APP下载

γ-巯丙基三乙氧基硅烷对饱水木质文物的脱水定型机理研究

2021-08-02周逸航陈雪琪胡东波

文物保护与考古科学 2021年6期
关键词:木质素木质水解

周逸航,陈雪琪,王 恺,胡东波

(1.北京大学考古文博学院,北京 100871;2.北京大学城市与环境学院,北京 100871)

0 引 言

饱水木质文物的脱水定型是该类文物最为核心的保护问题,国内外文物保护工作者尝试了各类加固材料,包括天然树脂[1-4]、热固性树脂[5-6]、丙烯酸类树脂[7-9]、聚乙二醇[10-12]、糖及糖醇[13-16]、纤维素衍生物等多糖[17-19]、乙二醛[20-21]、水解角蛋白[22-23]、合成低聚酰胺[24]、类木质素单体聚合[25-26]、超分子聚合物[27]等。上述材料在渗透性、吸湿性、耐候性、加固效果、尺寸稳定性、可再处理性中的某些方面存在着不同程度的优缺点,因此更为完善的材料有待尝试和开发。

有机硅氧烷是一类文物保护中常用的材料,经水解缩聚,其形成的聚合物兼具着有机与无机高分子的性质。由于其优异的渗透性、稳定性、耐候性等性能,较为广泛地应用于砖石类文物[28-33],土遗址[34],金属类文物[35-37],骨角质文物[38]等。童华等[39]使用有机硅溶胶-凝胶法对饱水木质文物脱水定型进行了尝试,结果印证了有机硅溶胶具有良好渗透性和加固效果的特点,其加固程度和细胞腔的填充程度和处理时间密切相关,在尺寸稳定性方面,对于在高填充程度下线性收缩率<6.5%。这一方法主要的不足在于高填充率下才能够实现较为理想的尺寸稳定性。波兰的Magdalena Broda课题组采取了更为缓慢温和的缩聚条件而非催化形成溶胶-凝胶过程,利用甲基三甲氧基硅烷乙醇溶液处理饱水木质文物,取得了良好的尺寸稳定性,其抗缩率ASE达到69.4%~94.5%,综合考虑尺寸稳定性、外观和抗菌性,聚硅氧烷材料具有潜在的研究价值[40],进一步研究表明甲基三甲氧基硅烷的加固效果随木材的降解程度而有所不同,对高度降解的木质文物更为有效[41],且能够显著降低木质文物的平衡含水率和吸湿性。对含有不同功能基团的硅氧烷加固效果比较研究发现,γ-巯丙基三甲氧基硅烷能够提供最佳的尺寸稳定性,其抗缩率最高可达98%,相对而言含有高度疏水的长链脂肪链或吡啶环的硅氧烷效果较差[42]。但遗憾的是这一研究并未对γ-巯丙基三甲氧基硅烷的特殊性进行详细的解释。

上述研究所获得的最佳的硅氧烷材料为γ-巯丙基三甲氧基硅烷并非偶然。在造纸工业硫酸盐法制浆过程中利用碱性条件下硫离子的亲核进攻来降解木质素[43-44],在海洋环境出水的木质文物中,木质素结构中也存在着来源于硫离子与木质素亲核反应形成少量硫醇、硫醚及进一步形成的二硫键[45-47]。这些现象均表明硫离子对于木质素而言是优秀的亲核试剂,类似的硫醇化合物同样可与木质素形成化学键合,是一种尚未受到关注的研究思路。

在上述研究的基础上,以γ-巯丙基三乙氧基硅烷对饱水木质文物脱水定型为例,进一步探讨巯基与饱水木质文物的作用机理。在实验条件方面,本研究期望降低填充作用对脱水定型的贡献,因此,对Broda课题组研究中的实验条件作了一定调整以获得较低增重率的实验结果。

