APP下载

曲流河储层精细等效表征新方法及在开发中的应用
——以渤海湾盆地C油田为例

2021-08-03郭敬民马佳国孙恩慧刘博伟张小龙

油气地质与采收率 2021年4期
关键词:油藏水平井沉积

郭敬民,马佳国,孙恩慧,刘博伟,张小龙

(中海石油(中国)有限公司天津分公司渤海石油研究院,天津 300452)

储层构型研究的最终目的是建立精细等效表征地质模型,以提高油藏数值模拟的准确性。随着油田开发的深入,生产井距逐渐缩小,三级构型单元对小范围内流体运移规律的影响愈发凸显。自1985 年MIALL 提出构型要素分析方法[1],中国学者对曲流河不同级次的研究取得了大量的成果[2-5],对曲流河储层建模中河道、点坝级次的建模方法也日趋成熟[6-10],对于点坝内部侧积层的表征也开展了大量研究。周银邦等基于侧积层的形态开展了侧积层定量表征及侧积体内剩余油分布模式的研究[11],范峥等通过三维向量场的侧积面模式结合局部网格加密实现了对侧积层的表征[12],孙红霞等分析了正交网格与倾斜网格在表征侧积层中的优缺点并提出了有针对性的表征方法[13],霍春亮等提出了通过修改传导率的方式对尺度较小侧积层进行精细表征的方法[14]。总结了常规侧积层表征方法的优势及不足,在此基础上提出了一种新的侧积层等效表征方法,新方法模拟的侧积层的厚度、形态较其他方法更加符合侧积层的地下真实特征,弥补了以前方法中存在的厚度过大、扭曲网格、受网格影响大等不足。以渤海湾盆地C 油田为例,搭建曲流河三级构型等效表征模型,并结合油藏数值模拟方法,分析了侧积层对无注水油田剩余油分布的影响,总结了两类水平井在侧积层影响下的流体运移模式,为后续井位部署提供了地质依据。

1 区域地质概况

渤海湾盆地C 油田位于沙垒田凸起中部,为发育于古基底之上的披覆背斜构造,圈闭幅度低,背斜两翼地层倾角约为3°,断层不发育。油田主力含油层段为明化镇组,曲流河相沉积砂体分布广泛且连片发育。该油田主力砂体内部水体能量大,一直依靠天然能量开发,因此,C 油田一直采用水平井大泵抽的开发模式,并取得了很好的开发效果。随着油田开发阶段的推进,水平井井网逐渐加密,井距达130 m,甚至更小,该井距已接近、甚至小于部分砂体上点坝的尺度,点坝内部三级构型单元对流体运移的影响日益凸显。为了满足油藏精细研究要求,开展三级构型侧积层的刻画与表征。

2 地下侧积层刻画

通过单井解释、连井对比及经验公式推导,在点坝内部构型模式指导下,对研究区内部发育的侧积层的分布形态进行刻画。根据曲流河坝面发育形态,点坝内部侧积层构型模式可划分为水平斜列式、阶梯斜列式及波浪式3 种类型[15],渤海湾盆地C油田明化镇组沉积时期,湖盆逐渐扩张,气候较为湿润,水位较稳定,洪水期水量充足,点坝发育且表面较为平缓,侧积层的发育模式整体以水平斜列式为主。

2.1 侧积层识别

结合现代沉积模式及露头剖面,对C 油田明化镇组典型取心井进行观察。分别在C1,C4,C5和C7井识别侧积层16 套,为研究区侧积层倾角、厚度及频率等研究提供了直接依据。研究区侧积层主要岩性为灰色、灰绿色泥岩(图1a),侧积层上、下均为以分选较好的细粒砂岩为主的点坝(图1b)。通过统计,研究区侧积层厚度为15~35 cm,较薄;侧积层的倾角均较小,主要为3°~12°,大部分在7°以内。结合点坝规模与取心井位置分析,单个点坝内部发育2~6套侧积层,侧积层发育频率较低。

