APP下载

试析电力自动化继电保护安全管理策略

2021-09-10李露露

科学与生活 2021年13期
关键词:电力自动化继电保护

李露露

摘要:在电网运行过程中,其自身的稳定性及可靠性在很大程度上是由配电自动化所决定的,同时配电自动化也是保障电网安全的一大保障举措。现阶段,我国在开展电力生产工作中,因许多因素都会给电力生产带来或多或少地影响,这也使电网安全问题时有发生,例如因开关未紧密、合理配合而出现多级跳闸问题,从而严重降低了用户的用电效率。对于该问题,相关人员在开展后期电力实践时,便需要大力推行和普及继电保护措施,并对配电自动化配合予以不断完善,全面保障用电客户的用电安全。

关键词:电力自动化;继电保护;安全管理策略

引言

继电保护作为电力系统的重要组成部分,发挥着快速隔离故障设备与控制事故影响范围重要作用,是保障电力系统安全稳定运行的关键。与此同时,继电保护装置运行受到多方面因素影响,容易产生出现误动、拒动现象,其稳定性需进一步提升。因此,为预防和减少电气事故的出现,充分发挥继电保护装置性能优势。

1继电保护的现存问题

1.1外界因素影响

由于电力系统中智能变电站所占据的范围渐渐扩大,客观上要求相关技术人员秉持实事求是的工作原则,以保证智能变电站作用正常发挥为前提条件,灵活运用光纤通信技术,提高变电站作业效率。光纤通信技术被广泛应用于智能变电站,但是受光纤通信技术应用范围持续扩大的影响,可能造成变电站继电保护装置遭受不同程度的破坏,难以保证其运行有序性。结合智能变电站生产设备可发现,生产设备所处自然环境存在缺陷是造成智能变电站机电保护安全性不足问题的主要原因,尤其是现有的电力生产设备均需要使用光纤完成连接,一旦光纤受损则直接影响电力生产效率。

1.2数据传输影响

一般说来,智能变电站的日常工作均无法脱离交换机的支持,智能变电站对交换机的依赖性相对较强。智能变电站组网中数据信息传输流量相对较小,而如何充分发挥智能变电站的应用优势,优化技术手段,得到越来越多从业人员的关注及重视。即便具体作业期间合理应用数据传输技术能扩大数据信息的传输流量,但是此类技术属于强制性增加数据信息传输流量的方法,存在影响数据信息处理能力的可能性。同时,现阶段我国智能变电站发展速度相对迅猛,尽管工业以太网交换机稳定性较强,但其稳定性仍有待提升,一旦具体工作期间深受各方面因素的影响则极易出现无法满足变电站实际工作需求的问题。

1.3检修安全隐患

与传统变电站相比,智能变电站的二次设备使用、网络通信及组织结构均存在着明显的差异,特别是制定具体检修方案期间,较多突出问题亟待解决。同时,检修智能变电站机电保护装置时,其智能性特点仍突出于检修工作之中。为了大幅度提升智能变电站远程控制能力,相关技术人员必须合理配置软压板,以达到提升保护装置总体性能的目标。但是应用软压板期间,可能造成不同程度的安全隐患,严重削弱遥控操作的准确性,对可视化效果产生极其不利的影响。此外,软压板数量大幅度增加后,极大程度上提升定期檢修的工作量及工作难度。

2电力自动化继电保护安全管理策略

2.1两级级差自动化配合及保护方法

配电管理人员在对线路开关进行选择过程中,无论是用户开关,还是出线开关乃至支线开关,都要优先选择断路装置。而在主干线中,选择的开关则以负荷开关为主,对于断路保护动作,则可利用变压设备出线断路装置来执行,该动作的动作执行时间可控制在200ms至250ms。对于支线开关以及用户开关来说,其对保护延时动作的执行时间极少,几乎可以忽略不计。利用这种方式主要有三大优势,首先,如果发生支线故障或用户线路故障,则开关会立即执行跳闸动作,以此确保故障不会影响到线路的正常运行,并且也能避免总线路断电。其次,配电网的运行得以更加高效,这是因为多级跳闸与越级跳闸现象得到了有效杜绝,故障信息的收集更加快速、故障位置判断也变得更加准确。而且,开关操作及故障分析也都因两级级差的相互配合与保护而变得更加简单,故障处理效率得到了极大提高。最后,供电系统的电能生产成本得到了有效节约,这是因为电力企业不需要投入大量资金来对供电系统进行维护,从而为企业创造了更多的经济效益。

