APP下载

我国主要粮食作物秸秆还田养分资源量及其对小麦化肥减施的启示

2020-12-10李廷亮王宇峰王嘉豪栗丽谢钧宇李丽娜黄晓磊谢英荷

中国农业科学 2020年23期
关键词:学报养分作物

李廷亮,王宇峰,王嘉豪,栗丽,谢钧宇,李丽娜,黄晓磊,谢英荷

我国主要粮食作物秸秆还田养分资源量及其对小麦化肥减施的启示

李廷亮1,2,王宇峰1,王嘉豪1,栗丽1,谢钧宇1,李丽娜1,黄晓磊1,谢英荷1

(1山西农业大学资源环境学院,山西太谷 030801;2山西农业大学农业资源与环境国家级实验教学示范中心,山西太谷 030801)

【】明确我国主要粮食作物秸秆及其养分资源特征,为秸秆肥料化利用、化肥合理减施及农业绿色生产提供科学依据。基于《中国统计年鉴》和文献资料数据,估算我国水稻、小麦和玉米秸秆及其养分资源量,分析秸秆和养分资源区域分布特征、养分资源当季释放量以及小麦生产中化肥减施量。通过文献数据加权估算,我国水稻、小麦和玉米的草谷比分别为1.01、1.14和1.25。2014—2018年,我国三大粮食作物秸秆年均产量为65 386.6万t,其中水稻、小麦和玉米秸秆产量分别占32.3%、22.7%和45.0%。秸秆资源量的73.3%分布在我国华北、长江中下游和东北农区,其中水稻秸秆主要集中在长江中下游农区(50.7%)、小麦秸秆主要集中在华北农区(59.0%)、玉米秸秆主要集中在东北农区(33.7%)和华北农区(30.4%)。我国水稻、小麦和玉米秸秆氮素(N)平均含量分别为0.78%、0.64%和0.85%,磷素(P2O5)平均含量分别为0.42%、0.27%和0.53%,钾素(K2O)平均含量分别为2.31%、1.53%和1.59%,秸秆总养分含量(N+P2O5+K2O)表现为水稻>玉米>小麦。三大粮食作物秸秆养分资源年均量为509.8万t(N)、284.7万t(P2O5)和1 183.0万t(K2O),不同农区总养分量分布表现为长江中下游(26.0%)>华北(25.4%)>东北(21.3%)>西北(11.1%)>西南(10.5%)>东南(5.6%)。我国水稻、小麦和玉米秸秆还田氮素当季释放率分别为54.9%、51.4%和61.9%,磷素当季释放率分别为60.9%、65.3%和73.0%,钾素当季释放率分别为90.1%、93.3%和92.3%,表现为钾>磷>氮。三大粮食作物秸秆还田养分当季归还量(化肥可替代量)年均值为294.0万t(N)、194.1万t(P2O5)和1 083.9万t(K2O),总量为1 572万t,其中以玉米秸秆养分(N+P2O5+K2O)当季归还量最高,占当季养分总归还量的44.6%。秸秆还田对我国小麦生产具有较高化肥替代潜力,在小麦一年一作区,小麦秸秆全量还田理论上可替代4.6 kg N·hm-2、7.8 kg P2O5·hm-2和65.3 kg K2O·hm-2的化肥投入量;小麦玉米轮作区,玉米秸秆全量还田理论上可替代小麦生产季39.4 kg N·hm-2、28.9 kg P2O5·hm-2和109.9 kg K2O·hm-2的化肥投入量;稻麦轮作区,水稻秸秆全量还田理论上可替代小麦生产季29.9 kg N·hm-2、17.8 kg P2O5·hm-2和145.1 kg K2O·hm-2的化肥投入量。我国水稻、小麦和玉米秸秆年均产量分别为21 141.5万t、14 843.1万t和29 402.0万t,总量为65 386.6万t。三大粮食作物秸秆全量还田养分当季释放量为294.0万t(N)、194.1万t(P2O5)和1 083.9万t(K2O)。70%以上秸秆资源和养分当季释放量集中在长江中下游、华北和东北地区。小麦生产区,前茬作物秸秆全量还田理论上可替代4.6—39.4 kg N·hm-2、7.8—28.9 kg P2O5·hm-2和65.3—145.1 kg K2O·hm-2的化肥投入量。

