APP下载

外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析

2021-07-19于高波金喜军张明聪任春元王孟雪张玉先

作物学报 2021年9期
关键词:外源代谢物抗旱

曹 亮 杜 昕 于高波 金喜军 张明聪 任春元 王孟雪 张玉先

外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析

曹 亮 杜 昕 于高波 金喜军 张明聪 任春元 王孟雪*张玉先*

黑龙江八一农垦大学农学院, 黑龙江大庆 163319

鼓粒期是大豆碳氮代谢最复杂的阶段, 干旱胁迫必然限制鼓粒期大豆碳氮同化、分配和转移, 影响大豆产量的形成。在我们前期的研究中, 明确了外源褪黑素对干旱胁迫下鼓粒期大豆抗旱和碳氮代谢的生理调控效应。本研究通过转录组和代谢组分析来确定褪黑素对大豆干旱条件反应的一些重要的碳氮代谢基因和途径。转录组分析表明, 与干旱胁迫处理相比, 正常供水和干旱胁迫下喷施外源褪黑素处理的大豆叶片共同上调和下调的基因分别有37个和493个。上调的基因中存在着直接和间接参与碳氮代谢的功能基因, 包括正向调控的参与半胱氨酸合成、光合作用、碳水化合物代谢和葡萄糖代谢等途径关键基因。代谢组分析发现, 与干旱胁迫处理相比, 正常供水和干旱胁迫下喷施外源褪黑素处理的大豆叶片共同上调和下调的代谢物分别有17个和43个, 上调的代谢物中绝大部分(14/17)属于氨基酸、脂质、有机酸和碳水化合物, 进一步揭示了外源褪黑素能够提高大豆碳氮代谢与抗旱的能力。结合转录组和代谢组分析发现, 褪黑素通过调节氨基酸代谢和淀粉蔗糖代谢途径, 促进干旱胁迫下b-葡萄糖苷酶基因表达, 提高了L-天冬酰胺和6-磷酸葡萄糖代谢物的含量, 最终提高了大豆的抗旱性。

褪黑素; 大豆; 鼓粒期干旱; 碳氮代谢; 代谢组和转录组

在全球气候变化的大环境背景下, 黑龙江作为我国大豆主要产区受到天气因素影响日益加剧, 干旱是影响黑龙江大豆产业最主要的环境因素[1-2]。根据全球降雨量和温度变化长期数据统计, 干旱胁迫发生的频率和强度每年都在增加, 由此产生的干旱地区也逐年增多[3-4]。已有研究表明, 当大豆遭受干旱胁迫后, 体内的水分平衡被破坏, 并引起气孔关闭和光合速率下降, 叶绿体结构被破坏, 造成光合损伤, 并最终抑制大豆的生长发育[5-6]。鼓粒期是碳氮代谢最旺盛、最复杂的阶段, 而干旱胁迫必然限制鼓粒期大豆生长, 影响鼓粒期大豆的碳氮同化, 改变碳氮积累、分配和转移规律[7]。

褪黑素在植物生长、发育和应激反应中是一种多样化的调节因子[8-10]。褪黑素能够增强干旱胁迫条件下大豆幼苗抗氧化酶活性, 减少ROS的过度积累, 提高渗透调节物质含量, 进而降低膜脂过氧化程度[11];可以减轻干旱胁迫对大豆光合系统造成的损伤, 提高光合特性和叶绿素荧光参数、最终促进大豆的生长[12]。进一步的转录组分析表明, 褪黑素通过调控光合作用、细胞循环、DNA复制、淀粉蔗糖代谢和脂质生物合成来发挥其功能[13]。虽然大量研究已经证实褪黑素能够改善干旱胁迫下大豆生长发育[14], 但大多研究仅从提高抗氧化胁迫能力、改善光合同化和分配的角度分析褪黑素的积极作用, 缺少从调节碳氮代谢角度深度解析干旱胁迫下褪黑素促进大豆发育的分子机制。

本研究通过转录组与代谢组联合分析外源褪黑素调控干旱胁迫下鼓粒期大豆碳氮代谢的可能调控机制, 以期为进一步鉴定其重要的相关基因和蛋白功能、利用基因工程进行遗传改良提供理论基础。

