APP下载

溶液敏感型智能高分子薄膜

2021-10-10胡梦婷胡宏龙袁丛龙刘炳辉李志英郑致刚

液晶与显示 2021年9期
关键词:溶度丁酯折射率

胡梦婷, 胡宏龙, 袁丛龙, 刘炳辉, 李志英, 郑致刚,3*

(1. 华东理工大学 材料科学与工程学院,上海 200237;2. 华东理工大学 化学与分子工程学院,上海 200237;3. 华东理工大学 理学院,上海 200237)

1 引 言

液晶作为一种具有自组装分子形态和刺激响应特性的新型智能软材料,在显示[1]、光子学及器件[2-3]甚至传感[4-5]等领域取得了其令人瞩目的研究成果。在液晶体系中掺杂手性剂或在液晶分子上引入手性基团能够驱使分子指向矢沿螺旋轴空间螺旋取向,诱导形成一种特殊的液晶相态,即胆甾相。胆甾相液晶的一维周期性螺旋超结构赋予其波长和偏振选择性反射的特性,从而决定了表观颜色。

然而,液晶的凝聚态流体性质限制了其在实际应用中的潜力。研究表明,聚合有助于保持液晶分子的排列结构,既能保证液晶的光学性质,又抑制了流体性质,为高稳定性和耐久性的便携式系统的发展带来一线新的曙光[6-7]。更有趣的是,胆甾相液晶的螺旋结构可以被聚合物网络记录并保留,从而得到手性多孔高分子膜,填充入薄膜的非手性向列相液晶或各向同性液体在聚合物网络强有力的界面锚定力作用下能够有效重构出螺旋结构[8]。但之前的报道大多以探究有效重构的条件[9]、调谐光子带隙波长或带宽[10-14]、增加反射光通量等为主[15-18],填充材料都为各向异性的液晶或各向同性的溶剂,目前还没有关于液晶和溶剂混合物的工作。

由于溶剂和液晶本身固有性质的差异,宏观上会反映出不同的光学效果。鉴于此,具有胆甾相螺旋结构的聚合物薄膜可以被认定为是对各类型液体敏感的,受此启发,我们探究了由胆甾相液晶诱导形成的手性多孔高分子薄膜对不同溶液的响应性及其内在机理。选用的溶液是液晶与溶剂的混合物,一方面,液晶与溶剂具有良好的相容性,另一方面,液晶的掺杂有利于提高光学信噪比,同时溶剂的加入使得液晶在室温下转变为各向同性态,提高了流动性。基于布拉格反射定律,不同溶液参数的变化或与聚合物膜相互作用的差异被放大至肉眼可见的颜色变化,从而体现出聚合物薄膜对溶液的敏感性。

2 实 验

2.1 实验流程

图1为手性多孔高分子薄膜的制备和后续重构螺旋结构的流程示意图。为了获得具有一维周期性螺旋结构的多孔聚合物薄膜,将由向列相液晶TEB300(质量分数为79.80%,Slichem)、手性掺杂剂R5011(质量分数为1.80%,螺旋扭曲力常数(HTP)为115 μm-1[19],HCCH)、含有可聚合丙烯酸酯基团的反应性单体RM257(质量分数为12%,HCCH)和交联剂EHA(质量分数为6%,Adams)及紫外光引发剂Irgacure 184(质量分数为0.4%,Energy Chemical)组成的均匀混合物灌注入平面摩擦取向的液晶盒(cell gap:12 μm,ROOTIN)中,并在胆甾相状态下进行紫外曝光,引发单体自由基聚合交联形成空间高分子网络。聚合条件经过多次调整优化后,采用功率为0.6 mW/cm2的紫外光(UVEC-4, LAMPLIC)照射15 min。聚合完成后,将液晶盒浸泡在二氯甲烷溶剂中15 h以去除液晶和未聚合的单体或低聚物,然后从浸泡溶剂中取出,在室温环境下放置24 h以确保薄膜中残留的二氯甲烷溶剂完全挥发,最终获得记录有周期螺旋结构的多孔聚合物薄膜。

图1 手性多孔聚合物薄膜制备和填充流程示意图Fig.1 Illustration diagram of the procedure forfabricating chiral porous polymer film

当薄膜制备完成后,将向列相液晶5CB(HCCH)与溶剂按照比例称重混合,搅拌均匀后呈现为澄清无色的溶液。用内径为0.5 mm的毛细管吸取少量溶液,然后借助毛细作用将溶液缓慢填充入液晶盒中直至聚合物薄膜被溶液完全渗透并清晰地反射均匀的可见颜色。由于溶剂会随着时间缓慢挥发,因此我们选择溶液刚填满液晶盒的这一时刻采集薄膜的织构和反射率光谱。