2.2多级级差自动化配合及保护方法

对于多级极差保护配合方式来说,该方式需要按照配电工作需要,针对10kV馈线开关和出线开关来设置对应的延时时间,以便于执行保护动作,确保配电网得到良好的保护与配合。一般而言,一些变电站考虑到短路电流会对配电系统造成一定影响,因此针对低压侧开关实施过流保护措施。并且,因上级保护定值的高低也会产生较大影响,所以需要尽可能地缩短设置时间来完成多级极差保护延时配合。当前,变电站在采用馈线断路装置开关时,需要将机械动作时间控制在30ms至40ms之间,并将熄弧时间保持在10ms左右,而保护响应时间则应以30ms为宜,这样馈线开关在执行延时保护动作时,便可做到对故障电流的快速切断。当开关中安装有熔断器或断路器时,如果磁涌流较少,便要对电流值进行适当的加大,以使故障时间尽可能地缩短。不过,如果线路出现瞬时性故障,便不适宜采用多级极差配合方法来进行解决。

2.3继电保护装置故障诊断及检修

首先,在监测到继电保护装置处于异常运行状态时,及时开展装置故障诊断与检修工作,准确判断装置故障类型与产生原因,并要求工作人员全面掌握各类常见故障类型的相关信息,以此提高故障诊断效率,保证诊断结果真实准确。例如,电压、电流互感器二次电压回路故障的主要产生原因包括PT二次中性点接地方式不当、二次回路短路、差动保护电流互感器二次回路极性接反等。而电磁系统铆装件变形故障的产生原因包括零件过长与过短、用力不均、模具设计与装配不合理。与此同时,灵活应用各项故障诊断方法,如替换法、对比参照法、目视检查法、回路拆除法。以替换法为例,使用性能正常的元件逐一替换装置中的原有元件,如果元件更换后装置故障问题得到解决,表明所更换元件存在质量缺陷,以此来缩小故障查找范围,或是直接确定故障点。

2.4继电保护装置定期检验

由于继电保护装置所处环境较为复杂,随着时间推移,受自身老化与外部环境因素的影响,装置性能持续下滑,误动、拒动等故障问题的出现概率有所提升,在使用期间容易出现突发性故障。因此,为预防和减少装置运行故障的出现,应定期对继电保护装置开展全面性检验工作,准确评估装置运行工况,消除装置潜伏故障,强制退役临近使用寿命与存在严重质量缺陷的装置。此外,不同种类继电保护装置的检验期限有所不同。例如,要求每五年对各类型电流互感器进行部分检验,每4年对变压器瓦斯保护装置进行全部检验,每年与每5年分别开展一次回路绝缘测定试验与绝缘耐压试验,每3-5年对高频保护通道设备与高频阻波器进行全面检验。

结束语

综上所述,为保障供电可靠性与用电安全,预防和减少电力运行事故的发生。因此,电力企业应推动继电保护运行维护体系的自动化、智能化与信息化发展,落实科学高效的运行维护策略,积极探索适应现代电力系统的继电保护运行维护机制,以推动我国电力事业的健康、可持续发展。

参考文献:

[1]张梁.智能变电站继电保护系统所面临的若干问题探讨[J].电子制作,2019(22):99-100.

[2]万鹏.智能变电站继电保护安全措施探析[J].技术与市场,2019,26(10):148-149.

[3]易婷.智能变电站扩建工程继电保护安全措施研究[J].技术与市场,2019,26(8):108-109.

猜你喜欢

电力自动化继电保护
继电保护系统在10kV配电站中的应用
智能变电站继电保护设备的运行和维护研究
智能变电站继电保护设备的运行和维护研究
继电保护技术在电力系统中的应用现状探讨
智能变电站继电保护系统可靠性分析
信息技术下电力工程中的电力自动化技术应用
电力自动化中电力远动测试系统的应用探析
刍议供电企业电力自动化
110kV变电站继电保护故障及措施探讨
针对电力系统实现自动化的认识