1 材料与方法

1.1 试验材料和设计

以干旱敏感型大豆品种绥农26为供试品种[12], 盆栽用桶直径30.0 cm, 高33.0 cm。为有效控制土壤含水量的同时避免土壤板结, 采用蛭石、珍珠岩和黑钙土按照1∶3∶12 (v/v/v)混合作为基质, 混合培养土含碱解氮72.1 mg kg-1、速效磷14.1 mg kg–1、速效钾173.0 mg kg-1、有机质3.9 mg kg-1, pH 7.1。施肥量为磷酸二铵300 kg hm-2、尿素75 kg hm-2、硫酸钾75 kg hm-2。播种前准备基质过程中, 测量每盆基质的质量和含水量, 计算出基质干重。并通过环刀法测量最大持水量, 以便后续控水过程中准确掌握田间持水量。

试验于2018—2019年在国家杂粮工程技术研究中心(大庆)进行。为了避免雨水淋浇, 所有盆栽均放置在遮雨棚中。大豆种子采用75%的酒精处理2 min, 再用5%的次氯酸钠进行消毒5 min, 用无菌水洗净后播种。每盆播种6粒种子, 均匀排布。待子叶期(Cotyledon, VC)定苗3株, 去除过大或过小的幼苗, 保留长势适中的幼苗。

自播种至鼓粒始期, 采用称重法控制土壤含水量为田间持水量的80%。鼓粒始期记为第1天, 正常供水处理仍保持土壤含水量为田间持水量的80%, 干旱处理通过停止供水逐步使土壤含水量达到田间持水量的50%, 并维持此含水量至处理结束, 凋萎含水量为田间持水量的40%。每个处理100盆, 具体处理设置如下:

正常供水处理(WW), 保持土壤含水量为田间持水量的80%;

干旱胁迫处理(D), 停止供水并于每天18:00称重, 第10天达到田间持水量的50%, 而后补水以维持此含水量;

干旱胁迫喷施褪黑素处理(DM), 在干旱胁迫处理的基础上, 在第11、12、13天夜晚21点喷施浓度为100 μmol L-1褪黑素, 褪黑素见光易分解, 因此选择夜间喷施[15]。

用于转录组和代谢组检测的样品于褪黑素处理后第3天(即鼓粒初期后第16天)取样, 取大豆功能叶片(倒三叶), 液氮冷冻后快速转移至-80℃冰箱保存待分析用。

1.2 测定项目与方法

1.2.1 总RNA分离和转录组分析 本研究使用EASYspin Plus试剂盒, 按照说明提取在正常供水(WW)、干旱胁迫(D)和干旱胁迫下同时进行外源褪黑素处理(DM) 3种条件下, 3个生物学重复的大豆叶片RNA。制备RNA-Seq文库并测序。测序数据已提交至NCBI (https://www.ncbi.nlm.nih.gov/)网站中, 登录号为SRP224918。通过内部perl脚本处理原始reads之后, 使用HISTAT软件将clean reads与大豆基因组进行比对, 使用HTSeq v 0.6.1对比到每个基因的reads进行计数, 使用每一百万个比对上的序列中能够比对到外显子的每一千碱基上的双端序列的个数(FPKM)来确定基因表达水平。使用R语言的“ggplots”安装包分析样品簇之间的相互作用。利用RSEM软件, 依据FDR<0.05和不同条件下表达值FPKM的倍数大于2作为鉴定差异表达基因的指标。此外, 通过SoyBase (http://soybase.org/)和R语言的“clusterProfiler”安装包进行差异表达基因的基因本体论(GO)和KEGG代谢通路富集分析。

1.2.2 代谢产物检测和数据分析 冷冻叶片用氧化锆珠磨样: 1.5 min, 30 Hz。将100 mg样品在4℃下用1 mL 70%的甲醇水溶液, 离心10,000´, 10 min后, 吸收提取物并过滤, 后进行高效液相色谱—质谱分析。利用三重四极线性离子阱质谱仪的多反应监测分析, 利用API 4500 Q trap LC/MS/MS系统对代谢物进行定量。分析条件和详细的操作参数是按照之前的方法完成的。为了进行统计分析, 在分析前对各代谢物的相对峰度进行对数变换, 使其达到正态分布。使用R对规范化数据进行主成分分析。在正交偏最小二乘判别分析(OPLS-DA)的基础上, 根据不同样品中代谢物含量的倍数关系大于2选择差异代谢物(项目中的可变重要度, VIP≥1)。与转录组结果一致, 通过SoyBase (http://soybase.org/) 和R语言的“clusterProfiler”安装包进行差异表达基因的基因本体论(GO)和KEGG代谢通路富集分析。