秸秆产量;养分资源量;化肥减施;小麦生产

0 引言

【研究意义】农作物秸秆含有大量氮、磷、钾及其他中微量元素,秸秆还田后易分解物质可快速释放矿质养分供后期作物吸收利用,难分解部分则经微生物转化为腐殖质增加土壤碳汇,改善土壤结构和微生态环境,进而提高土壤肥力[1-3]。作物秸秆是农业生产中最经济有效的有机养分资源,科学统计评价我国现阶段主要粮食作物秸秆资源量及养分释放特征对合理减少农业化肥投入和提高耕地质量具有重要意义。【前人研究进展】我国农作物秸秆资源丰富,据统计2015年全国农作物秸秆总产量达10.4亿t,其中可收集资源量为9亿 t,秸秆肥料化利用率为43.2%[4]。秸秆含有大量养分资源,宋大利等[5]研究表明2015年我国水稻、小麦和玉米秸秆全量还田可归还的氮素(N)分别为56.9、36.6和61.5 kg·hm-2,占对应作物生产化肥氮施用量的31.6%(水稻)、22.5%(小麦)和28.8%(玉米);柴如山等[6]对我国2013—2017年主要粮食作物秸秆钾素资源量研究表明,我国水稻、小麦和玉米秸秆还田当季可提供的钾素量分别为499万t、193万t和479万t。目前国际上估算秸秆资源量普遍采用的方法是草谷比,而草谷比受作物品种、栽培措施和气候条件等因素影响较大,我国水稻、小麦和玉米的草谷比一般在0.62—1.40、0.73—1.56和0.89—2.00之间[7-12]。草谷比的选择很大程度上会影响秸秆和养分资源量的估算结果,毕于运等[11]采用玉米草谷比1.2估算我国2005年玉米秸秆总产量为2.02亿t,而在张培栋等[13]研究中选择玉米草谷比2.0估算我国2005年玉米秸秆资源量为2.78亿t。另外关于作物秸秆养分含量,多数研究[6,14-17]参考了1999年全国农业技术推广服务中心编制的《中国有机肥料养分志》,其中我国水稻、小麦和玉米秸秆的氮(N)含量分别为0.91%、0.65%和0.92%,磷(P2O5)含量分别为0.30%、0.18%和0.34%,钾(K2O)分别为2.29%、1.27%和1.43%;而刘晓永等[12]在《中国有机肥料养分志》基础上通过后期文献统计加权确定的我国水稻、小麦和玉米的磷素(P2O5)含量分别为0.13%、0.09%和0.11%,整体降低了50%以上;高伟[18]对我国北方不同地区玉米秸秆养分含量研究结果为0.93%(N)、0.37%(P2O5)和2.37%(K2O),其中钾素含量则提高了66%。表明作物秸秆养分含量会随作物品种的更替、土壤水肥条件和栽培措施等发生变化。作物秸秆还田后在微生物作用下逐步发生腐解,释放矿质营养元素,研究表明不同作物秸秆中养分释放速率表现为K>P>N,其中秸秆钾的当季释放率可达90%,磷的当季释放率在60%—70%,氮的当季释放率在50%—60%[12,19-21]。秸秆翻埋在15—20 cm土层的累积腐解率高于0—5 cm土层,秸秆在旱地土壤中的累积腐解率和养分释放率总体高于水田[22-24]。我国近年小麦种植面积在2 400万hm2以上,其中旱作小麦约占1/3,我国旱地土壤相对贫瘠,化肥利用效率低,因此秸秆还田在小麦种植区的化肥减量有机替代研究对当地土壤质量提升和小麦绿色生产显得尤为重要。【本研究切入点】以往研究中有关秸秆产量及养分资源量统计多依据某一标准或单一文献的草谷比和养分含量值,所以统计结果差异较大,且秸秆还田养分资源估算量大多没有考虑当季养分释放率,仅通过全量养分估算秸秆还田替代化肥潜力。而基于大样本统计的草谷比和养分含量值估算我国主要粮食作物秸秆产量和养分资源量,以及基于秸秆养分当季释放率估算化肥实际可替代量的研究鲜为报道。【拟解决的关键问题】本文基于《中国统计年鉴》和前人大量文献数据,系统研究我国2014—2018年水稻、小麦和玉米三大粮食作物秸秆产量分布特征、秸秆养分含量和释放特征,并进一步分析秸秆还田养分释放对我国小麦生产化肥减施的贡献,以期为我国农业绿色资源化生产提供理论依据。

1 研究方法与数据来源

1.1 研究区域

本研究参照中国粮食主产区划分,将中国大陆31个省、市、自治区(未包括香港、澳门、台湾和南海群岛)划分为六大农区:(1)东北农区(黑龙江、吉林和辽宁);(2)华北农区(北京、天津、河北、河南、山东、山西);(3)长江中下游农区(上海、江苏、浙江、安徽、湖北、湖南、江西);(4)西北农区(内蒙古、陕西、宁夏、甘肃、青海、新疆);(5)西南农区(重庆、四川、贵州、云南、西藏);(6)东南农区(福建、广东、广西、海南)。研究的作物包括水稻、小麦和玉米。

1.2 估算方法

本研究中各地区水稻、小麦和玉米的秸秆产量是指籽粒收获后所有地上部剩余的副产品,采用草谷比法进行估算。

各省份主要粮食作物秸秆产量的计算公式为:

WS=Wg×R (1)

式中,WS为作物秸秆产量;Wg为作物籽粒产量;R为作物草谷比。

各省份主要粮食作物秸秆养分资源量的计算公式为:

WN= WS×NS(2)

式中,WN为作物秸秆氮素(N)资源量;NS为作物秸秆氮素(N)含量。

WP2O5= WS×PS×2.29 (3)

式中,WP2O5为作物秸秆磷素(P2O5)资源量;PS为作物秸秆磷素(P)含量;2.29为单质磷转化为P2O5的系数。

WK2O= WS×KS×1.2 (4)

式中,WK2O为作物秸秆钾素(K2O)资源量;KS为作物秸秆钾素(K)含量;1.2为单质钾转化为氧化钾(K2O)的系数。

1.3 数据来源

本研究中各地区作物产量及种植面积数据来自2015—2019年国家统计局编制的《中国统计年鉴》,为避免粮食作物产量年度之间差异引起的统计不准确性,水稻、小麦和玉米秸秆产量为基于2014—2018年作物产量多年统计数据的估算值。关于草谷比的确定,本研究基于前人大量数据统计结果,加权平均计算获得(表1)。水稻、小麦和玉米秸秆养分含量及当季释放率均为近年相关研究文献大量样品统计结果。

表1 不同文献中主要农作物的草谷比

表中括号内的数据为统计样本数。下同 The data in brackets indicate the number of statistical samples. The same as below

2 结果

2.1 我国主要粮食作物秸秆资源量及分布

2014—2018年我国三大粮食作物秸秆总产量年平均为65 386.6万t(表2),其中水稻、小麦和玉米秸秆产量分别占32.3%、22.7%和45.0%。三大粮食作物秸秆资源主要集中在我国华北、长江中下游和东北农区,占总秸秆产量的73.3%。水稻秸秆产量以长江中下游农区最高,西北农区最低,分别占全国水稻秸秆总量的50.7%和2.8%;小麦秸秆产量以华北农区最高,占全国小麦秸秆总量的59.0%,东南农区小麦秸秆年均产量最低,仅1.5万t;玉米秸秆产量以东北和华北农区最高,分别占全国玉米秸秆总量的33.7%和30.4%,以东南农区最低,仅占全国玉米秸秆总量的1.5%。

