html)进行补充。最后共收集165篇有效文献。

1.2 数据整理

采集的数据首先按照 1980−1989、1990−1999、2000−2009和2010−2017年4个时段以及0~20、20~40和40~60 cm的3个土层深度分类汇总(图1),其后按照下述方法对数据进行整理和补充。

图1 土壤有机碳样点数量Figure 1 Quantitative distribution of soil organic carbon

1.2.1 统一土层深度 由于部分文献土层深度划分标准不符合本研究划分要求,为此利用加权平均法对土层深度和对应的土壤性质数据进行等间隔深度转换[17]。

1.2.2 统一单位 将文献中土壤全氮和土壤有机碳质量分数单位统一转化为g·kg−1,并根据式(1)将部分文献中土壤有机质质量分数转化为土壤有机碳质量分数:

式(1)中:CSOC为土壤有机碳质量分数(g·kg−1);CSOM为土壤有机质质量分数(g·kg−1)。

1.2.3 补充缺失容重数据 对于部分文献中缺失的土壤容重数据采用下述方法进行补充。筛选同时具有土壤有机质和土壤容重的文献,将各点的土壤有机质值代入式(2)[18]获取该点的土壤容重估算值:

式(2)中:BD为土壤容重(g·cm−3);CSOM为土壤有机质质量分数(g·kg−1)。

以各点的实测值和估算值为成对变量进行t检验。结果表明各点的估算值比实测值平均高0.22 g·cm−3(图2A),存在明显差异。据此,对式(2)修正后获得:

再次利用t检验对估算值和实测值进行显著性分析。结果表明:式(3)获得的土壤容重估算值和实测值之间差异不显著,可以更好地反映油松林土壤有机质质量分数和土壤容重间的关系(图2B)。为此,利用修正后的式(3)对缺失的容重数据进行补充。

图2 土壤容重实测值与估算值比较Figure 2 Comparison of measured and calculated soil bulk density

1.2.4 土壤有机碳储量估算 油松林各层土壤有机碳储量计算公式[19]为:

式(4)中:CSOCs为某特定深度土壤有机碳储量(Tg);CSOCi为第i层土壤有机碳质量分数(g·kg−1);BDi为第i层土壤容重(g·cm−3);Ti为第i层土层厚度(cm);Gi为直径大于2 mm的石砾所占的体积百分比(%);n为参与计算的土壤层次总数;S为4个时段油松林分布总面积(hm2)。油松林不同时段各林龄面积及占比见表1。

表1 不同时段油松林各龄组面积及占比Table 1 Statistics of P. tabulaeformis forest area at different stages

1.3 统计分析

采集数据经Excel 2016初步整理后,利用SPSS 23.0进行单因素方差分析(one-way ANOVA),检验相同土层不同时段以及相同时段不同土层土壤有机碳质量分数差异,多重比较采用最小显著差异(LSD)法,相关性分析采用Pearson检验,并利用多元逐步回归和通径分析相结合的方法分析土壤性质和林分特征对土壤有机碳质量分数的影响。

2 结果与分析

2.1 土壤有机碳质量分数变化特征

从表2可知:各时段土壤有机碳质量分数表聚现象明显,0~20 cm土层土壤有机碳质量分数占整个剖面的47%~54%,表现出随土层深度的增加而减少的剖面垂直变化特征。各层土壤有机碳质量分数表现出不同程度的时间变化特点,其中0~20 cm土层土壤变化最为强烈,在1980−1989年为19.50 g·kg−1,此后经历了 20 a的持续降低,2000−2009年达到最低点,仅 14.57 g·kg−1,2010−2017年又显著增加至20.76 g·kg−1。20~60 cm土壤有机碳质量分数时间变化趋势与0~20 cm相同,同样表现出高—低—高的变化特点,但各个时段间不存在层间显著差异,土壤碳质量分数相对稳定。各层土壤有机碳质量分数变异系数为0.55~0.96,属于中等变异。

表2 不同时段土壤有机碳质量分数统计分析Table 2 Variation of soil organic carbon content at different stages