1.2.3 实时荧光定量qRT-PCR验证 为进一步证实本研究的转录组结果, 使用实时荧光定量PCR(qRT-PCR)分析了所有样品。按照说明书, 使用PrimeScript RT试剂盒, 对转录组分析的RNA样本进行反转录。根据说明, 使用TB Green Premix ExII在实时PCR系统上执行qRT-PCR程序。特异基因引物序列列于附表1。采用2−ΔΔCt法选择基因的相对表达水平, 大豆基因作为内参。

2 结果与分析

2.1 外源褪黑素诱导干旱胁迫下大豆叶片差异表达基因的初步分析

以干旱胁迫(D)为基准, 通过不同条件下大豆叶片转录水平的两两比较, 分析正常供水(WW)与干旱胁迫(D), 和干旱胁迫下同时进行褪黑素处理(DM)与干旱胁迫(D)之间的基因表达差异, 进而揭示外源褪黑素提高大豆抗旱能力的潜在机制。依据经验值, 本研究仅选择所有样品的平均表达值FPKM (每一百万个比对上的序列中能够比对到外显子的每一千碱基上的双端序列的个数)大于1, FDR小于0.05的表达基因。由图1可知, 与干旱胁迫(D)处理相比, 正常供水(WW)处理的大豆叶片有1604个基因上调, 2382个基因下调, 干旱胁迫下同时进行褪黑素处理(DM)的大豆叶片有68个基因上调, 600个基因下调。

为筛选出外源褪黑素提高大豆叶片抗旱能力的相关基因, 首先构建了WW/D与DM/D的韦恩图。与干旱胁迫(D)处理相比, 正常供水(WW)和干旱胁迫下同时进行褪黑素处理(DM)的大豆叶片共同上调和下调的基因分别有37个和493个(图2-A)。进一步对这530个差异表达基因进行无监督聚类分析(图2-B)发现, 与干旱胁迫(D)处理相比, 正常供水处理(WW)和干旱胁迫下同时进行褪黑素处理(DM)的大豆叶片转录组呈现相同的上调和下调趋势, 表明外源褪黑素对大豆叶片抗旱能力的提高与上述差异表达的基因相关。

灰点代表无明显差异的表达基因, 红色和蓝色点分别表示在WW/D和DM/D比较中显著上调和显著下调的基因。WW为正常供水处理, D为干旱处理, DM为干旱条件下喷施褪黑素处理。

Grey dots represent genes without significant differential expressions, red and blue dots denote significantly up-regulated and down-regulated genes in the WW/D and DM/D comparisons, respectively. WW is the normal water supply group, D is the drought stress group, and DM is the foliar application of melatonin under drought stress group.

A: 韦恩图显示了WW/D和DM/D比较之间的共同差异表达基因。B: WW/D和DM/D共同上调和下调表达的差异基因的热图。处理同图1。

A: Venn diagram of the differentially expressed genes between WW/D and DM/D. B: the heat maps of the common differentially expressed genes between WW/D and DM/D. Treatments are the same as those given in Fig. 1.

2.2 外源褪黑素诱导干旱胁迫下大豆叶片差异基因的富集分析

为进一步证明上调基因参与了大豆叶片碳氮代谢过程, 基于值小于0.05对37个共同上调的基因进行GO富集结果的筛选, 主要包括丝氨酸合成代谢过程、含硫氨基酸合成代谢过程、戊糖代谢调控, RNA聚合酶Ⅱ启动子的调控过程, 发现这些上调的基因在生物学过程的值更小, 进一步表明外源褪黑素能正向调控大豆叶片中碳代谢和氨基酸代谢过程。

对这些候选基因进行KEGG代谢通路分析(图4)发现, 富集的通路上调的基因也主要集中在碳氮代谢方面, 包括淀粉蔗糖代谢、氰胺酸代谢、半胱氨酸和蛋氨酸代谢, 下调的基因主要包括脱落酸的生物合成、脂质氧化、活性氧产生和叶片衰老等相关基因, 表明褪黑素可以提高干旱胁迫下大豆碳氮代谢能力, 抑制脱落酸的合成和活性氧的产生, 延缓大豆叶片衰老, 进而表明这些基因能够从调节碳氮代谢角度深度解析干旱胁迫下褪黑素促进大豆发育和产量提高的机制。

A: 热图显示了WW/D和DM/D比较之间的共同表达上调的基因。B: WW/D和DM/D比较之间的共同表达上调基因GO生物学过程富集分析。处理同图1。

A: the heatmap of the up-regulated expressed genes between the WW/D and DM/D. B: GO biological process enrichment on common up-regulated expressed genes between the WW/D and DM/D. Treatments are the same as those given in Fig. 1.