2.2 我国主要粮食作物秸秆养分含量及资源总量

表3为根据相关文献数据[5-6,12,16,18-21,23-115]统计的我国水稻、小麦和玉米秸秆氮(N)、磷(P2O5)和钾(K2O)养分含量。可知,不同文献背景下作物养分含量差异较大,其中三大作物秸秆氮素含量变异系数在28.7%—39.6%,磷素含量变异系数在69.0%—87.5%,钾素含量变异系数在43.9%—46.1%,表明作物秸秆中磷含量较氮和钾更容易受到研究条件变化的影响。我国水稻、小麦和玉米秸秆氮素(N)平均含量分别为0.78%、0.64%和0.85%,磷素(P2O5)平均含量分别为0.42%、0.27%和0.53%,钾素(K2O)平均含量分别为2.31%、1.53%和1.59%,秸秆总养分含量(N+P2O5+K2O)表现为水稻>玉米>小麦。

表2 我国不同农区主要粮食作物秸秆产量

表中数据为平均值±标准差。下同 The data were mean ± standard deviation. The same as below

表3 我国主要粮食作物秸秆养分含量

依据上述秸秆养分平均含量对我国不同农区主要粮食作物秸秆养分资源量的估算值见表4。2014—2018年,我国三大粮食作物秸秆养分年资源总量为509.8万t(N)、284.7 万t(P2O5)和1 183.0 万t(K2O),其中水稻秸秆养分资源量占年资源总量的32.3%(N)、31.2%(P2O5)和41.3%(K2O),小麦秸秆养分资源量占年资源总量的18.6%(N)、14.1%(P2O5)和19.2%(K2O),玉米秸秆养分资源量占年资源总量的49.0%(N)、54.7%(P2O5)和39.5% (K2O)。三大粮食作物秸秆N、P2O5和K2O资源量在我国不同农区的分布规律一致,总养分量表现为长江中下游(26.0%)>华北(25.4%)>东北(21.3%)>西北(11.1%)>西南(10.5%)>东南(5.6%),其中72.6%的养分资源量集中我国长江中下游、华北和东北农区。玉米是东北和华北农区养分资源主要来源,分别占70.0%和52.7%;水稻是长江中下游农区秸秆养分资源主要来源,占73.1%。

2.3 我国主要粮食作物秸秆养分释放率及当季归还量

作物秸秆覆盖或翻压还田后,秸秆腐解率和养分释放率因秸秆物质组成、土壤环境条件不同而具有一定差异性。通过文献数据[19-24,96-128]分析表明(表5),我国水稻、小麦和玉米秸秆在下季作物生长过程中的腐解率统计值分别为58.6%、60.0%和57.9%,平均为58.8%;氮素当季释放率分别为54.9%、51.4%和61.9%,平均为56.1%;磷素当季释放率分别为60.9%、65.3%和73.0%,平均为66.4%;钾素当季释放率分别为90.1%、93.3%和92.3%,平均为91.9%。

依据上述文献统计的秸秆养分释放率,对我国不同农区秸秆养分当季归还量的估算值见表6。2014—2018年,我国三大粮食作物秸秆还田养分当季归还量(化肥可替代量)年均值为294.0万t(N)、194.1万t(P2O5)和1 083.9万t(K2O),总量为1 572万t,其中水稻秸秆养分当季归还量占当季养分总归还量的30.8%(N)、27.9%(P2O5)和40.6%(K2O),小麦秸秆养分当季归还量占当季养分总归还量的16.6%(N)、13.5%(P2O5)和19.5%(K2O),玉米秸秆养分当季归还量占当季养分总归还量的52.6%(N)、58.6%(P2O5)和39.9%(K2O)。

我国不同农区三大粮食作物秸秆N、P2O5和K2O当季归还量分布规律一致,其中72.7%当季归还量集中在长江中下游、华北和东北地区。

2.4 小麦生产中秸秆还田及化肥减量分析

表7是我国不同小麦种植制度下前茬作物秸秆全量还田当季化肥投入替代量。本研究中小麦一年一作区单位面积秸秆产量是基于我国北方旱作小麦平均产量的计算值[129],另外以我国玉米和水稻单位面积秸秆产量分别作为小麦玉米轮作区和稻麦轮作区的前茬作物秸秆量,前茬作物秸秆量表现为玉米(7 482.2 kg·hm-2)>水稻(6 971.0 kg·hm-2)>小麦(4 448.3 kg·hm-2)。结合不同种植制度下小麦的推荐施肥量(表8)可知,在小麦一年一作区,秸秆全量还田当季可释放14.6 kg N·hm-2、7.8 kg P2O5·hm-2和65.3 kg K2O·hm-2, 理论上可替代小麦生产中7.6%—48.7%(N)、8.9%—60.0%(P2O5)和58.8%—100%(K2O)的化肥投入量;小麦玉米轮作区,玉米秸秆全量还田当季可释放39.4 kg N·hm-2、28.9 kg P2O5·hm-2和109.9 kg K2O·hm-2,理论上可替代小麦生产中21.4%—22.5%(N)、18.1%—57.8%(P2O5)和100%(K2O)的化肥投入量;稻麦轮作区,水稻秸秆全量还田当季可释放29.9 kg N·hm-2、17.8 kg P2O5·hm-2和145.1 kg K2O·hm-2, 理论上可替代小麦生产中13.3%—19.9%(N)、12.7%—50.9%(P2O5)和100%(K2O)的化肥投入量。可见,由于我国不同地区土壤养分含量、水分状况、小麦品种及其他气候环境条件等不同,小麦产量水平和理论施肥量具有较大的区域差异性,对应秸秆还田替代化肥比例差异较大。因此,在具体小麦生产过程中,化肥减施比例要结合实际秸秆还田量及施肥量确定。