2.2 数据采集

通过偏振光学显微镜(POM,LVPOL 100,Nikon)观察样品,并采用电荷耦合器件相机(CCD,DS-U3,Nikon)在反射模式下使用两个交叉线性偏振片采集织构图。此外,采用光纤耦合光谱仪(ULS2048,Avantes)在白光光源(氘卤光源,AvaLight-DHc)照明下检测样品的反射率光谱。通过起偏器将垂直入射光转换为线偏振,然后用旋转分析仪检测偏振方向,确定反射光的偏振状态。

接触角测量:将样品放在光学接触角测量仪(SDC-80,SINDIN)的工作台上,用微量注射器吸取一定量的溶剂置于固定架上,调整注射器针头和样品使其出现在图像中间,调节光源亮度和手轮直到图像清晰,旋转测微头将液体流出,利用接触角测定软件采集溶剂在聚合物薄膜表面上的图像,并通过软件测出角度。

扫描电子显微镜(SEM,G4 UC,Helios)测量:对承载聚合物薄膜的单片玻璃基板进行脆性断裂,测试前预先在断裂表面喷涂上1 nm的Pt层以提高导电性。

3 结果与讨论

3.1 薄膜表征

如图2所示,利用工具钳将液晶盒拆开,然后使用刮刀沿聚合物薄膜边缘将薄膜从玻璃基板上剥离下来作为独立无支撑的膜。从宏观上看,聚合物膜的柔韧性较好。从微观角度观察,干燥后薄膜的SEM断面形貌呈海绵状,具有致密的孔隙密度,且具有明显的层状结构,这是由胆甾相液晶模塑的聚合物网络的典型断面形态。此外,聚合物薄膜厚度约为2.5 μm,远小于液晶盒的盒厚,这一现象是两方面共同作用导致的,一是液晶从网络中被洗出后,液晶分子原先所占据的位置形成孔洞,液晶流体作用于聚合物壁上的应力随之消除,引起孔洞坍塌[11];二是在浸泡过程中由于溶胀作用会引起高分子三维网络的伸展,体积显著增大,因此聚合物网络干燥时会造成多孔结构的收缩[20]。

图2 聚合物薄膜的(a)实物图及(b)扫描电镜断面形貌Fig.2 (a) Macroscopic picture and (b) SEM cross-section morphology of the polymer film

3.2 聚合物薄膜对液晶与有机溶剂不同配比溶液的敏感性探究

5CB在升温时由向列相转变为各向同性相是熵增过程,而溶剂的掺杂相当于引入无序分子,加速了熵增过程,从而使得相变温度降低。由于5CB的清亮点(即向列相转变为各向同性态的温度)仅为35 ℃,因此与溶剂混合后使得5CB在室温下转变为各向同性态,流动性的提高有利于其在室温下更加顺畅地渗透到薄膜中。实验中选用的溶剂是乳酸丁酯,它是一种优质的环保型高沸点溶剂。

图3是质量分数各为50%的5CB与乳酸丁酯的混合溶液填充薄膜后,薄膜的圆偏振光透射率光谱,表现为明显的右旋圆偏振选择性。值得说明的是,溶剂在一定程度上影响了液晶的光学各向异性,因此右旋圆偏振光的透射率强度较低。结果表明,聚合物网络记录并保留着胆甾相液晶的手性螺旋结构,因此随着溶液逐渐渗透入聚合物薄膜中,5CB与乳酸丁酯分子在聚合物骨架的表面锚固和束缚下沿螺旋轴取向,重新构筑出周期性螺旋结构,从而表现出圆偏振选择性反射的特性。

图3 质量分数各为50%的5CB与乳酸丁酯混合溶液填充薄膜的(a)右旋圆偏振光透射率光谱及(b)左旋圆偏振光透射率光谱Fig.3 (a) Transmittance spectrum of right-handed circularly polarized light and (b) the transmission spectrum of left-handed circularly polarized light of the polymer film infiltrated with the solution mixed by 50% mass fraction of 5CB and butyl lactate respectively

5CB与乳酸丁酯不同配比的均匀混合溶液填充样品的织构和反射光谱如图4所示,反射色由蓝至红,所对应的反射带中心波长由476 nm向614 nm移动,并且混合溶液中液晶含量越高,薄膜的反射强度越高。结合实验现象与布拉格反射定律,我们推断导致反射带位置不同的主要原因是不同比例的5CB与乳酸丁酯混合溶液重构体系的平均折射率有着较大的差异,而反射强度是由具有各向异性的液晶所决定的。考虑到不同混合溶液填充样品中聚合物薄膜的含量及折射率是一定的,因此影响体系平均折射率的决定性因素是5CB与乳酸丁酯混合溶液的平均折射率。由式(1)可以得出5CB的折射率为1.603。乳酸丁酯在室温下的折射率通过阿贝折光仪测得为1.421。此时混合溶液的平均折射率可以根据公式(2)计算得到。