A: 上调。B: 下调。富集因子的计算方法是: 差异表达基因数除以任何给定途径的基因数, 点的大小表示基因数, 点的颜色表示调整后的值范围。处理同图1。

A: up-regulated. B: down-regulated. The rich factor is calculated as the differentially expressed genes number divided by the base number of any given pathway. Dot size denotes the number of genes and dot color denotes the range of adjusted-value. Treatments are the same as those given in Fig. 1.

2.3 关键差异表达基因的定量验证分析

利用qRT-PCR方法对转录组数据分析结果进行验证(图5)。随机选择10个差异表达基因, 包括参与光合作用(、)、碳水化合物和糖代谢(、)、半胱氨酸代谢()、脱落酸合成()、叶片衰老()、脂质氧化()、过氧化氢合成()、活性氧生成()。qRT-PCR结果分析表明所挑选的10个基因的表达水平变化趋势与转录组测序分析结果一致, 表明该转录组数据结果真实可信。

2.4 外源褪黑素诱导干旱胁迫下大豆叶片差异代谢物和KEGG分析

为研究干旱胁迫下大豆叶片代谢产物的变化以及外源褪黑素对干旱胁迫下大豆叶片代谢产物的影响, 首先对不同条件下(包括正常供水WW、干旱胁迫D和干旱胁迫下同时进行外源褪黑素处理DM), 3个生物学重复的大豆叶片代谢产物的表达进行主成分分析, 发现生物学重复的样品聚集在一起, 并且各组间差异显著, 表明了数据的可靠性。此外, WW处理与DM处理之间的距离比WW处理与D处理之间的距离更近(图6), 表明外源褪黑素能够通过大豆叶片的代谢产物变化而提高其抗旱能力。

考虑到存在试验过程引入的偏好性, 仅考虑在生物学重复样品之间的代谢产物含量比例小于2的化合物, 因此, 共检测到稳定表达的613种化合物, 其中与干旱胁迫(D)组相比, 正常供水(WW)和干旱胁迫下同时进行褪黑素处理(DM)的大豆叶片共同上调和下调的代谢物分别有17个和43个(图7-A)。即使下调的代谢物主要为黄酮类化合物, 包括柚皮素、鹰嘴豆芽素A、芒柄花黄素、L-2-氨基己二酸、山柰酚、毛蕊异黄酮、β-硅酸盐、柚配基查尔酮、紫铆花素、甘草素、异甘草素、3,4’,7-三羟基黄烷酮、吡啶甲酸、紫苜蓿素等等, 但是本研究发现上调的代谢物中绝大部分(14/17)属于氨基酸、脂质代谢、有机酸和碳水化合物, 主要包括L-谷氨酸、D-葡萄糖6-磷酸、生物素、L-精氨酸、L-天冬酰胺、尿苷酸、4-鸟苷丁酸酯等, 表明外源褪黑素处理能够一定程度的提高大豆叶片碳氮代谢水平和抗旱能力。为验证这个结果的可靠性, 利用KEGG Mapper对检测到正常供水(WW)和干旱胁迫下同时进行褪黑素处理(DM)的大豆叶片共同上调和下调代谢物所参与的代谢通路进行分析(图7-B)发现, 这些上调代谢物直接和间接参与的通路集中在碳氮代谢方面, 进一步证明了外源褪黑素能够通过改变大豆叶片中代谢物的表达而提高其抗旱能力。

白色的表示差异表达基因的转录组数据, 黑色的表示差异表达基因的qRT-PCR结果。处理同图1。

White bar signifies transcriptomic data of the differentially expressed genes, and black bar denotes qRT-PCR results of the differentially expressed genes. Treatments are the same as those given in Fig. 1.

处理同图1。Treatments are the same as those given in Fig. 1.

2.5 关键代谢通路的转录组和代谢组联合分析

为了更清楚了解外源褪黑素对干旱条件下大豆叶片抗旱能力的生理变化, 本研究针对干旱(D)处理,正常供水(WW)处理和干旱胁迫下外源褪黑素(DM)处理大豆叶片中上调的转录组和代谢组进行联合分析。如图4-A和图8所示, 上调的转录组和代谢组所参与的通路均包括淀粉和蔗糖代谢、氨基酸的生物合成等。为了进一步具体了解其参与的代谢通路, 通过整合上述筛选出上调的基因和代谢产物发现, 它们同时参与了淀粉、蔗糖代谢和氨基酸代谢, 包括酪氨酸代谢、缬氨酸代谢、亮氨酸代谢、异亮氨酸代谢和苯丙氨酸代谢。其中, 主要是通过β-葡萄糖苷酶基因表达的增加, 最终提高了L-天冬酰胺和6-磷酸葡萄糖代谢物的含量。转录组和代谢组联合分析表明, 外源褪黑素通过增强β-葡萄糖苷酶基因的表达, 促进了干旱胁迫下大豆碳氮代谢进程, 增加了L-天冬酰胺和6-磷酸葡萄糖等碳氮代谢化合物的积累, 进而提高大豆的抗旱性。