表4 我国不同农区主要粮食作物秸秆养分资源量

表5 我国主要粮食作物秸秆当季养分释放率

表6 我国不同农区主要粮食作物秸秆养分当季归还量

表7 我国不同小麦种植制度下秸秆替代化肥养分量

3 讨论

3.1 我国主要粮食作物秸秆产量估算

秸秆作为粮食作物生产的副产品,区域范围内资源量并没有准确的统计数据,国内外研究通用方法是采用草谷比与作物产量进行估算。不同文献中我国作物产量统计口径主要依据《中国统计年鉴》或《中国农业统计年鉴》,差异总体不大,但草谷比的取值是影响秸秆产量估算结果的关键因素。宋大利等[5]对我国2015年水稻、小麦和玉米秸秆资源量的估算结果为6.2亿t;从宏斌等[134]统计表明,2017年我国水稻、小麦和玉米秸秆资源量为7.1亿t;而柴如山等[15]对我国2013—2017年主要粮食作物秸秆产量统计结果表明,我国水稻、小麦和玉米秸秆年均产量分别为2.3、1.7和4.0亿t,总量为8.0亿t。上述研究秸秆估算量的差异与文献中所选取草谷比具有很大关系。本研究中为了避免参考单一文献草谷比值带来的统计误差,文中草谷比为前人大量样本统计值的加权平均值,水稻、小麦和玉米的草谷比分别为1.01(n=247)、1.14(n=839)和1.25(n=341),大样本统计结果更具有科学性和可信度。本研究结果表明2014—2018年我国水稻、小麦和玉米秸秆年均产量分别为2.1、1.5和2.9亿t,总量为6.5亿t。另外本研究发现,2014—2018年期间我国玉米秸秆产量的变异系数较大,原因是近年来我国玉米种植面积在不断加大,2018年全国玉米总产量较2014年增加了14%。

表8 我国不同种植制度下基于土壤养分含量的小麦推荐施肥量

一年一作小麦区,土壤硝态氮是指小麦播种前1 m土体硝态氮贮量,土壤有效磷和土壤速效钾是0—40 cm土层Olsen-P和速效钾的含量;小麦玉米轮作区和稻麦轮作区,土壤有效磷和土壤速效钾是0—20 cm土层有效磷和速效钾的含量

In wheat monoculture area, the value of soil nitrate nitrogen is the accumulation of NO3--N in 1 m soil before sowing, the value of soil available P and available K is the content of soil Olsen-P and NH4OAc-K in 0-40 cm soil layer; in wheat-maize rotation and rice-wheat rotation area, the value of soil available P and available K is the content of soil Olsen-P and NH4OAc-K in 0-20 cm soil layer

3.2 秸秆养分含量及变化特征

作物地上部对养分的吸收累积和转运分配受基因和环境因素共同作用[135-136]。例如,磷高效作物品种对磷的吸收转运能力相对较高[137];增加光照条件下,氮、磷和钾等养分向籽粒分配的比例就会增加[138]。本研究发现不同文献研究背景下我国三大粮食作物秸秆氮(N)、磷(P2O5)和(K2O)养分含量变异较大,除上述原因,一定程度上还与作物体内氮、磷和钾移动性和可再利用程度高有关。本研究中,三大粮食作物秸秆中养分含量均表现为K2O>N>P2O5,不同文献背景下秸秆磷含量的变异系数最高,可能原因是秸秆中磷素含量最低,环境条件改变引起秸秆磷含量变幅可能会更大。另外,作物秸秆养分含量也存在区域性差异特征,黄宁等[139]研究表明黄淮南片麦区,高产品种茎叶含磷量较低,含钾量较高;而长江中下游麦区,高产品种的含磷钾量均相对较高。高伟[18]研究表明我国北方地区玉米秸秆中钾含量表现为西北地区>华北地区>东北地区。不同生态条件下稻草中氮的含量也会出现显著差异[140]。

本研究中我国水稻、小麦和玉米秸秆氮含量较1999年全国农业技术推广服务中心编制的《中国有机肥料养分志》降低了1.5%—14.3%,而磷和钾含量则分别提高了41.1%—54.3%和1.0%—11.4%,秸秆磷钾含量增加可能与近年来化肥施用量增加有关,而秸秆中氮含量的降低则可能更大程度与近年我国科研对作物氮素利用效率关注度高有关,氮高效利用品种选育及管理措施优化研究和应用进一步提高了作物秸秆氮素向籽粒的转移。例如地膜覆盖和适宜的氮肥用量协同作用促进了营养器官氮素向籽粒的转移率,从而提高作物氮收获指数[141-142]。

另外,本研究表明我国三大粮食作物秸秆养分年均资源量为509.8万t(N)、284.7万t(P2O5)和1 183.0万t(K2O),其中钾素资源量和宋大利等[5]和柴如山等[6]估算值相近,氮素资源量估算值低于宋大利等[5]估算值(625.6万t),磷素资源量高于宋大利等[5]估算值(197.9万t),这与秸秆氮、磷含量取值有很大关系,但研究均表明我国秸秆养分资源量主要集中在长江中下游、华北和东北农区。

3.3 秸秆还田养分释放特征

秸秆直接还田后,秸秆养分伴随着秸秆腐解过程逐步释放,因此在研究秸秆还田替代化肥时应考虑秸秆还田后养分的当季有效性[12]。秸秆腐解过程受到秸秆碳氮比、土壤水肥条件、通气性及温度等环境因素影响[1]。目前秸秆腐解研究多采用尼龙网袋原位法,且大量研究表明,秸秆养分释放表现为前期快、后期慢,大概在100—150 d达到稳定停滞状态,养分释放率一般表现为钾>磷>氮[12,19-24,112,115]。本文对大量相关文献统计分析表明,当还田秸秆进入腐解停滞期,水稻、小麦和玉米秸秆氮的释放率平均为54.9%、51.4%和61.9%,磷释放率平均为60.9%、65.3%和73.0%,钾释放率平均为90.1%、93.3%和92.3%。秸秆中钾主要以离子态存在,研究发现秸秆浸泡2 d后,90%的钾就可释放出来[20]。而秸秆中氮素主要为难降解的结构性氮素,所以秸秆氮的释放率最低[1]。腐解菌剂的添加可以进一步提高秸秆氮和磷的释放率[1,47, 143]。

本研究表明,我国三大粮食作物秸秆还田养分当季归还量(化肥可替代量)年均值为294.0万t(N)、194.1万t(P2O5)和1 083.9万t(K2O),总量为1 572万t,其中72.7%当季归还量集中在长江中下游、华北和东北地区,且三大粮食作物中以玉米秸秆养分(N+P2O5+K2O)当季归还量最高,占当季养分总归还量的44.6%。水稻、小麦和玉米秸秆全部还田,其养分当季释放量相当于我国2018年农用氮肥(N)施用量(2 065.4万t)的14.2%,农用磷肥施用量(728.9万t)的26.6%,农用钾肥施用量为(590.3万t)的1.8倍(2019年中国统计年鉴)。秸秆还田不仅可替代部分化肥用量,同时由于其养分逐步释放特征,起到了缓释肥的效果。