1 实验材料与方法

1.1 实验材料

饱水木质文物样品来自南海一号出水的碎木块(马尾松,为船舷、舱隔板、铺板等船体结构主要材种,也是华中、华南地区广泛分布的代表性针叶材),最大含水率为517%,属中等腐朽程度,显微观察可知其主要病害成因为侵蚀细菌腐蚀[48],因此内外腐蚀程度相对均匀。为保证实验材料尽可能相同,将外观均匀的同一木块切分为约10 mm(轴向),5 mm(弦向),5mm(径向)的小块试样作为不同实验条件下的平行实验块。主要实验试剂为γ-巯丙基三乙氧基硅烷(MPTES),纯度98%,九鼎化学;甲基三乙氧基硅烷(MTES),纯度98%,迈瑞尔;无水乙醇,AR,通广;一水合柠檬酸,AR,西陇。

1.2 处理条件

饱水木材实验块,先经3%一水合柠檬酸溶液浸泡一周脱去内部硫铁化合物(处理后SEM-EDS及XPS均未检出Fe,但仍含有有机硫化物),蒸馏水反复浸泡至近中性,再经50%乙醇、无水乙醇浸泡,期间不断更换无水乙醇,直至浸泡后溶液密度<0.800 g/mL(乙醇密度为0.785~0.795 g/mL),实际脱水处理后溶液密度为0.798 g/mL,通过计算能够满足控制实验条件中水分含量的需要。脱水预处理后的实验块在50 ℃下浸泡于不同条件下的MPTES乙醇溶液中(溶液与实验块体积比10∶1),分别在不同的处理时间、质量分数、水分含量、与MTES复合配比条件下进行处理实验,具体参数见表1。

表1 实验条件Table 1 Experimental conditions

(续表1)

1 mol硅氧烷完全水解并缩聚所需的1.5 mol H2O,在表1中定义为1.5倍当量的水,不缩聚的情况下完全水解则需要3 mol水,即3倍当量的水。处理后的样品在乙醇中50 ℃浸泡24 h洗去多余试剂和水,最后所有样品(包括未处理的对照样)在乙醇饱和的条件下室温[15~20 ℃,相对湿度(55±5)%]自然干燥。

广西健身休闲产业尚处于初步发展阶段,还有很大的提升空间。广西健身休闲行业目前存在自主经营、委托经营和合作经营三种模式。2016年,广西实施体育赛事兴旺工程,改革赛事引进机制,着重在有重大影响力的赛事上发力;创建多元主体办赛机制,引导社会力量积极参与,探索政府购买赛事服务等多种途径;探索建立各级联动办赛机制,形成自治区、市、县(市、区)三级联动举办重大赛事机制。自治区体育局与阿里体育、华奥星空等区外优秀体育组织建立战略合作关系,在赛事引进、场馆运营、体育云平台、体育大数据等方面开展全方位合作。

1.3 增重率与收缩率测定

由于小块试样的长度测量精度低,误差大,因此采用排水法测定处理前后实验块的体积,通过分析天平间接测定,质量精确至0.000 1 g,并计算体积收缩率;干燥过程在常温常压下自然进行,待24 h后质量稳定(<0.000 5 g)读取干燥质量,增重率的测定根据对照实验块的气干密度和相应实验块饱水体积估计处理前的气干质量,经处理干燥后的质量由分析天平直接测定,并计算增重率。

1.4 傅里叶变换红外光谱分析

利用衰减全反射傅里叶变换红外光谱(ATR-FTIR,Thermo Fisher Nicolet IS50)表征其反应前后基团的变化,测试范围4 000 cm-1~400 cm-1。为比较基团相对含量变化,采用最为稳定的1 508 cm-1处木质素芳环吸收峰作为标准对测试后的光谱进行标准化处理。

1.5 扫描电镜观察及能谱分析

利用HITACHI TM3030扫描电子显微镜对处理前后的干燥样品进行微观形貌观察,采用低真空模式,工作电压15 kV,能谱分析计数时间大于60 s,直至获得较为清晰的内部截面元素分布图。