2.2 土壤有机碳储量变化特征

由表3可以看出:0~20 cm土层是油松林土壤有机碳的主要碳库,1980−1989、1990−1999、2000−2009和 2010−2017年 4个时期的碳储量分别为 97.18、90.20、86.27和 124.92 Tg,占 0~60 cm 土层土壤总碳储量的45.41%~50.57%。随着土层加深,有机碳储量降低,20~40和40~60 cm土层土壤有机碳储量占比分别为28.58%~33.76%和20.83%~22.78%。在1980−2017年,各土层土壤有机碳储量表现出与土壤有机碳质量分数一致的时间变化特征。与1980−1989年相比,1990−1999年土壤有机碳储量呈降低趋势,但总体变化不大,0~60 cm土层土壤有机碳储量减少了6.81 Tg;进入2000−2009年后,有机碳储量降低幅度较大,共减少14.81 Tg;在2010−2017年,土壤有机碳储量快速增加,达247.02 Tg,为40 a来的最高水平,特别是0~20 cm土层土壤有机碳储量增幅达38.65 Tg,占增幅总量的61%。综上可见,近40 a间0~60 cm土层土壤有机碳库变动主要集中在0~20 cm土层,而20~60 cm土层土壤有机碳储量始终保持相对稳定状态。

2.3 土壤有机碳质量分数影响因素通径分析

2.3.1 相关性分析 表4表明:土壤有机碳质量分数与土壤容重呈极显著负相关(P<0.01),与土壤全氮、pH、郁闭度以及林龄呈极显著正相关(P<0.01),而与年均气温、年均降水量和林分密度相关不显著。

表4 0~20 cm 土层土壤有机碳质量分数与各因子间的 Pearson相关性分析Table 4 Pearson correlation analysis between 0−20 cm soil organic carbon and each factors

2.3.2 多元回归分析 将土壤有机碳质量分数 (y)与土壤容重 (x1)、全氮 (x2)、郁闭度 (x3)进行逐步多元回归分析,得到标准多元回归方程:y=−0.061 2x1+0.037 6x2+0.310 0x3。其中,回归方程中的系数为直接通径系数。

2.3.3 通径分析 多元回归结果表明:土壤容重、全氮、郁闭度3个因子对0~20 cm土壤有机碳质量分数影响显著,但各个影响因子间的相关性导致信息重叠,仅根据土壤有机碳质量分数与影响因子间的系数,仍然无法明确各个因子对有机碳质量分数变化的影响程度。为此,将逐步多元线性回归分析中的变量均纳入通径分析,通径分析[28−29]是研究多个变量与因变量之间线性关系的多元统计方法,当多个解释变量交互作用对响应变量产生影响时,通径分析将极具优势。根据计算获得间接通径系数和决定系数,分析3个因子对土壤有机碳质量分数的影响作用。

表5及图3结果表明:土壤容重对有机碳表现出强烈的直接负效应,显著掩盖了间接正效应的影响,导致其降低土壤有机碳的作用较强。同理,全氮和郁闭度表现出增加土壤有机碳的作用。决定系数(R2)是通径分析中的综合性决策指标,按绝对值大小对有机碳的影响从大到小依次为容重(R2=0.375)、容重与全氮相互作用(R2=0.195)、全氮(R2=0.141)、郁闭度(R2=0.096),表明土壤容重、全氮和郁闭度以及三者间的相互作用共同控制着土壤有机碳的变化强度和方向。