3.4 秸秆还田替代化肥当量及肥效特征

我国秸秆综合利用主要包括肥料化、饲料化、燃料化、基料化、原料化利用。据统计,2015年我国秸秆利用量达到7.2亿t,资源综合利用率为80.1%,其中秸秆肥料化利用率为43.2%[4,144]。鉴于目前农田土壤化肥减施有机替代的生态需求,秸秆作为成本最低的有机肥源,其肥料化利用逐渐被加以重视[145]。本研究中以小麦生产为例,在小麦一年一作区、小麦玉米轮作区和稻麦轮作区,上季秸秆全量还田理论上可替代小麦生产季4.6—39.4 kg N·hm-2、7.8—28.9 kg P2O5·hm-2和65.3—145.1 kg K2O·hm-2的化肥投入量。以4元/kg N、7元/kg P2O5和8元/kg K2O肥料价格计算,可产生595—1 521元/hm2的肥料成本效应。

秸秆还田在减施化肥基础上,还可以改善土壤结构,提高土壤肥效[145]。YAN等[146]在华北地区基于10年水稻秸秆还田定位试验研究表明,秸秆还田可以显著提高土壤总有机碳和活性有机碳含量,并增加参与土壤碳循环微生物的相对丰度。赵士诚等[147]研究表明长期秸秆还田增加了土壤碳固持,并可增加酸解氨基酸态氮含量,降低铵态氮的晶格固定。但另一方面我们也必须意识到秸秆还田不当会产生一些负面影响,秸秆不能及时腐解会影响根系生长,产生病虫害以及与作物争夺氮素的问题[145,148]。周延辉等[149]通过文献数据对中国地区小麦产量与秸秆还田响应关系分析表明,稻秆还田量小于5 000 kg·hm-2、玉米秸秆还田小于 6 000 kg·hm-2时,小麦增产效果比较好。

4 结论

我国主要粮食作物秸秆资源丰富,2014—2018年三大粮食作物秸秆年均产量为65 386.6万t,其中水稻、小麦和玉米秸秆分别占32.3%、22.7%和45.0%,秸秆资源量的73.3%分布在我国华北、长江中下游和东北农区。我国三大粮食作物秸秆养分资源年均量为509.8万t(N)、284.7万t(P2O5)和1 183.0万t(K2O),秸秆还田当季养分释放量为294.0万t(N)、194.1万t(P2O5)和1 083.9万t(K2O)。在小麦生产区,前茬作物秸秆全量还田理论上可替代小麦生产季4.6—39.4 kg N·hm-2、7.8—28.9 kg P2O5·hm-2和65.3—145.1 kg K2O·hm-2的化肥投入量。秸秆还田对于补充土壤养分,减少化肥用量,提高土壤肥力具有重要意义。但由于我国不同农区气候及土壤条件相差较大,秸秆还田腐解养分释放效应不同,因此合理的秸秆还田量及还田方式需进一步做区域尺度上的定量研究,以推进我国农业绿色高效生产。

[1] 张经廷, 张丽华, 吕丽华, 董志强, 姚艳荣, 金欣欣, 姚海坡, 贾秀领. 还田作物秸秆腐解及其养分释放特征概述. 核农学报, 2018, 32(11): 2274-2280.

ZHANG J T, ZHANG L H, Lü L H, DONG Z Q, YAO Y R, JIN X X, YAO H P, JIA X L. Overview of the characteristics of crop straw decomposition and nutrients release of returned field crops., 2018, 32(11): 2274-2280. (in Chinese)

[2] YIN H J, ZHAO W Q, LI T, CHENG X Y, LIU Q. Balancing straw returning and chemical fertilizers in China: Role of straw nutrient resources., 2018, 81: 2695-2702.

[3] BU R Y, REN T, LEI M J, LIU B, LI X K, CONG R H, ZHANG Y Y, LU J W. Tillage and straw-returning practices effect on soil dissolved organic matter, aggregate fraction and bacteria community under rice-rice-rapeseed rotation system., 2020, 287: 106681.

[4] 霍丽丽, 赵立欣, 孟海波, 姚宗路. 中国农作物秸秆综合利用潜力研究. 农业工程学报, 2019, 35(13): 218-224.

HUO L L, ZHAO L X, MENG H B, YAO Z L. Study on straw multi-use potential in China., 2019, 35(13): 218-224. (in Chinese)

[5] 宋大利, 侯胜鹏, 王秀斌, 梁国庆, 周卫. 中国秸秆养分资源数量及替代化肥潜力. 植物营养与肥料学报, 2018, 24(1): 1-21.

SONG D L, HOU S P, WANG X B, LIANG G Q, ZHOU W. Nutrient resource quantity of crop straw and its potential of substituting., 2018, 24(1): 1-21. (in Chinese)

[6] 柴如山, 安之冬, 马超, 王擎运, 章力干, 郜红建. 我国主要粮食作物秸秆钾养分资源量及还田替代钾肥潜力. 植物营养与肥料学报, 2020, 26(2): 201-211.

CHAI R S, AN Z D, MA C, WANG Q Y, ZHANG L G, GAO H J. Potassium resource quantity of main grain crop straw and potential for straw incorporation to substitute potassium fertilizer in China., 2020, 26(2): 201-211. (in Chinese)

[7] 蔡亚庆, 仇焕广, 徐志刚. 中国各区域秸秆资源可能源化利用的潜力分析. 自然资源学报, 2011, 26(10): 1637-1646.

CAI Y Q, QIU H G, XU Z G. Evaluation on potentials of energy utilization of crop residual resources in different regions of China., 2011, 26(10): 1637-1646. (in Chinese)

[8] 左旭, 王红彦, 王亚静, 王磊, 景丽, 王道龙. 中国玉米秸秆资源量估算及其自然适宜性评价. 中国农业资源与区划, 2015, 36(6): 5-10, 29.