2 实验结果

2.1 增重率与收缩率

由图1和图2可知MPTES的增重率随着处理时间和质量分数增加、体积收缩率逐步减小,在50%质量分数下处理5 d体积收缩率可降低至3.5%,相比未经处理的样品(29.5%)具有理想的脱水定型作用,同时其增重率约50%,即气干密度由0.17 g/cm3提升至约0.25 g/cm3,表明在实验块内部少量的聚硅氧烷即有效地起到维持脱水干燥过程尺寸稳定性的作用。进一步由图3可知水分对于硅氧烷的水解和缩合起到关键的作用,相比于缺乏H2O的条件下,额外加入硅氧烷水解并缩聚所需的水分能够有效地提高缩合效率,并且H2O的含量越高,增重率显著提高,而体积收缩率逐步降低。但过量的水分会导致水解和缩聚速率进一步加快,当H2O含量达到15倍当量时,处理后观察到大量聚硅氧烷沉积,增重率相比于其他样品提高了约1倍,并且因表面沉积有少量聚硅氧烷而表现为-2.4%的收缩。尽管在这一条件下脱水定型的效果十分显著,但硅氧烷过快地缩聚形成沉淀不利于实现对较大木质文物均匀性加固,同时表面形成的聚硅氧烷沉淀需要额外的清理操作,在实际应用中应当避免过量的水分。从体积収缩率来看,加入3倍当量的H2O(即完全水解所需的量)足以满足尺寸稳定性的需要。

图1 增重率、收缩率与时间关系Fig.1 Weight percentage gain and shrinkage in relation to treatment duration

图2 增重率、收缩率与质量分数关系Fig.2 Weight percentage gain and shrinkage in relation to MPTES concentration

图3 增重率、收缩率与水分含量的关系Fig.3 Weight percentage gain and shrinkage in relation to water content

此外,不同配比的MTES和MPTES混合液(总质量分数30%)的处理结果(图4)表明增加MPTES含量能够显著地提高增重率和尺寸稳定性,由于两种试剂在结构上的差异在于烷基侧链,可能间接反映了巯基的强亲核性能够使得其与木质素反应,从而改善聚硅氧烷与木材之间的界面结合,从而提高增重率和加固效果。

图4 增重率、收缩率与两种试剂配比关系Fig.4 Weight percentage gain and shrinkage in relation to the ratio of two reagents

2.2 SEM-EDS分析

尽管各个样品处理条件不同,但对于每一变量控制组而言变化趋势一致,其中水分控制组的微观形貌变化最为显著,因此将其作为代表讨论。图5中从左至右的样品分别对应于图3中增重率由低到高的各样品,可以观察到,增重率较低的样品次生壁发生一定程度的收缩、易与胞间层分离并存在轻微的变形,并且由于次生壁轴向的收缩导致次生壁略低于胞间层,上述现象在增重率较高的样品中基本得到抑制。在水分条件大为过量的样品12的细胞壁上可以观察到明显的聚硅氧烷颗粒沉积,表明过量水分会导致缩聚的快速进行,可能不利于木材的均匀加固。此外,未经处理的样品则产生了明显的干缩裂隙,而经硅氧烷加固后的样品均未产生明显的裂隙(图6)。从细胞壁内元素分布(图7)可以看出,C、O、Si、S元素的分布一致,Si与S元素均匀地分布于细胞壁内部,而在样品细胞腔内均未观察到聚硅氧烷的大量沉积,并且在图5高倍率下的SEM图像中仍然可以观察到侵蚀细菌腐蚀产生的微小孔洞,表明聚硅氧烷的加固作用不以填充作用为主,聚硅氧烷与木材细胞壁的亲和性和结合能力十分理想,对木材残余细胞壁可能起到了交联的作用,加固后的木质文物由于细胞腔完整保留而具有良好的通透性和可再处理性。

图5 不同增重率样品SEM微观形貌(从左至右水分当量依次增加、增重率依次增加)Fig.5 SEM images of the samples of different weight percentage gains (increasing orderly from left to right)

图6 未经处理样品的干缩裂隙与处理后样品SEM形貌Fig.6 Cracks and shrinkage of the untreated sample formed upon drying compared to the intact appearance of the treated sample