图1 C5井岩心扫描照片Fig.1 Core photos of Well C5

电测特征方面,通过对取心井的岩电归位,在取心井侧积层对应位置,厚度大于20 cm 的侧积层可在自然伽马曲线上识别到明显的回返特征,据此在非取心井进一步识别。水平井资料在侧积层的刻画中发挥了重要作用,根据研究区侧积层倾角较小的特点,横穿点坝的水平井与侧积层接触范围更大,电测响应特征更易识别。水平井钻遇的侧积层主要表现为:在稳定低幅自然伽马曲线及高幅电阻率曲线中,发育一套自然伽马曲线表现为尖峰状回返,密度及高频相位电阻率曲线呈轻微回返,钻时数据呈短暂尖峰特点的侧积层。

2.2 井间刻画

侧积层的刻画主要依靠井震结合。研究区埋深较浅,地震资料频带较宽且品质较好,通过地震属性融合切片可识别平面呈“珠状”展布的点坝砂体(图2a)。通过全区砂体地震切片统计得知,研究区点坝宽度为400~700 m,河道曲率为1.5~2.5,根据河道特点,LEEDER 提出的曲率大于1.7的河道经验公式在研究区是适用的[16]。结合井上识别得到河流满岸厚度,约为6 m,计算可知,研究区河流满岸宽度为90~120 m,侧积层宽度为60~80 m,点坝内部侧积层倾角约为4.6°。

充分利用海上油田水平井较多的资料优势,结合斜井资料,进行斜井-斜井、斜井-水平井研究,开展井间侧积层识别与刻画(图2b)。根据侧积层沉积机理,侧积层倾向与河道方向垂直,平面形态近似于点坝形态,结合平面河道与点坝的展布形态,在沉积微相平面图上刻画侧积层的分布(图2c)。

图2 水平井与斜井联合刻画侧积层分布Fig.2 Distribution of lateral accretion beddings described based on horizontal wells and inclined wells

研究区侧积层发育广泛,单个点坝内部发育2~6 套侧积层,多数点坝内部发育侧积层,部分规模较小的点坝内部未见明显侧积层响应。

3 三级构型表征方法

3.1 常用侧积层表征方法及不足

常用的侧积层表征方法包括充填网格法、断层表征法和网格边界表征法3 类,笔者在C 油田的侧积层表征过程中发现,由于研究区侧积层倾角较小、厚度较薄,这3类常用方法在适用性上均存在一定不足。

充填网格法是目前各油田使用最为普遍的一种三级构型表征方法[11]。通过地质研究确定侧积层面在模型中位置,对侧积层面所贯穿的网格进行泥岩充填,结合网格加密手段,实现侧积层在点坝中的嵌入。研究区侧积层厚度约为0.2 m,而模型尺寸主要为20 m×20 m×0.5 m,为了保证侧积层密闭性,部分区域需要网格重叠,表征的侧积层厚度远远大于真实侧积层厚度,模型内模拟侧积层厚度大于5 m,且占用较多网格空间(图3a),大大增加了模型与水平生产井的接触长度;另一方面,通过加密网格方法可以减少侧积层的厚度,但对于较大的砂体模型,包含数十个点坝砂体,相对应的需要建立数十个加密区域,后期模型进行油藏数值模拟过程中,易导致结果不收敛问题。

断层表征法是通过在点坝内部建立断层的方法等效表征侧积层,当前普遍使用的方法是在Petrel软件中通过pillar工具生成类似侧积层形态的断层面,其优势是不占用网格空间,厚度上更接近于地下真实侧积层厚度,油藏数值模拟中可通过修改断层传导率灵活控制侧积层遮挡能力[17]。由于研究区侧积层倾角较小,且侧积体内发育2 套以上侧积层,使用低角度断层表征多套侧积层时,网格被断层拉扯出现严重畸变(图3b),导致负网格无法进行后续的油藏数值模拟。

图3 常规方法表征侧积层Fig.3 Lateral accretion beddings characterized by conventional methods

网格边界表征法是近些年开始被普遍使用的一种方法[14],该方法是通过修改网格单侧的传导率参数来表征侧积层。该方法相比较于前两种方法具有显著优势,不占用网格且对网格形态不产生干扰,更加接近地下真实侧积层的厚度特征,在油藏数值模拟中可通过修改传导率或传导率系数来调整侧积层遮挡能力。该方法在研究区的应用过程中表现出两点不足:①该方法受网格尺寸影响较大,当目标模型使用的网格尺寸较大时,表征的侧积层形态与真实侧积层差别较大(图3c)。②在油藏数值模拟中,该方法表征的侧积层后期修改难度大。