ZUO X, WANG H Y, WANG Y J, WANG L, JIN L, WANG D L. Estimation and suitability evaluation of corn straw resources in China., 2015, 36(6): 5-10, 29. (in Chinese)

[9] 谢光辉, 韩东倩, 王晓玉, 吕润海. 中国禾谷类大田作物收获指数和秸秆系数. 中国农业大学学报, 2011, 16(1): 1-8.

XIE G H, HAN D Q, WANG X Y, Lü R H. Harvest index and residue factor of cereal crops in China., 2011, 16(1): 1-8. (in Chinese)

[10] 姬兴杰, 于永强, 张稳, 余卫东. 近二十年中国冬小麦收获指数时空格局. 中国农业科学, 2010, 43(17): 3511-3519.

JI X J, YU Y Q, ZHANG W, YU W D. Spatial-temporal patterns of winter wheat harvest index in China in recent twenty years., 2010, 43(17): 3511-3519. (in Chinese)

[11] 毕于运, 高春雨, 王亚静, 李宝玉. 中国秸秆资源数量估算. 农业工程学报, 2009, 25(12): 211-217.

BI Y Y, GAO C Y, WANG Y J, LI B Y. Estimation of straw resources in China., 2009, 25(12): 211-217. (in Chinese)

[12] 刘晓永,李书田. 中国秸秆养分资源及还田的时空分布特征. 农业工程学报, 2017, 33(21): 1-19.

LIU X Y, LI S T. Temporal and spatial distribution characteristics of crop straw nutrient resources and returning to farmland in China., 2017, 33(21): 1-19. (in Chinese)

[13] 张培栋, 杨艳丽, 李光全, 李新荣. 中国农作物秸秆能源化潜力估算. 可再生能源, 2007(6): 80-83.

ZHANG P D, YANG Y L, LI G Q, LI X R. Energy potentiality of crop straw recourses in China., 2007(6): 80-83. (in Chinese)

[14] 高利伟, 马林, 张卫峰, 王方浩, 马文奇, 张福锁. 中国作物秸秆养分资源数量估算及其利用状况. 农业工程学报, 2009, 25(7): 173-179.

GAO L W, MA L, ZHANG W F, WANG F H, MA W Q, ZHANG F S. Estimation of nutrient resource quantity of crop straw and its utilization situation in China., 2009, 25(7): 173-179. (in Chinese)

[15] 柴如山, 王擎运, 叶新新, 江波, 赵强, 王强, 章力干, 郜红建. 我国主要粮食作物秸秆还田替代化学氮肥潜力. 农业环境科学学报, 2019, 38(11): 2583-2593.

CHAI R S, WANG Q Y, YE X X, JIANG B, ZHAO Q, WANG Q, ZHANG L G, GAO H J. Nitrogen resource quantity of main grain crop straw in China and the potential of synthetic nitrogen substitution under straw returning., 2019, 38(11): 2583-2593. (in Chinese)

[16] 孙建飞, 郑聚锋, 程琨, 潘根兴. 基于可收集的秸秆资源量估算及利用潜力分析. 植物营养与肥料学报, 2018, 24(2): 404-413.

SUN J F, ZHENG J F, CHENG K, PAN G X. Estimate of the quantity of collectable straw resources and competitive utilization potential., 2018, 24(2): 404-413. (in Chinese)

[17] 方放, 王飞, 石祖梁, 郑向群, 邵宇航, 李想, 邱凌. 京津冀秸秆养分资源及秸秆焚烧气体污染物排放定量估算. 农业工程学报, 2017, 33(3):1-6.

FANG F, WANG F, SHI Z L, ZHENG X Q, SHAO Y H, LI X, QIU L. Quantitative estimation on straw nutrient resources and emission of pollutants from straw burning in Beijing-Tianjin-Hebei region., 2017, 33(3): 1-6. (in Chinese)

[18] 高伟. 我国北方不同地区玉米(L.)养分吸收与利用研究[D]. 北京: 中国农业科学院, 2008.

GAO W. Study on nutrient absorption and utilization of maize (L.) in different regions in north China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008. (in Chinese)

[19] 龚振平, 邓乃榛, 宋秋来, 李中韬. 基于长期定位试验的松嫩平原还田玉米秸秆腐解特征研究. 农业工程学报, 2018, 34(8): 139-145.

GONG Z P, DENG N Z, SONG Q L, LI Z D. Decomposing characteristics of maize straw returning in Songnen Plain in long-time located experiment., 2018, 34(8): 139-145. (in Chinese)

[20] 戴志刚, 鲁剑巍, 李小坤, 鲁明星, 杨文兵, 高祥照. 不同作物还田秸秆的养分释放特征试验. 农业工程学报, 2010, 26(6): 272-276.

DAI Z G, LU J W, LI X K, LU M X, YANG W B, GAO X Z. Nutrient release characteristic of different crop straws manure., 2010, 26(6): 272-276. (in Chinese)

[21] 刘单卿, 李顺义, 郭夏丽. 不同还田方式下小麦秸秆的腐解特征及养分释放规律. 河南农业科学, 2018, 47(4): 49-53.

LIU D Q, LI S Y, GUO X L. Characteristics of decomposition and nutrients release of wheat straw under different returning methods., 2018, 47(4): 49-53. (in Chinese)

[22] 张晓雨. 秸秆还田腐解特征及其对土壤环境和小麦生长的影响[D]. 重庆: 西南大学, 2014.

ZHANG X Y. Straw decomposition law and the influence of straw returning to soil environment and wheat growth [D]. Chongqing: SouthwestUniversity, 2014. (in Chinese)

[23] 张学林, 周亚男, 李晓立, 侯小畔, 安婷婷, 王群. 氮肥对室内和大田条件下作物秸秆分解和养分释放的影响. 中国农业科学, 2019, 52(10): 1746-1760.