(1)

其中:no与ne分别为 5CB的寻常光折射率与非寻常光折射率。

(2)

图4 不同比例5CB与乳酸丁酯与混合物重构胆甾相的(a)织构图及(b)对应的反射光谱Fig.4 (a) Texture and (b) corresponding reflectance spectra of the cholesteric film infiltrated with the mixed solution of different ratios of 5CB and butyl lactate

基于上述方法获得一系列混合溶液的平均折射率,从而得到5CB与乳酸丁酯配比不同的混合溶液渗透入聚合物薄膜中重构结构的反射带中心波长与溶液平均折射率之间的关系。如图5所示,聚合物薄膜的反射带中心波长与溶液的平均折射率几乎线性相关,并且随着溶液平均折射率增加,反射带红移。由此说明:当填充溶液的组分保持不变时,选择性反射带主要由体系的平均折射率决定。同时,手性多孔高分子薄膜对体系平均折射率的响应也体现了聚合物薄膜对不同溶液的敏感性。

图5 薄膜的反射带中心波长随5CB与乳酸丁酯混合溶液平均折射率的变化Fig.5 Central wavelength of the film as a function of the average refractive index of the mixed solution with butyl lactate and 5CB for permeation

3.3 聚合物薄膜对含不同溶剂组分的溶液的敏感响应性

为了探究聚合物薄膜对含不同溶剂组分的混合溶液的敏感性,将乳酸丁酯替换为乙酸丁酯,再以相同的比例与5CB混合均匀后渗透入薄膜中。由此得到5CB与乙酸丁酯不同配比混合溶液填充样品的织构与反射光谱,如图6所示。

图6 不同比例5CB与乙酸丁酯与混合物重构胆甾相的(a)织构图及(b)对应的反射光谱Fig.6 (a) Texture and (b) corresponding reflectance spectra of the cholesteric film infiltrated with the mixed solution of different ratios of 5CB and butyl acetate

μ横向比较时,如3.2所述,随着混合溶液平均折射率增加,薄膜反射带红移。而以相同比例的混合体系来纵向比较时,如图7(a)所示,与5CB和乳酸丁酯混合溶液填充薄膜相比,5CB和乙酸丁酯混合溶液填充薄膜的反射带更趋于长波方向。考虑到乙酸丁酯的折射率为1.394,比乳酸丁酯的折射率略小,我们猜想原因是乙酸丁酯对聚合物网络的溶胀作用更显著,使得螺距产生更大的拉伸,从而引起反射带的相对红移。

图7 (a)不同比例5CB与乳酸丁酯/乙酸丁酯混合溶液填充的薄膜反射带中心波长对比;(b)纯乳酸丁酯/乙酸丁酯溶剂渗透的薄膜织构图及对应反射光谱。Fig.7 (a) Comparison between the central wavelength of the reflection band of the film permeated with the mixture of 5CB and butyl lactate/butyl acetate in different proportions; (b) Texture and corresponding reflectance spectra of the film filled with pure butyl lactate/butyl acetate.

从热力学角度分析,极性聚合物溶于极性溶剂时,由于高分子与溶剂分子强烈的相互作用而放热(即ΔHm<0),根据Gibbs自由能公式(3),体系的混合自由能为负值(即ΔGm<0),因此聚合物的溶胀过程是自发进行的。

ΔGm=ΔHm-TΔSm.

(3)

为了排除5CB分子与溶剂分子之间相互作用的影响,我们将纯乳酸丁酯与纯乙酸丁酯溶剂分别渗透入聚合物薄膜中进行观察。从图7(b)中可以看出,尽管乙酸丁酯的折射率比乳酸丁酯小0.03,但薄膜的反射带中心波长的差距却达到40 nm。结合布拉格反射定律可知,与平均折射率降低引起的蓝移相比,螺距差异起主导作用,最终导致反射带的红移。

由于聚合物的溶度参数和各溶剂的溶度参数的差值不等,从而导致聚合物与不同溶剂分子的亲和力不同,因此,当溶剂的溶度参数与聚合物溶度参数越接近时,聚合物网络的扩张程度越高,溶胀度越大[21-22]。据此,我们推测与乳酸丁酯相比,乙酸丁酯与聚合物网络的溶度参数差值更小,从而引起更大的溶胀度,而螺距长度与薄膜厚度直接相关,因此5CB与乙酸丁酯混合溶液填充的薄膜内部螺距随着薄膜体积膨胀得到更大的拉伸,反射带相对红移。接着,我们利用Materials Studio软件并基于Fedors经验算法模拟计算了反应性单体RM257、交联剂EHA、乙酸丁酯以及乳酸丁酯的溶解度参数值,计算结果分别为21.252、18.684、20.150和24.130。考虑到聚合物网络由RM257和EHA交联形成,是无规共聚物,因此聚合物薄膜的溶度参数难以确定,只能通过模拟数据进行大致推断。根据模拟数据定性比较可知,乙酸丁酯的溶度参数与反应性单体的溶度参数更接近,与我们的推测相符。