3 讨论

课题组之前的研究已经证明, 外源褪黑素处理可以提高干旱胁迫下大豆的碳氮代谢能力[16], 然而, 褪黑素缓解干旱胁迫的具体机制尚不清楚。因此, 本研究利用转录组和代谢组的方法研究了褪黑素在大豆碳氮代谢及抗旱能力中的作用, 从而确定了与大豆碳氮代谢能力相关的候选基因和关键代谢途径。

在转录组分析中, 用WW/D和DM/D 2种方法对差异表达基因进行了鉴定, 这一试验设计使我们能够鉴定出在干旱胁迫下褪黑素改变的差异表达基因的表达水平。在WW/D比较中, 共有3986个差异表达基因, 其中1604个基因上调, 2382个基因下调, 而干旱胁迫下同时进行褪黑素处理(DM)的大豆叶片相比于干旱条件下(D)有68个基因上调, 600个基因下调。进一步整合WW/D和DM/D两组差异表达的结果发现, 共同上调和下调分别有37个和493个基因。倪知游[17]研究发现, 褪黑素处理上调了干旱胁迫下猕猴桃幼苗光合作用、碳代谢、抗坏血酸代谢等相关基因。李超[18]研究发现, 褪黑素处理干旱胁迫下苹果幼苗氮代谢和光合作用等相关基因显著上调。本研究中GO富集结果表明, 一些差异表达的基因能够直接和间接的参与碳氮代谢的过程, 比如半胱氨酸合成基因、光合相关基因和β-葡萄糖苷酶等, 这与前人的研究结果基本一致, 表明褪黑素的确能够从碳氮代谢方面改善大豆抗旱能力。魏志为[19]研究表明, 褪黑素可以通过调节相关基因的表达, 促进逆境胁迫下苹果叶片中葡萄糖、淀粉、氨基酸代谢物的积累, 在本研究中, 通过代谢组分析表明, 与干旱胁迫(D)相比, 共同被正常供水处理(WW)和干旱胁迫条件下外源褪黑素处理(DM)大豆叶片的17个上调和43个下调代谢产物, 17个上调的代谢物中包括氨基酸、脂质、有机酸和碳水化合物, 进一步验证了外源褪黑素能够提高大豆的碳氮代谢能力。

为探索褪黑素通过哪些基因和代谢途径来提高大豆叶片在干旱胁迫条件下的抗旱能力, 本研究整合转录组和代谢组上调的37个基因和17个代谢化合物进行KEGG分析发现, 同时存在差异表达基因和代谢化合物的有2个代谢途径, 即淀粉蔗糖代谢和氰基氨基酸代谢。糖是调节逆境诱导基因表达的关键信号传递物质, 糖除了行使自身代谢功能外, 还在分子水平上调控多种生理和发育过程, 包括光合作用、同化物的储存和淀粉的动员等[20]。植物发生非生物胁迫时会导致糖的含量发生显著的变化, 可以影响许多基因的表达量, 例如在拟南芥中发现了干旱胁迫下调了参与碳水化合物代谢的基因表达, 包括蔗糖磷酸合成酶、蔗糖合成酶、甘油醛-3-磷酸脱氢酶、磷酸烯醇丙酮酸羧化酶、β-葡萄糖苷酶等相关基因表达, 因此碳水化合物在植物生长发育过程中起着至关重要的作用[21]。本研究结果表明, 干旱胁迫导致大豆叶片碳水化合物、糖代谢和光合作用相关基因下调, 干旱胁迫条件下喷施外源褪黑素可促进上调相关基因表达, 其中包括β-葡萄糖苷酶表达的增加, 参与光合作用的()上调, 以及6-磷酸葡萄糖代谢物的含量的增加, 进而增强大豆的抗旱能力。这与Wei等[22]研究褪黑素可以促进非生物胁迫条件大豆下光合作用过程中的光反应和暗反应相关基因上调, 改善逆境胁迫下大豆的光合相关过程, 可以促进蔗糖和葡萄糖相关合成基因表达上调的研究结果一致。氨基酸可以作为活性氧清除剂和潜在的调节分子, 对提高植物的抗逆能力至关重要, 特别是亮氨酸和异亮氨酸可通过植物呼吸系统来调节植物的抗逆性[23-24]。色氨酸、苯丙氨酸和酪氨酸(芳香族氨基酸)作为重要的细胞成分, 参与植物的发育和环境适应[25]。半胱氨酸是必需氨基酸和生糖氨基酸, 植物生长过程中可由植物体内的蛋氨酸转化而来, 可与胱氨酸互相转化, 可以延缓植物衰老, 减轻非生物胁迫对作物的氧化损伤[26]。本研究发现, 干旱胁迫导致大豆叶片氨基酸相关合成基因下调, 氨基酸代谢产物下降, 此外, 尽管检测到受褪黑素影响的上调代谢化合物只有17个, 但是发现它们还参与其他的氨基酸代谢过程, 比如丙氨酸、天冬氨酸和谷氨酸代谢、半胱氨酸和甲硫氨酸代谢等, 提高了大豆的抗旱能力及氮代谢能力, 减少了干旱胁迫对大豆植株造成的氧化损伤。这与Verslues等[27]和Antoniou等[28]研究发现氨基酸可能是一种自由基清除剂, 褪黑素可以通过调节氨基酸代谢系统地改善苜蓿植株干旱胁迫诱导的损伤相一致。