图7 处理后细胞壁内元素分布Fig.7 Elemental distribution of cell walls of the treated sample

2.3 外观

图8 处理前后外观变化Fig.8 Appearances of the samples before and after the treatment

2.4 红外光谱分析

通过红外光谱对MPTES水解程度和巯基与木质素反应情况进行表征。由于水分是水解和缩聚过程中最重要的影响因素,并且在实验过程中仅观察到水分条件会显著影响到缩聚效率。因此分别考察了不添加水、加入水解并缩聚所需最低限的水(1.5倍MPTES当量)、仅水解所需最低限的水(3倍MPTES当量),以及远过量的水(15倍MPTES当量)的样品及空白样品的红外光谱作为缩聚程度的代表。为了提高谱图间的可比性,对谱图中最为稳定的木质素芳环吸收峰(1 508 cm-1处)的吸收强度进行标准化,对所有数据点相对吸收强度进行缩放(相当于图像的纵向拉伸),图9~11中所有光谱有关木质素芳环的吸收峰包括1 420 cm-1、1 452 cm-1、1 508 cm-1和1 601 cm-1一致性良好,表明数据的可比性和在此基础上探讨官能团相对含量变化的可行性。

如图9所示,随着反应体系中水分当量的增加,可以观察到1 026 cm-1、800 cm-1处Si-O-Si反对称和对称伸缩振动吸收峰以及689 cm-1处Si-O-Si弯曲振动吸收峰[49]的增强1 026 cm-1处(与木材中的C-O-C伸缩振动吸收峰完全重叠),表明缩聚反应的发生,并且水分含量的提高能够显著地提高缩聚效率,进而影响到加固效果。不添加水的样品在1 026 cm-1处吸收峰相对强度与未处理样品一致,表明基本没有形成Si-O-Si,同时也说明缺乏水解步骤的情况下后续缩聚反应难以进行。15倍MPTES当量水分的样品在1 026 cm-1和689 cm-1处的强吸收与外观上存在的聚硅氧烷沉淀及较高的增重一致。如图10和图11所示,随着浓度的增加和处理时间的延长,上述有关硅氧烷缩聚的吸收峰逐渐增强。因而对于水分受到一定程度限制的1.5倍和3倍MPTES当量水分的样品,缩聚程度在相同其他条件下,受到处理时间和浓度的控制,而饱水木质文物在溶剂饱和的条件下是稳定的,适当减缓处理速度并延长处理时间是有利于加固的均匀性,因此实际处理过程中可进一步根据需求增加处理时间和调整浓度。

图11 不同浓度处理的木材红外光谱Fig.11 FTIR spectra of the samples treated with different concentrations

此外,Si-O-C的反对称和对称振动(1 099、1 074、956 cm-1)在各图谱中均有较弱的吸收,表明水解并非完全,或可能存在一定程度的硅氧烷与木材组分之间的缩聚。尤其值得关注的是图9中未添加水的样品(10号样品),在Si-O-Si吸收峰基本缺乏的情况下Si-O-C相关的三个吸收峰均明显存在,可能反映了巯基与木质素的键合,使得来自未水解缩聚的硅氧烷Si-O-C吸收峰在图谱中有所体现。对比图10中仅处理1天的样品(1号样品),其Si-O-C吸收峰均十分微弱,远不及上述图9未添加水分的处理5天的样品谱图中Si-O-C吸收峰相对强度的增加,由此对物理吸附(未洗净试剂)导致Si-O-C引入的可能性基本予以否定。

图9 不同水分当量下处理前后木材红外光谱Fig.9 FTIR spectra of the samples of different water conditions

图10 不同处理时间下的木材红外光谱Fig.10 FTIR spectra of the samples of different treatment durations

另外值得注意的是在芳环相关的吸收峰一致的情况下,1 218 cm-1处愈创木基结构单元上芳醚反对称伸缩振动发生了一定程度的下降,并且随着浓度增加、时间延长和水分当量增加均表现出单调下降的趋势,并与谱图中反映的聚硅氧烷含量趋势相反。相较而言,邻近的1 264 cm-1愈创木基环呼吸振动则基本没有变化。进一步推测MPTES上的巯基对木质素结构中侧链的α位碳发生了Michael加成反应,导致部分芳香烷基醚位点的取代(具体机理将在讨论部分详细讨论)。此处红外光谱中所观察到的芳醚吸收峰随时间和浓度的变化不难理解,反映了一级反应动力学特征,而随水分的增加则可能因溶液极性的增加而促进反应中间体的形成和稳定性提高,从而提高了反应速率常数。