ZHANG X L, ZHOU Y N, LI X L, HOU X P, AN T T, WANG Q. Effects of nitrogen fertilizer on crop residue decomposition and nutrient release under lab incubations., 2019, 52(10): 1746-1760. (in Chinese)

[24] 代文才, 高明, 兰木羚, 黄容, 王金柱, 王子芳, 韩晓飞. 不同作物秸秆在旱地和水田中的腐解特性及养分释放规律. 中国生态农业学报, 2017, 25(2): 188-199.

DAI W C, GAO M, LAN M L, HUANG R, WANG J Z, WANG Z F, HAN X F. Nutrient release patterns and decomposition characteristics of different crop straws in drylands and paddy fields., 2017, 25(2): 188-199. (in Chinese)

[25] MENG F Q, DUNGAIT J A J, XU X L, BOL R, ZHANG X, WU W L. Coupled incorporation of maize (L.) straw with nitrogen fertilizer increased soil organic carbon in Fluvic Cambisol., 2017, 304: 19-27.

[26] Shaukat Ali Abro, 把余玲, 田霄鸿, 李萌, 游东海. 温度与微生物制剂对小麦秸秆腐解及土壤碳氮的影响. 西北农林科技大学学报(自然科学版), 2012, 40(1): 115-122.

SHAUKAT A A. BA Y L, TIAN X H, LI M, YOU D H. Effect of temperature and microbial agent on wheat straw decomposition and soil carbon or nitrogen., 2012, 40(1): 115-122. (in Chinese)

[27] 蔡立群, 牛怡, 罗珠珠, 武均, 岳丹, 周欢, 董博, 张仁陟. 秸秆促腐还田土壤养分及微生物量的动态变化. 中国生态农业学报, 2014, 22(9): 1047-1056.

CAI L Q, NIU Y, LUO Z Z, WU J, YUE D, ZHOU H, DONG B, ZHANG R Z. Dynamic characteristics of soil nutrients and soil microbial biomass of field-returned straws at different decay accretion conditions., 2014, 22(9): 1047-1056. (in Chinese)

[28] 陈春梅, 谢祖彬, 朱建国, 窦森. CO2浓度升高对小麦秸秆性质、数量及其分解的影响. 中国生态农业学报, 2007(6): 1-5.

CHEN C M, XIE Z B, ZHU J G, DOU S. Effects of CO2-induced change on wheat straw quality, quantity and decomposition., 2007(6): 1-5. (in Chinese)

[29] 邓欧平, 谢汀, 李燕, 邓良基. 稻麦轮作下不同还田模式对土壤酶活性的影响研究. 农业环境科学学报, 2013, 32(10): 2027-2034.

DENG O P, XIE T, LI Y, DENG L J. Effect of different residue covering mode on soil enzyme activity under rice-wheat rotation ., 2013, 32(10): 2027-2034. (in Chinese)

[30] 杜加银, 茹美, 倪吾钟. 减氮控磷稳钾施肥对水稻产量及养分积累的影响. 植物营养与肥料学报, 2013, 19(3): 523-533.

DU J Y, RU M, NI W Z. Effects of fertilization with reducing nitrogen, controlling phosphorus and stabilizing potassium on rice yield and nutrient accumulation., 2013, 19(3): 523-533. (in Chinese)

[31] 樊昊. 施用不同有机物料对吉林省东部“坡改梯”农田土壤肥力的影响[D]. 长春: 吉林大学, 2018.

FAN H. Effects of different organic materials on the soil fertility of new terraced fields in the east of Jilin province[D]. Changchun: Jilin University, 2018. (in Chinese)

[32] 方日尧, 同延安, 耿增超, 梁东丽. 黄土高原区长期施用有机肥对土壤肥力及小麦产量的影响. 中国生态农业学报, 2003(2): 53-55.

FANG R Y, TONG Y A, GENG Z C, LIANG D L. Effect of a long-term organic fertilization on wheat yield and soil fertility on Loess Plateau., 2003(2): 53-55. (in Chinese)

[33] 宫亮, 孙文涛, 王聪翔, 刘艳, 汪仁. 玉米秸秆还田对土壤肥力的影响. 玉米科学, 2008(2): 122-124,130.

GONG L, SUN W T, WANG C X, LIU Y, WANG R. Effects of application maize straw on soil physical characteristics and yield., 2008(2): 122-124,130. (in Chinese)

[34] 韩玮, 聂俊华, 李飒. 外源纤维素酶对秸秆降解速率及土壤速效养分的影响. 中国土壤与肥料, 2006(5): 28-32.

HAN W, NIE J H, LI S. Influences of outer cellulose on degradation rates of straws and available nutrients of soil., 2006(5): 28-32. (in Chinese)

[35] 杭玉浩, 王强盛, 许国春, 刘欣. 水分管理和秸秆还田对稻麦轮作系统温室气体排放的综合效应. 生态环境学报, 2017, 26(11): 1844-1855.

HANG Y H, WANG Q S, XU G C, LIU X. Effects of water regimes and straw incorporation on greenhouse gas emissions in a rice-wheat cropping system., 2017, 26(11): 1844-1855. (in Chinese)

[36] 郝翔翔, 杨春葆, 苑亚茹, 韩晓增, 李禄军, 江恒. 连续秸秆还田对黑土团聚体中有机碳含量及土壤肥力的影响. 中国农学通报, 2013, 29(35): 263-269.

HAO X X, YANG C B, YUAN Y R, HAN X Z, LI L J, JIANG H. Effects of continuous straw returning on organic carbon content in aggregates and fertility of black soil., 2013, 29(35): 263-269. (in Chinese)

[37] 侯胜鹏. 中国主要有机养分资源利用潜力研究[D]. 北京: 中国农业科学院, 2017.

HOU S P. The utilization potential of the main organic nutrient resources in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese)

[38] 侯淑艳, 窦森, 刘建新, 曲晓晶. 温度对玉米秸秆腐解期间腐殖质消长动态的影响. 西北农林科技大学学报(自然科学版), 2016, 44(4): 87-92.

HOU S Y, DOU S, LIU J X, QU X J. Effects of temperature on dynamics of humus during corn stalk decomposition., 2016, 44(4): 87-92.(in Chinese)

[39] 侯贤清, 吴鹏年, 王艳丽, 李培富, 王西娜, 李荣. 秸秆还田配施氮肥对土壤水肥状况和玉米产量的影响. 应用生态学报, 2018, 29(6): 1928-1934.