A: 韦恩图显示了WW/D和DM/D比较中共同的差异累积代谢物。B: WW/D和DM/D共同上调和下调基因的KEGG富集图。横坐标是差异表达基因数。处理同图1。

A: the venn diagram shows the overlapped differentially-accumulated metabolites between the WW/D and DM/D comparisons. B: the histogram of KEGG pathway enrichment for differentially-accumulated metabolites both in WW/D and DM/D comparison. X-axis is the number of differentially expressed genes. Treatments are the same as those given in Fig. 1.

A: 淀粉和蔗糖代谢。B: L-天冬酰胺代谢。红色和粉色分别表示与干旱胁迫处理相比, 正常供水处理和干旱胁迫下喷施外源褪黑素大豆叶片中共同上调的代谢产物和基因。

A: starch and sucrose metabolism. B: cyanoamino acid metabolism. Red and pink denote up-regulated metabolites and genes both in WW/D and DM/D.

4 结论

转录组和代谢组联合分析发现, 褪黑素通过调节“氨基酸代谢”和“淀粉蔗糖代谢”途径, 促进干旱胁迫下β-葡萄糖苷酶基因表达增加, 提高了L-天冬酰胺和6-磷酸葡萄糖代谢物的含量, 最终提高了大豆的抗旱性。

[1] 宫丽娟, 李秀芬, 田宝星, 王萍, 姜蓝齐, 赵慧颖. 黑龙江省大豆不同生育阶段干旱时空特征. 应用气象学报, 2020, 31: 95–104.

Gong L J, Li X F, Tian B X, Wang P, Jiang L Q, Zhao H Y. Spatio-temporal characteristics drought in different growth stages of soybean in heilongjiang., 2020, 31: 95–104 (in Chinese with English abstract).

[2] 王秋京, 李秀芬, 闫平, 吕佳佳, 王晾晾, 马国忠. 黑龙江省主要农业气象灾害时序特征及其对大豆产量影响的灰色关联分析. 中国农学通报, 2020, 36(3): 81–87.

Wang Q J, Li X F, Yan P, Lyu J J, Wang L L, Ma G Z. Main agro-meteorological disasters Heilongjiang: sequential characteristics and grey correlation analysis of their effects on soybean yield., 2020, 36(3): 81–87 (in Chinese with English abstract).

[3] Harrison M T, Tardieu F, Dong Z, Carlos D, Graeme L. Characterizing drought stress and trait influence on maize yield under current and future conditions., 2014, 20: 867–878.

[4] Lobell D B, Roberts M J, Schlenker W, Noah B, Bertis B L, Roderick M R, Graeme L H. Greater sensitivity to drought accompanies maize yield increase in the U.S. midwest., 2014, 344: 516–519.

[5] Mayank A G, Jelli V, Lam-Son P T. Regulation of photosynthesis during abiotic stress-induced photoinhibition., 2015, 8: 1304–1320.

[6] Chaves M M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell., 2009, 103: 551–560.

