APP下载

基于Light Fidelity在智慧环境的运用

2020-12-14陈虹旭于川岳李晓坤

软件导刊 2020年9期
关键词:衰减系数信道解决方案

陈虹旭 于川岳 李晓坤

摘  要: 智慧环境,作为互联网技术与环境信息化技术的结合体,显然需要多种多样的信息与数据传输手段,将智慧环境与Light Fidelity技术相结合,更利于环境信息化管理。针对Light Fidelity在智慧环境运用过程中存在的“阴影效应”問题进行探讨与研究,提出基于Haar小波的DWT-OFDM的调制解决方案。同时,分析Polar Code在基于OOK技术的Light Fight通信运用中存在的优势,建立Light Fidelity在智慧环境中的通信系统模型,分析在总衰减系数不同的情况下,Light Fidelity的接收光功率与通信距离的变化关系,并采用加权系数法,优化Light Fidelity路径损耗的计算以及Light Fidelity在智慧环境中的通信性能。

关键词: Light Fidelity;智慧环境;Haar DWT-OFDM;Polar Code

中图分类号: TN929.12    文献标识码: A    DOI:10.3969/j.issn.1003-6970.2020.09.037

【Abstract】: Smart environment, as a combination of Internet technology and environmental information technology, obviously needs various means of information and data transmission. The combination of smart environment and Light Fidelity technology is more conducive to environmental information management. Having discussed and studied the “Shadow Effect” of Light Fidelity in the smart environments applications, and the modulation solution of DWT-OFDM based on Haar wavelet is proposed. Meanwhile, the advantages of Polar Code in Light Fidelity communication application based on OOK technology are analyzed, and having built the model of Light Fidelity in the smart environment of the communication system and analysis in total attenuation coefficient of different cases, the Light Fidelity receiving optical power and the change of the communication distance, and weighted coefficient method is adopted to optimize Light Fidelity path loss calculation and the performance in which Light Fidelity in the smart environment of communication.

【Key words】: Light Fidelity; Smart environment; Haar DWT-OFDM; Polar Code

0  引言

随着IEEE协会在2014年发布802.11ax标准将Wireless Fidelity(无线保真技术,Wi-Fi)推向新的发展浪潮[1-2],但因Wi-Fi以电磁波为信息载体,从而存在一些痛点——易发生电磁波干扰、频带资源有限等等[3]。光保真技术(Light Fidelity,Li-Fi)利用LED灯作为通信发射源,在LED灯中安装微型芯片,采用开关键控(On Off Keying,OOK)技术控制LED灯明灭闪烁,实现信息传输目的[4-6],这意味着Li-Fi不仅建设成本低,而且在无线 通信领域将弥补Wi-Fi等技术的不足。将Li-Fi与智慧环境相结合打造环境信息化,更利于践行“绿水青山就是金山银山”的发展理念[7]。本文针对Li-Fi在智慧环境的运用过程中遇到的难点进行研究与探讨,并给出相关可行性方案。

1  Haar DWT-OFDM

Li-Fi通信的可见光波长范围一般为380 nm~  780 nm[8]。通常情况下,物体的尺寸远大于此范围,衍射效果不明显,光只能沿直线传播[9]。当物体进入可见光的通信信道时,光线被阻挡,形成所谓的“阴影效应”[10-12],即光线被阻挡导致接收器无法接收到光信号。针对上述问题,可以采用多发射源的方式来解决,如图1所示。

采用多发射源就会存在一个问题:将单一信道变成多个子信道(多载波信号),会导致多信号传输时各个子信号之间相互重叠,发生串扰[13-15]。

正交频分复用(OFDM)可提高LED的窄带调制带宽、Li-Fi频谱效率以及通信速率[16]。然而,由于时域信号的叠加效应,系统的峰均比过高,双极性复数

5  结语

本文介绍了在基于Li-Fi技术于智慧环境的运用过程中,主要存在的痛点及解决方案。为克服“阴影效应”问题,提出了一种基于Haar小波的DWT-OFDM调制技术的可行性方案,并探讨了Polar Code在Li-Fi通信的OOK技术中的应用。同时,建立了Li-Fi在智慧环境中的通信系统模型,分析了在基于该模型的Li-Fi通信运用中产生的问题,并提出相关解决方案。通过实验可以看出,路径损耗主要受通信距离的影响,用指数加权函数优化路径损耗计算方法从而得到的数据比传统模式下的计算方法要小,并且随着通信距离的增加,这样的优势越发明显,而接收光功率不仅受通信距离的影响,还受总衰减系数的影响,这表明Li-Fi受环境因素制约的同时也受通信距离的限制,因此,Li-Fi更适用于短距离通信,这样的性质使得Li-Fi在智慧环境中一些要求高速通信、安全性高、通信距离短的领域中得到更好地运用,并在智慧环境中,可以有效弥补其他无线通信的不足。

參考文献

[1]Der-Jiunn Deng, Kwang-Cheng Chen, et al. IEEE 802. 11ax: Next generation wireless local area networks[J]. QSHINE, 2014 10th International Conference on, 2014: 77-79.

[2]Li Qishan, Hu Zhiqun, et al. On-line learning algorithm for dynamic sensitivity control in IEEE 802. 11ax network[J]. The Journal of China Universities of Posts and Telecommunications, 2018: 67-68.

[3]Ali Tufail, Mike Fraser, et al. An empirical study to analyze the feasibility of WIFI for VANETs[J]. IEEE Conference on Computer Communications, 2008: 553-554.