3.2 基于沉积域网格的侧积层表征方法

针对现有方法在研究区的不适用性,笔者调研中外各类表征方法,最终选取SAMITA 等提出的沉积域网格方法[18],该方法继承了过往各方法中的优势,且克服了各类方法中的不足,可以在数值模拟过程中对遮挡能力进行灵活的调整,满足当前油田需要。

3.2.1 沉积域网格方法原理

沉积域网格方法应用在新的基于体积方法模型中,基于体积方法模型是由SOUCHE 等提出的[19],该模型的主要目的是应对复杂的地下断层结构,对于各类形态、各类角度的断层均可以很好地适用。沉积域网格使用基于扁平结构模型的非结构网格,在地震层位、断层解释及地质分层资料分析的基础上,确定各类层面之间的交切关系;然后搭建模型框架,确定各类层面在模型中的位置,最后,进行沉积等时拉平,根据断层与等时面的交切关系对模型进行网格化,并将断层所经过的网格使用沉积域非结构化网格替代,实现对切割网格的断层面的表征[19]。

3.2.2 沉积域网格等效表征侧积层方法及优势

利用沉积域网格精确表征层面的优势,对研究区点坝内侧积层进行等效表征,沉积域网格等效表征侧积层方法包括3步:①搭建研究区地层框架,确定各点坝及河道的位置,侧积层的范围不可超出点坝的展布范围,一般为点坝范围的2/3 左右,结合各个点坝内部侧积层发育的频率,合理安排点坝内侧积层之间的三维空间间距,根据研究区侧积层各类参数,在点坝内通过VBM 模型的断层建立渤海湾盆地C油田曲流河储层的侧积层模型(图4a)。②在已完成的模型框架内,根据侧积层面、断层面、沉积等时面的展布范围,进行网格化处理,模型整体使用结构化网格,在网格化之后,识别侧积层面、断层面经过网格的位置,并将侧积层面、断层面经过的网格转化为沉积域非结构化网格,用被劈分后的非结构化网格之间的平滑面等效表征侧积层,其模型镂空剖面参见图4b。③在已完成的网格下进行各类属性模型的建立,建立过程中,可按常规相控建模思路,利用点坝与河道进行各类属性的相控插值。模型中结构化网格按照常规方法进行插值,对于被侧积层面切分得到的两个非结构化网格,可根据地质认识分别设置不同的属性值。

图4 沉积域网格构建的侧积层模型Fig.4 Depogrid-based model of lateral accretion shale beddings

基于沉积域网格侧积层表征具有明显优势:①该模型中所有网格与地质层面正交,与常用的角点网格相比,网格形态不受断层形态影响[18],避免了断层扭曲网格现象的产生,可以很好地表征复杂的断层交切结构,这在常规角点网格表征时是很难实现的。②模型内侧积层不受网格尺寸影响,空间展布上不占用网格,厚度更接近侧积层在点坝中的比例,形态光滑,与地下真实侧积层的三维向量场特征更为相似。并且在各类属性建模当中,可根据侧积层两侧不同增生体的物性情况,为侧积层两侧的网格设置不同的属性值。

3.2.3 对油藏数值模拟结果的影响

使用该方法建立的地质模型可通过最新的Intersect 数值模拟器进行油藏数值模拟。在渤海湾盆地C 油田主力含油层段边水油藏的数值拟合中发现,靠近侧积层的水平采油井在充填网格法的模型中井底压力恢复速度略慢(图5),而在新方法建立的模型中压力恢复特征更符合实际情况。

图5 不同方法表征的侧积层导致井底压力恢复时间的差异Fig.5 Difference in recovery time of bottom hole pressure caused by lateral accretion shale beddings characterized by different methods

分析其原因为:常规方法表征的侧积层为阶梯状,流体贴近侧积层流动时,运移路径为正常的1.2倍左右,在数值模拟的剖面中,可观察到含油饱和度分布呈锯齿状(图6a),侧积层面两侧网格含油饱和度的值无法劈分,而通过新方法表征的侧积层,由于网格被侧积层面劈分为两个独立非结构化网格,两侧网格含油饱和度不同(图6b),含油饱和度的空间分布主要与侧积层的位置有关;由于侧积层形态平滑,流体沿非结构化网格运移,流体运移的路径更短(图7),更接近于真实情况。新方法表征的侧积层在油藏数值模拟中的情况更加符合地下真实情况。