[7] 屈春媛, 张玉先, 金喜军, 任春元, 张明聪, 王孟雪, 王彦宏, 李菁华, 郑浩宇, 邹京南. 干旱胁迫下外源ABA对鼓粒期大豆产量及氮代谢关键酶活性的影响. 中国农学通报, 2017, 33(34): 26–31.

Qu C Y, Zhang Y X, Jin X J, Ren C Y, Zhang M C, Wang M X, Wang Y H, Li J H, Zheng H Y, Zou J N. Effect of exogenous ABA on yield and key enzyme activities of nitrogen metabolism of soybean under drought stress., 2017, 33(34): 26–31 (in Chinese with English abstract).

[8] Arnao M B, Hernández R J. Melatonin: plant growth regulator and/or biostimulator during stress., 2014, 19: 789–797.

[9] Reiter R J, Tan D X, Zhou Z C, Maria H C C, LorenaF B, Annia G. Phytomelatonin: assisting plants to survive and thrive., 2015, 20: 7396–7437.

[10] Zhang N, Sun Q, Zhang H J, Cao Y Y, Sarah W, Ren S X, Guo Y D. Roles of melatonin in abiotic stress resistance in plants., 2015, 66: 647–656.

[11] 邹京南. 外源褪黑素对干旱胁迫下大豆光合及生长的影响. 黑龙江八一农垦大学硕士学位论文, 黑龙江大庆, 2019.

Zou J N. Effects of Exogenous Melatonin on Photosynthesis and Growth of Soybean under Drought Stress. MS Thesis of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China, 2019 (in Chinese with English abstract).

[12] 邹京南, 曹亮, 王梦雪, 金喜军, 任春元, 王明瑶, 于奇, 张玉先. 外源褪黑素对干旱胁迫下大豆结荚期光合及生理的影响. 生态学杂志, 2019, 38: 2709–2718.

Zou J N, Cao L, Wang M X, Jin X J, Ren C Y, Wang M Y, Yu Q, Zhang Y X. Effects of exogenous melatonin on photosynthesis and physiology of soybean seedlings under drought stress., 2019, 38: 2709–2718 (in Chinese with English abstract).

[13] 邹京南, 于奇, 金喜军, 王明瑶, 秦彬, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下大豆鼓粒期生理和产量的影响. 作物学报, 2020, 46: 745–758.

Zou J N, Yu Q, Jin X J, Wang M Y, Qin B, Ren C Y, Wang M X, Zhang Y X. Effects of exogenous melatonin on physiology and yield of soybean during seed filling stage under drought stress., 2020, 46: 745–758 (in Chinese with English abstract).

[14] Zou J N, Jin X J, Zhang Y X, Ren C Y, Zhang M C, Wang M X. Effects of melatonin on photosynthesis and soybean seed growth during grain filling under drought stress., 2019, 57: 512–520.

[15] Maharaj D S, Anoopkumar D S, Glass B D, Antunes E M, Lack B, Walker R B, Daya S. The identification of the UV degradants of melatonin and their ability to scavenge free radicals., 2010, 32: 257–261.

[16] Cao L, Jin X J, Zhang Y X. Melatonin confers drought stress tole­rance in soybean (L.) by modulating photosynthesis, osmolytes, and reactive oxygen metabolism., 2019, 57: 812–829.

[17] 倪知游. 外源褪黑素对猕猴桃幼苗干旱胁迫调控机理的研究. 四川农业大学硕士学位论文, 四川成都, 2018.

Ni Z Y. Regulatory Mechanism of Exogenous Melatonin on Kiwifruit under Drought Stress. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2018 (in Chinese with English abstract).

[18] 李超. 外源褪黑素和多巴胺对苹果抗旱耐盐性的调控功能研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2016.

Li C. Regulatory Function of Exogenous Melatonin and Dopamine on Salt and Drought Tolerance in Malus. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2016 (in Chinese with English abstract).

[19] 魏志为. 褪黑素对光逆境下苹果的保护功能研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2019.

Wei Z W. The Protective Function of Melatonin in Malus under Light Stress. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2019 (in Chinese with English abstract).

[20] Graham I A. Carbohydrate control of gene expression in higher plants., 1996, 147: 500–580.

[21] Seki M, Narusaki M, Ishida J. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high salinity stresses using a full length cDNA micro array., 2002, 31: 279–292.

[22] Wei W, Li Q T, Chu Y N, Russel J R, Yu X M, Zhu D H, Zhang W K, Ma B, Lin Q, Zhang J S. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants., 2015, 66: 695–707.