3 讨 论

3.1 木质素-巯基反应机理

在造纸工业硫酸盐法制浆过程中木质素与硫离子的反应机理基本明确[43-44],参考上述机理,在碱性条件下巯基与木质素的反应主要按照图12中所示的反应机理进行,其中应当以α取代为主。在α取代反应过程中,首先在碱的作用下酚负离子转变为醌甲基化合物,第二步巯基负离子经Michael加成反应连接到木质素结构单元中的α位并恢复环的芳香性;γ取代则是在木质素结构单元中的α位为羰基的情况下,γ位碳上的羟基发生消除生成不饱和酮,同样再经Michael加成得到γ位取代产物。这一反应历程与硫酸盐法制浆过程中木质素降解前两步完全类似,但不同的是在硫酸盐法制浆过程中,生成的α或γ位的硫醇负离子会进一步进攻β位,使得木质素结构中最主要的β-O-4等结构断裂,进而导致木质素的降解。而当使用硫醇作为初始的试剂时,生成的硫醚不具有邻位亲核进攻的能力,并且相比于硫酸盐法制浆反应条件十分温和(近中性),因此不会造成木质素的降解。在海洋环境下埋藏的木质文物也存在着有机硫化物[45-47],这些化合物是由于硫酸盐还原菌产生的硫化氢与木质素反应而得,但由于木材本身及其腐朽过程均会使得木质素所处环境呈现酸性,因此木质素与巯基的反应过程不同于硫酸盐法制浆,而是通过图13所示的酸性条件下的反应历程进行。由于芳环的共轭作用使得α碳正离子具有较高的稳定性,在质子的作用下,α位的取代基离去形成碳正离子,共振形成醌甲基化合物的中间体,巯基的孤对电子进攻缺电子的α位碳,恢复环的芳香性并质子离去得到相应产物。此外,不仅是原本的木质素结构能够发生Michael加成反应,木质素氧化形成的邻苯醌具有与上述反应历程中类似共轭羰基,同样可与巯基发生Michael加成反应,在芳环的6位(酚羟基邻位)引入相应取代基并恢复芳香性。从红外光谱中芳醚吸收峰的下降来看,反应很可能主要生成了α位取代产物并同时导致少量芳醚键的断裂。

图12 碱性条件下木质素与巯基反应机理Fig.12 Proposed reation mechanism between mercapto group and lignin under alkaline condition

图13 酸性条件下木质素与巯基反应机理Fig.13 Proposed reation mechanism between mercapto group and lignin under acidic condition

对于未与木质素反应的硫醇在弱氧化剂例如氧气的作用下会缓慢生成二硫键,进一步增加了聚硅氧烷结构中的交联位点,有利于提高材料自身的稳定性和性能,例如在天然蛋白质和人造橡胶中普遍利用这一化学键产生交联位点,以提高结构稳定性。因此,目前而言,硫醇类的加固材料对木质文物的安全性尚有保障。若更为谨慎地考虑,也可在后续处理中可以通过与反应活性较高的卤代烷或含环氧基团的试剂(例如与MPTES类似结构的常用硅烷偶联剂KH560,即功能侧链为环氧丙基)将未反应的硫醇消耗生成相应的硫醚化合物,从而避免潜在的风险。