图6 不同方法表征的侧积层模型的数值模拟结果Fig.6 Numerical simulation results of lateral accretion shale bedding model characterized by different methods

图7 充填网格法与新方法模拟的侧积层周围流体运移的差异Fig.7 Difference in fluid migration between lateral accretion beddings with filling grid method and those with new method

4 应用效果分析

4.1 建立三级构型尺度地质模型

基于沉积域网格方法对渤海湾盆地C油田明化镇组曲流河储层进行精细地质建模。其步骤包括:①在前期精细构型研究的基础上,确定点坝分布位置,根据井上资料,以点坝范围为控制,完成侧积层在空间的定位。②生成模型空间包络框架,进行等时层面的拉平,确定侧积层与各层面之间的位置关系。③依据等时层面位置进行网格化,将框架内空间劈分为与等时层面正交的网格。④在侧积层所在位置布置沉积域网格,替换已有的结构化网格,劈分开侧积层面经过的所有网格,从而得到侧积层面。

在此基础上,建立孔隙度、渗透率和含油饱和度属性模型,并开展油藏数值模拟对砂体上各生产井位进行生产动态历史拟合[20-24]。通过结合测井资料及动态资料调整侧积层传导率,精细控制侧积层的遮挡能力,新模型的油藏数值模拟精度较老模型显著提高[25-27]。

4.2 强底水油藏中侧积层对水平井生产的影响

基于三级构型的精细表征模型,结合水平井实际生产情况开展研究,根据实际模型拟合结果,通过机理模型进行验证,总结了依靠天然能量开发的油藏中,水平井在侧积层影响下的两类流体运移模式。模式一:当水平生产井平行于侧积层布走向井且未钻穿侧积层时,根据数值模拟结果,若侧积层遮挡能力较弱,水平井的井控储量受侧积层的影响较小(图8a);若侧积层遮挡能力较强,水平井的井控储量因受侧积层遮挡而变少,水平井波及范围减少(图8b)。由此导致水平井投产后含水率上升速度较快,投产效果较差。模式二:当水平生产井垂直侧积层走向并钻穿多套侧积层时,根据数值模拟结果,水平井动用了更多的储量,增加了水平井的波及范围(图9a),具有较好的投产效果,并且,从数值模拟平面切片中可以看到,水平段受侧积层影响各段分别动用点坝内不同的侧积体,在油田高含水期,可结合水平井各段水淹差异分析进行分段堵水,提高水平井开发效果(图9b)。

图8 油藏数值模拟结果剖面Fig.8 Profile of numerical reservoir simulation results

综合分析认为,在侧积层发育的曲流河储层中,部署水平井时,在井网设计允许的情况下,水平段尽量垂直于侧积层倾向,避免侧积层导致的水平井波及范围受限,通过水平井斜穿侧积层,动用点坝内部不同增生体内部的剩余油,从而更好地提高水平生产井的投产效果。

5 结束语

渤海湾盆地C油田曲流河储层三级构型地质建模实践表明,沉积域网格在等效表征侧积层方面具有很大的优势,新方法模拟的侧积层的厚度、形态较常规方法更加符合侧积层的地下真实形态,同时也克服了常规方法扭曲网格、与井上资料不匹配及受网格尺寸影响大等问题。通过油藏数值模拟,提出了在侧积层遮挡能力较强的井区部署水平井时,水平段尽量垂直侧积层走向钻穿侧积层,增加单井动用储量。

猜你喜欢

油藏水平井沉积
电沉积新型纳米复合MCrAl(Y)涂层的研究进展
醇基电解液中锕的电沉积条件
三塘湖油田马中致密油水平井大修技术研究与实践
选择性电沉积方法用于回收锂离子电池中的钴和镍
深层超稠油油藏蒸汽吞吐后转汽驱实验研究
页岩油藏提高采收率技术及展望
非均布导流下页岩气藏压裂水平井产量模拟
复杂断块油藏三维地质模型的多级定量评价
水平井提高油砂SAGD井组后期开发效果研究
低效水平井防砂治理技术