[23] Hildebrandt T M, Nesi A N, Araújo W L, Hans P B. Amino acid catabolism in plants., 2015, 8: 1563–1579.

[24] Pires M V, Júnior P, Adilson A, Medeiros D B, Daloso D M, Pham P A, Barros K A, Martin K M, Florian A K, Ina M, Vero­nica G, Araújo W L, Fernie A R. The influence of alternative pathways of respiration that utilize branched-chain amino acids following water shortage in., 2016, 39: 1304–1319.

[25] Maeda H, Dudareva N. The shikimate pathway and aromatic amino acid biosynthesis in plants., 2012, 63: 73–105.

[26] Ismail G S M. Roles of hydrogen sulfide and cysteine in alleviation of nickel induced oxidative damages in wheat seedling., 2013, 9: 105–114.

[27] Verslues P E, Sharma S. Proline metabolism and its implications for plant-environment interaction., 2010, 8: e0140.

[28] Antoniou C, Chatzimichail G, Xenofontos R, Pavlou J J, Panagiotou E, Christou A, Fotopoulos V. Melatonin systemically ameliorates drought stress-induced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism., 2017, 62: e12401.

Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin

CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue*, and ZHANG Yu-Xian*

College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China

The grain-filling stage is the most complex stage of carbon and nitrogen metabolism. Drought stress inevitably inhibits the assimilation, distribution, and transition of carbon and nitrogen at grain-filling stage in soybean, resulting in less soybean yield. The objective of this study was to investigate the effects of exogenous melatonin on the carbon and nitrogen metabolism genes and pathways under drought stress in soybean. Transcriptome analysis showed that, compared with drought stress treatment, 37 and 493 genes were jointly up-regulated and down-regulated in soybean leaves treated with normal water supply and treated with exogenous melatonin under drought stress, respectively. The up-regulated genes included functional genes directly and indirectly involved in carbon and nitrogen metabolism, such as the key genes involved in the cysteine synthesis pathway, photosynthesis, carbohydrate metabolism, and glucose metabolism. Metabolomic analysis revealed that, compared with drought stress treatment, 17 and 43 metabolites were jointly up-regulated and down-regulated in soybean leaves treated with normal water supply and treated with exogenous melatonin under drought stress, respectively. Most (14/17) of up-regulated metabolites were amino acids, lipids, organic acids, and carbohydrates, which further indicated that exogenous melatonin could improve soybean carbon and nitrogen metabolism and drought resistance in soybean. Combined with transcriptome and metabolomic profile, melatonin promoted the relative expression level of β-D-Glucosidase gene due to regulate the pathway of amino acid metabolism and starch and sucrose metabolism, improved the contents of L-Asparagine and D-glucose-6P metabolites, and ultimately improves the ability of drought resistance in soybean.

melatonin; soybean; drought at grain-filling stage; carbon and nitrogen metabolism; metabolome and transcriptome

10.3724/SP.J.1006.2021.04151

本研究由国家重点研发计划项目“大田经济作物优质丰产的生理基础与调控”(2018YFD1000905), 黑龙江省应用技术研究与开发计划项目(GA19B101-02)和黑龙江省农垦总局重点科研计划项目(HKKY190206-01)资助。

This study was supported by the National Key Research and Development Program of China “Physiological Basis and Agronomic Management for High-quality and High-yield of Field Cash Crops” (2018YFD1000905), the Heilongjiang Application Technology Research and Development Projects (GA19B101-02), and the Heilongjiang Provincial Land Reclamation Bureau Key Research Project (HKKY190206-01).

张玉先, E-mail: zyx_lxy@126.com; 王孟雪, E-mail: wangmengxue1978@163.com

E-mail: miss9877@126.com

2020-07-10;

2021-01-21;

2021-03-01.

URL: https://kns.cnki.net/kcms/detail/11.1809.S.20210301.1017.002.html

猜你喜欢

外源代谢物抗旱
坚持人民至上、生命至上 扎实做好防汛抗旱救灾工作
阿尔茨海默病血清代谢物的核磁共振氢谱技术分析
外源甘氨酸促进火龙果根系生长和养分吸收
一株红树植物内生真菌Pseudallescheria boydii L32的代谢产物*
具有外源输入的船舶横摇运动NARX神经网络预测
2022年黄河防汛抗旱工作视频会议召开
种子穿新“外衣”锁水抗旱长得好
北方茶园抗旱节水栽培关键技术
肠道差自闭症风险高
我们的呼吸“指纹”