图3 土壤有机碳质量分数对各因子的响应Figure 3 Soil organic carbon content response to factors

表5 通径分析结果Table 5 Results of path analysis of factors

3 讨论

3.1 油松林土壤有机碳变化的影响因素

土壤容重对土壤有机碳表现出明显的直接负效应,主要由于容重通过改变土壤孔隙结构特点影响土壤水气环境,改变土壤微生物的生长和活动特征,对土壤有机碳转化产生强烈影响[30];此外,逯军峰等[31]研究发现:油松林土壤容重与凋落物总量、凋落物现存量、分解率表现出显著负相关。土壤全氮和碳氮比对土壤有机碳的转化方向和强度有重要作用。王棣等[8]研究表明:容重与土壤全氮、碳氮比呈显著负相关,这与本研究结果一致。全氮对土壤有机碳呈显著正效应,氮素作为土壤微生物的重要营养元素,能够对土壤微生物活动产生直接影响。还有研究发现:较高的全氮能够降低凋落物叶中碳氮比,避免微生物与植物的“争氮”现象,利于凋落物矿化分解[32−33]。郁闭度是影响林下植被群落结构、改变凋落物组成和林地土壤特征的重要因素。油松人工林中,乔木层植物种类单一,结构简单,养分分解归还速率慢[34],林下植被作用更为重要[35]。低郁闭度条件下可以丰富林下植被群落,减少凋落物中的木质素和粗纤维等难溶性物质含量以及改善林地土壤性质,从而提高土壤微生物对油松凋落物的分解速度[36],促进土壤有机碳变化。

有研究指出:降水[37]、气温[38−39]、pH[39]和种植密度[40]是油松林土壤有机碳变化的可能影响因素,这与本研究结果不同。本研究表明:近40 a间研究区年均降水量、年均气温和土壤pH均未出现明显变化,年均降水量最大相差仅54.7 mm,年均气温维持在7.7~8.8 ℃,土壤均为中性(pH 6.99~7.58)。此外,中国油松林以人工林为主,不同地区对种植密度要求虽有不同,但整体差异不大[41]。由于年均气温、年均降水量和土壤pH的稳定性以及人工种植密度的相对一致性,使上述因素没有对油松分布区土壤有机碳产生强烈影响。

3.2 油松林有机碳变化特征

3.2.1 油松林土壤有机碳垂直变化特征 棕壤和褐土在形成过程中存在强烈的黏化过程,从而在淋溶层以下形成厚度40~80 cm的黏化层,表现出黏粒含量高(20%~30%)、土壤紧实致密、渗透性差的土层特征[42],使凋落物分解补充的有机碳源主要集中在表层土壤,土壤有机碳呈现出表聚特征,但其下层土壤有机碳始终相对稳定且保持在较低水平。近40 a间研究区年均降水量为560~610 mm,变幅较小,最大相差仅50 mm,各时期上层土壤中可溶性有机碳淋溶量相对稳定。由于黏化层对淋溶强度的制约以及每年死亡根系数量有限,导致下层土壤有机碳输入量远低于上层土壤,加之黏化层的影响造成土壤水气状况不良,微生物繁殖和活动被抑制,导致下层土壤有机质分解转换缓慢。

3.2.2 油松林土壤有机碳时间变化特征 油松林土壤有机碳变化与林木生长特征密切相关,这已在诸多研究中得以证实[10−11,43]。由于油松造林地土壤相对肥沃,立地条件较好,育种初期幼龄林有机碳处于较高水平。造林前的整地、蓄水等营林措施改善土壤容重,营造良好水、气条件,土壤微生物繁殖和活动旺盛,利于有机质的分解转化[44],为幼林生长提供充足养分。随着林木生长郁闭度增加,林分透光率降低,林下植被开始逐渐淘汰,有机质来源减少。油松人工林一般在造林15 a后开始进行抚育间伐作业[45],受抚育间伐影响,郁闭度降低,透光率提高,土壤微生物和土壤酶对间伐响应迅速,土壤生物活性提高[46]。进入中龄阶段(20 a)后,油松林进入快速生长期,林木间的竞争分化已缓和或基本停止,凋落物主要为难分解的油松凋落物,养分归还率慢,土壤微生物更多通过分解土壤原有有机物以满足林木生长对养分的需求,土壤容重和全氮出现了明显的负极化趋势[47],导致土壤有机碳降低至近40 a最低点。近熟林(>35 a)阶段,油松林土壤微生物及土壤酶酶活性明显改善,森林生态系统稳定性更强[43],林下植被得以恢复,种类更为丰富的凋落物及根系逐年积累,为土壤微生物新陈代谢和自身合成提供丰富的碳、氮以及能量来源[48],加之土壤容重改善以及土壤氮素供应能力提高,促进微生物对凋落物的分解转化,使土壤中有机碳逐步恢复和提高。