我们进一步通过实验来验证两种溶剂与聚合物薄膜的溶度参数值的差异。图8(a)为两种溶剂与聚合物薄膜的接触角,乳酸丁酯与聚合物薄膜的接触角为27.306°,与之相比,乙酸丁酯与聚合物薄膜的接触角更小,为15.324°,表明乙酸丁酯在聚合物薄膜表面的润湿性更好,侧面反映出乙酸丁酯溶剂与聚合物网络的亲和力更高,溶剂分子更易渗透进入薄膜中使聚合物网络产生膨胀。

为了更加直观地观察这两种溶剂对聚合物薄膜的溶胀度,先对样品进行脆性断裂,然后在POM下观察的同时进行渗透,即将溶剂分别滴在干燥聚合物薄膜的断面上,随即采集图像。由图8(b)可知,渗透乙酸丁酯的聚合物薄膜断面厚度较大,说明乙酸丁酯对聚合物薄膜的溶胀作用更显著。

从SEM断面形貌(图8(c))来看,用质量分数各为50%的5CB和乙酸丁酯混合溶液填充薄膜的厚度较大,故而证明了当填充溶液中各组分配比保持一定的情况下导致薄膜选择性反射带出现差异的主要原因是溶剂对聚合物薄膜的溶胀程度。当溶剂与聚合网络的溶度参数值越接近时,薄膜的溶胀行为越显著,从而表现出差异化的光学效果。因此,手性多孔高分子薄膜对填充的混合溶液中不同的溶剂组分具有敏感性。

虽然在本工作中我们仅探究了聚合物薄膜对两种溶剂与液晶混合溶液的敏感性,但只要是与液晶相容性好的溶剂都可以通过将溶液填充入聚合物薄膜的方法进行研究。其响应机制主要基于微观信号如平均折射率或溶液与聚合物的相互作用能被放大至宏观层面,表现出选择性反射,进而可视化不同溶液的差异,由此体现聚合物薄膜的溶液敏感性。

4 结 论

我们演示了基于胆甾相液晶和软印记方法制备的聚合物薄膜对不同溶液的敏感性。在本工作中,从各向异性的液晶与各向同性的溶剂按照不同比例进行混合到更换溶剂的种类与相同质量分数的液晶混合,不同的溶液材料被填充到记录有胆甾相液晶一维周期性螺旋结构的聚合物薄膜中,由于聚合物网络的形状记忆效应,溶液分子在聚合物骨架的锚固和束缚下沿螺旋轴取向,最终重新构建出周期螺旋结构并呈现出可见光范围内互有差异的反射色,于是我们从宏观现象出发研究了导致其光学响应差异的内在机理。当不同比例的溶剂掺入液晶时,反射光谱中的一个尖峰发生了剧烈的移动,波长移动范围约为140 nm,这主要归因于体系的平均折射率的差异。而折射率较小的溶剂以相同质量分数和同种液晶混合进行填充时可导致薄膜的反射带中心波长相对红移20 nm,这是因为此时聚合物薄膜内部螺距的长度占据主导作用。溶剂与聚合物网络的溶度参数的差值越小,聚合物的溶胀度越大,螺距得到更大的拉伸,从而导致反射带相对红移。总的来说,本文基于聚合物薄膜自身的特性,第一次报道了聚合物薄膜对液晶与溶剂混合溶液的敏感性,在一定程度上揭示了溶液与聚合物之间的相互作用,为区分和辨别属性相似的不同溶液的应用奠定了理论基础,也为具有周期性螺旋结构的聚合物薄膜在非光子学领域的发展提供了新思路。

猜你喜欢

溶度丁酯折射率
聚乳酸和乳酸-乙醇酸共聚物的溶液热力学
3,5-二氨基对氯苯甲酸异丁酯的合成研究
乙酸仲丁酯的催化合成及分析
单轴晶体双折射率的测定
用Z-扫描技术研究量子点的非线性折射率
如何选择镜片折射率
邻苯二甲酸二丁酯的收缩血管作用及其机制
2,4-D丁酯对棉花造成的药害及补救措施
溶度差法计算地层油-CO2体系的最小混相压力
用恒偏向角法测直角棱镜的折射率