3.2 MPTES对饱水木质文物的加固机理

对于绝大部分的饱水木质文物而言,各组分的降解速率按照半纤维素、纤维素和木质素依次降低,残余的组分主要为木质素和少量纤维素。微观结构上,在次生壁的纤丝内部,木质素和纤维素是相对独立的,两者之间主要通过半纤维素(或称木质素-半纤维素复合体)结合,因此木材细胞壁可以看作一类复合材料,其强度同时取决于各物相的强度及各物相之间界面的结合强度。但是由于微生物的腐蚀,半纤维素的大量损失和纤维素的部分降解,木质素与纤维素之间的结合受到破坏,导致了次生壁强度的严重下降。如图14中纤丝内部,半纤维素的降解可以导致纤维素与木质素间的结合减弱;纤维素降解可以导致纤维素区域内部的结合减弱;若纤维素进一步降解,其相邻木质素区域则因中间纤维素相的缺失而减弱了互相之间的连接,由此产生了三类有待加强的界面结合关系。通常使用的加固材料通过对腐蚀产生的孔隙和细胞腔的物理填充或支撑达到维持尺寸稳定性的作用。对于不含有巯基的有机硅氧烷,可以通过其水解后产生的羟基与纤维素上的羟基形成多位点的氢键作用,研究也表明有机硅氧烷水解后能与纤维素羟基缩合生成Si-O-C键[50],从而除了物理填充作用外,可通过交联作用提高加固效果。由于木质素结构中羟基含量远低于纤维素,前者与聚硅氧烷形成的相互作用力无法与后者相提并论,因此聚硅氧烷对界面的加固作用或交联作用更多地集中于纤维素与纤维素之间的界面。

图14 MPTES加固饱水木质文物机理示意图Fig.14 Mechanism of MPTES on consolidation of waterlogged archaeological wood

随着饱水木质文物腐朽程度的增加,木质素的相对含量显著提升,聚硅氧烷类材料与木材组分间的相互作用随之减弱,而MPTES由于巯基这一强亲核基团的存在,能够与木质素产生一定程度的化学键合,相较而言更有利于加固材料在组分缺失部位的沉积和交联,使得这一材料作为界面相不仅能够提高纤维素与纤维素之间的界面结合力,同时也提高了纤维素与木质素、木质素与木质素之间的界面结合力(图14),从而一定程度上恢复次生壁结构单元纤丝中木质素与纤维素复合结构的强度和整体性,并且在干燥时纤维素与木质素自身的结晶收缩也因交联得到抑制。这一观点或许能够部分解释文献中MPTES的脱水定型效果优于其他硅氧烷试剂的结果[42]。

4 结 论

1) 实验结果中(过量缩聚的除外)最小体积收缩率为3.5%,相应增重率仅为58.9%,表明MPTES能够有效地满足饱水木质文物脱水定型的需要。这一结果印证了文献[42]给出的最佳结果,并进一步得到在低增重的情况下也能够获得较为理想的脱水定型效果。

2) 根据收缩率和红外光谱结果,认为在50 ℃下理想的处理时间应≥5 d(上限可以是形成明显聚硅氧烷沉淀),30%~50%MPTES乙醇溶液(质量分数和水分同时过高易导致分相,应作相应调整),3倍左右MPTES当量的水以满足水解需求,但不宜达到15倍当量。

3) SEM-EDS结果表明在低增重时MPTES以非填充的方式起到加固作用,不填充细胞腔甚至细菌腐朽产生的孔洞,保持了原有的结构,具有良好的通透性和可再处理性。Si和S元素均匀地分布在细胞壁内部,表明材料具有极为良好的渗透性和加固的均匀性。

4) FTIR结果表明在基本无水解、缩聚的条件下,Si-O-C吸收峰的存在反映了巯基与木质素的键合。同时芳醚吸收峰随着水分含量、处理时间、硅氧烷浓度条件以及聚硅氧烷含量的增加呈现单调降低的趋势,反映了小部分芳醚键的断裂及巯基与木质素反应的间接证据。

5) 对巯基-木质素反应和MPTES对饱水木质文物的加固机理进行了探讨,认为MPTES不仅能够提高纤维素与纤维素之间界面结合力,还能够通过巯基-木质素反应提高纤维素与木质素、木质素与木质素之间的界面结合力,从而有效地利用木材残余组分与聚硅氧烷材料提高木质文物的尺寸稳定性。推而广之,其他硫醇类化合物对木质文物而言可能具有潜在的研究前景。

猜你喜欢

木质素木质水解
◎维美德为Mercer Rosenthal公司交付木质素提取生产线
两阶段木质托盘闭环供应链合作策略研究
双盐离子液体处理过程中木质素的结构变化
木质素低共熔溶剂分离、功能材料制备及应用研究进展
熟香新酿
木质餐具的清洁与保养
木质素清洁高效分离研究进展
水解常数及其常见考查方式
盐类的水解考点探究
多彩木椅