[4]Vasu Dev Mukkua, Sebastian Langa, et al. Integration of LiFi Technology in an Industry 4. 0 Learning Factory[J]. Procedia Manufacturing, 2019: 224.

[5]Rashed Islam, M. Rubaiyat Hossain Mondal, et al. Hybrid DCO-OFDM, ACO-OFDM and PAM-DMT for dimmable LiFi[J]. Optik, 2019: 939-940.

[6]Mithun Mukherjee, Jaime Lloret, et al. Leveraging light-fidelity for internet of light: State-of-the-art and research challenges[J]. Internet Technology Letters, 2018: 1-2.

[7]Xue-xuan Xu, Tong-jun Ju, et al. Sediment sources of Yan'gou watershed in the Loess Hilly region China under a certain rainstorm event[J]. SpringerOpen, 2013: 2-3.

[8]Gonzalez-Camejo, Viruela, et al. Dataset to assess the shadow effect of an outdoor microalgae culture[J]. Data in brief, 2019: 1-25.

[9]Januszkiewicz, Lukasz. Analysis of human body shadowing effect on wireless sensor networks operating in the 2. 4 GHz band[J]. Sensors, 2018: 1-2.

[10]Ali, Hatam H., Sunar, et al. Realistic real-time rendering of light shafts using blur filter: considering the effect of shadow maps[J]. Multimedia Tools and Applications, 2018: 1-2.

[11]Hatam H. Ali, Mohd Shahrizal Sunar, et al. Realistic real-time rendering of light shafts using blur filter: considering the effect of shadow maps[J]. Multimedia Tools and Applications, 2018: 1-3.

[12]Park, Cheol Young, et al. Effects of surface treatment of ITO anode layer patterned with shadow mask technology on characteristics of organic light-emitting diodes[J]. Organic Electronics, 2013: 1-2.

[13]Nihat Daldal, et al. Classification of multi-carrier digital modulation signals using NCM clustering based feature- weighting method[J]. Computers in Industry, 2019: 45-46.

[14]Zhang Xing, et al. Blind interference detection and recognition for the multi-carrier signal[J]. The Journal of China Universities of Posts and Telecommunications, 2017: 48-50.

[15]Sasan Mahmoodi. Discontinuity preserving method for noise removal of multi-carrier signals[J]. Signal Processing, 2017: 8-9.

[16]Jia Kejun, et al. Modeling of Multipath Channel and Performance Analysis of MIMO-DCO-OFDM System in Visible Light Communications[J]. Chinese Journal of Electronics, 2019: 630-631.

[17]Haochuan Song, et al. Polar-coded forward error correction for MLC NAND flash memory[J]. Science China Information Sciences, 2018: 1-16.

[18]I. Tal, et al. How to construct polar codes[J]. IEEE Trans. Inf. Theory, 2013: 6562-6582.

[19]T. Koike-Akino, et al. Bit-interleaved polar-coded OFDM for low-latency M2M wireless communications[J]. Proc. IEEE Int. Conf. Commun., 2017: 1-7.

[20]HE Jing, et al. An Efficient Encoder-Subcarrier Mapping Method Combined With Polar Code for Visible Light Communication[J]. IEEE Access, 2019: 69120-69121.

[21]I. Tal, A. Vardy. List decoding of polar codes[J]. Proc. IEEE Int. Symp. Inf. Theory, 2011: 1-5.

[22]L. Liu, et al. High performance and cost effective CO-OFDM system aided by polar code[J]. Opt. Express, 2017: 2763-2770.

[23]Irina Stefan, Hany Elgala, Harald Haas. Study of dimming and LED nonlinearity for ACO-OFDM based VLC systems[J]. IEEE Wireless Communications and Networking Conference, 2012: 990-991.

[24]Farshad Miramirkhani, Murat Uysal. Visible Light Communication Channel Modelingfor Underwater Environments WithBlocking and Shadowing[J]. IEEE Access, 2017: 1084- 1085.

[25]N. Lourenc, et al. Visible light communication system for outdoor applications[J]. Proc. 8th Int. Symp Commun Syst, Netw Digit Signal Process, 2012: 1-6.

[26]T. Komine, M. Nakagawa. “Fundamental analysis for visible-light communication system using LED lights[J]. IEEE Trans Consum Electron, 2004: 100-107.

[27]L. Liu, et al. Performance evaluation of high-speed polar coded CO-OFDM system with nonlinear and linear impairments[J]. IEEE Photon, 2017, Art. no. 7202909.

[28]J. He, et al. An ISFA-combined pilotaided channel estimation scheme in multiband orthogonal frequency division multiplexing ultra-wideband over fiber system[J]. Proc. IEEE Symp. Comput. Commun. (ISCC), 2015: 913-917.

[29]K. Niu, et al. Polar codes: Primary concepts and practical decoding algorithms[J]. IEEE Commun. Mag., 2014: 192-203.

[30]Yan Zhou, et al. Beam spreading, kurtosis parameter and Strehl ratio of partially coherent cosh-Airy beams in atmospheric turbulence[J]. Optik, 2019: 656-657.

猜你喜欢

衰减系数信道解决方案
解决方案和折中方案
简洁又轻松的Soundbar环绕声解决方案
复合材料孔隙率的超声检测衰减系数影响因素
近岸及内陆二类水体漫衰减系数的遥感反演研究进展
对《电磁波衰减系数特性分析》结果的猜想
HT250材料超声探伤中的衰减性探究
基于导频的OFDM信道估计技术
4G LTE室内覆盖解决方案探讨
一种改进的基于DFT-MMSE的信道估计方法
基于MED信道选择和虚拟嵌入块的YASS改进算法