改革开放以来,中国林业政策不断演变[49],不同时期森林经营措施深刻影响着油松生长过程,导致各林龄油松林面积不断发生变化。1978−1983年,中国开展了全国范围的植树造林活动,但1984−1991年,在经济利益驱使下,过量采伐和大面积皆伐成为中国森林主要经营方式,导致该时期中龄林及近熟林面积占比较低,油松幼龄林面积达132.9×104hm2,占总面积的64%。由于良好的土壤种植条件和整地措施,1980−1989年油松林0~60 cm土层土壤有机碳储量处于较高水平,为205.45 Tg。1992年起,中国开始实行一系列林业可持续发展战略,乱砍滥伐、毁林开荒和占用林地现象得到遏制,使得1990−1999年油松林总面积增加至243.1×104hm2。但由于该时期幼龄林+近熟林面积占比降低,而中龄林面积增加至91.4×104hm2,占比提高38%,抵消了总面积增加对土壤有机碳的增加效果,使土壤有机碳储量和前期相比,降低了6.81 Tg左右。2000年后中国进一步启动“天然林资源保护工程”,严禁采伐或大幅削减森林采伐量等更严格的森林保护措施,最大程度地保证油松生长,使2000−2009年中龄林面积进一步提高至103.9×104hm2,占比达45%,加之该时期总面积出现小幅降低,上述双重因素的叠加作用导致该时期0~60 cm土层土壤有机碳储量出现较大幅度降低,达到近40 a的最低点,仅183.83 Tg。2010−2017年,虽然幼龄林面积持续降低,但经过近30 a自然生长,20世纪80年代种植的油松大部分进入近熟林阶段,近熟林面积达93.1×104hm2,两者占比达59%,加之总面积增加至251.2×104hm2,不仅抵消了该时期中龄林对土壤有机碳的降低作用,而且使0~60 cm土层土壤有机碳储量出现较大幅度增加,达247.02 Tg的最高值。

4 结论

近40 a来,油松林土壤有机碳质量分数和储量变化表聚现象明显,0~20 cm土层是土壤有机碳质量分数或储量变化的主要贡献者,土壤有机碳质量分数和储量的占比分别达47%~54%和45%~50%。由于年均降水量和土壤黏化层对上层土壤可溶性有机碳输入和微生物活动制约以及死亡根系提供碳源有限,20~60 cm土层土壤有机碳质量分数和储量在各阶段始终处于相对稳定和较低的水平。油松林0~60 cm土层土壤有机碳质量分数和储量均呈先减少后增加的时间变化特征,其中,土壤有机碳储量从1980−1989年的205.45 Tg降低至2000−2009年最低点,为183.83 Tg,之后2010−2017年间出现较大幅度的增加,达到最高,为247.02 Tg。油松林地土壤性质、林分条件和各龄组面积比例受不同时期森林经营和保护措施深刻影响,土壤容重、土壤全氮和林分郁闭度是导致油松林土壤有机碳质量分数及储量变化的主要因素,随着近熟林面积比例的增加,预计未来仍会继续保持增长趋势。

猜你喜欢

郁闭度土壤有机全氮
黑土根际土壤有机碳及结构对长期施肥的响应
氮添加对亚热带常绿阔叶林土壤有机碳及土壤呼吸的影响
喀斯特槽谷区植被演替对土壤有机碳储量及固碳潜力的影响研究
不同郁闭度华山松人工林林下灌木和草本多样性
不同郁闭度马尾松林下种植射干的生长效果分析
郁闭度与七指毛桃生长的相关性分析
西藏主要农区土壤养分变化分析
三峡库区消落带紫色土颗粒分形的空间分异特征
武功山山地草甸土壤有机质、全氮及碱解氮分布格局及关系
套种绿肥对土壤养分、团聚性及其有机碳和全氮分布的影响