HOU X Q, WU P N, WANG Y L, LI P F, WANG X N, LI R. Effects of returning straw with nitrogen application on soil water and nutrient status, and yield of maize., 2018, 29(6): 1928-1934. (in Chinese)

[40] 姜超强, 沈嘉, 王火焰, 李德成, 李田, 汪文杰, 祖朝龙. 烟杆还田对水稻产量和养分吸收的影响及其替代钾肥的效果. 应用生态学报, 2016, 27(12): 3969-3976.

JIANG C Q, SHEN J, WANG H Y, LI D C, LI T, WANG W J, ZU Z L. Effect of tobacco straw incorporation on rice yield and nutrient absorption and its substitute for potassium fertilizer., 2016, 27(12): 3969-3976. (in Chinese)

[41] 姜禹含. 豆科与禾本科秸秆配合还田对土壤碳固持的影响及调控机制[D]. 杨凌: 西北农林科技大学, 2019.

JIANG Y H. Effects and regulation mechanisms of leguminous and gramineous straw returning on soil carbon sequestration[D]. Yangling: Northwest A & F University, 2019. (in Chinese)

[42] 匡恩俊, 迟凤琴, 宿庆瑞, 张久明, 金梁. 不同还田方式下玉米秸秆腐解规律的研究. 玉米科学, 2012, 20(2): 99-101,106.

KUANG E J,CHI F Q, SU Q R, ZHANG J M, JIN L. Decomposition characteristics of maize straws under different returning methods., 2012, 20(2): 99-101,106. (in Chinese)

[43] 兰木羚, 高明. 不同秸秆翻埋还田对旱地和水田土壤微生物群落结构的影响. 环境科学, 2015, 36(11): 4252-4259.

LAN M L, GAO M. Influence of different straws returning with landfill on soil microbial community structure under dry and water farming., 2015, 36(11): 4252-4259. (in Chinese)

[44] 李纯燕, 杨恒山, 萨如拉, 张瑞富, 曹倩, 张丽娟.不同耕作措施下秸秆还田对土壤速效养分和微生物量的影响. 水土保持学报, 2017, 31(1): 197-201,210.

LI C Y, YANG H S, SA R L, ZHANG R F, CAO Q, ZHANG L J. Effect of straw returning on soil available nutrients and microbe biomass under different tillage methods.2017, 31(1): 197-201,210. (in Chinese)

[45] 李帆, 王静, 武际, 叶寅, 刘泽, 朱宏斌. 尿素硝酸铵调节碳氮比促进小麦秸秆堆肥腐熟. 植物营养与肥料学报, 2019, 25(5): 832-840.

LI F, WANG J, WU J, YE Y, LIU Z, ZHU H B. Fast production of wheat straw aerobic compost through regulating C/N ratio with urea ammonium nitrate solution., 2019, 25(5): 832-840. (in Chinese)

[46] 李昊昱. 秸秆还田模式对土壤质量及冬小麦-夏玉米产量的影响[D]. 泰安: 山东农业大学, 2019.

LI H Y. Effect of straw incorporation mode on soil quality and grain yield in winter wheat-summer maize rotation system[D].Taian: Shandong Agricultural University, 2019. (in Chinese)

[47] 李继福, 鲁剑巍, 李小坤, 任涛, 丛日环, 杨文兵, 鲁明星, 刘克芝. 麦秆还田配施不同腐秆剂对水稻产量、秸秆腐解和土壤养分的影响. 中国农学通报, 2013, 29(35): 270-276.

LI J F, LU J W, LI X K, REN T, CONG R H, YANG W B, LU M X, LIU K Z. Effect of wheat straw returning with different organic matter-decomposing inoculants (OMIs) on the yield of rice, the decomposition of straw and soil nutrients., 2013, 29(35): 270-276. (in Chinese)

[48] 李敏, 韩上, 武际, 陈峰, 桑亚松, 王慧, 唐杉. 农作物秸秆炭化后养分变化及还田效应. 中国农学通报, 2019, 35(16): 95-99.

LI M, HAN S, WU J, CHEN F, SANG Y S, WANG H, TANG S. Crop straw biochar: Nutrients change and field returning effects., 2019, 35(16): 95-99. (in Chinese)

[49] 李书田, 金继运. 中国不同区域农田养分输入、输出与平衡. 中国农业科学, 2011, 44(20): 4207-4229.

LI S T, JIN J Y. Characteristics of nutrient input/output and nutrient balance in different regions of China., 2011, 44(20): 4207-4229. (in Chinese)

[50] 李硕, 把余玲, 李有兵, 王淑娟, 田霄鸿, 师江澜. 添加作物秸秆对土壤有机碳组分和酶活性的影响. 西北农林科技大学学报(自然科学版), 2015, 43(6): 153-161.

LI S, BA Y L, LI Y B, WANG S J, TIAN X H, SHI J L. Effects of crop straws on soil organic carbon components and enzyme activities., 2015, 43(6): 153-161. (in Chinese)

[51] 李一, 王秋兵. 我国秸秆资源养分还田利用潜力及技术分析. 中国土壤与肥料, 2020(1): 119-126.

LI Y, WANG Q B. Study on potential of straw resource nutrient return to field and application technology in China., 2020(1): 119-126. (in Chinese)

[52] 李有兵, 李锦, 李硕, 田霄鸿. 秸秆还田下减量施氮对作物产量及养分吸收利用的影响. 干旱地区农业研究, 2015, 33(1): 79-84,152.

LI Y B, LI J, LI S, TIAN X H. Effects of reducing nitrogen application on crop yields, nutrients uptake and utilization with straw incorporation.s, 2015, 33(1): 79-84, 152. (in Chinese)

[53] 刘芳, 王明娣, 刘世亮, 介晓磊, 刘红恩, 冯梦龙, 王代长. 玉米秸秆腐解对石灰性褐土酶活性和有机质质量分数动态变化的影响. 西北农业学报, 2012, 21(4): 149-153.

LIU F, WANG M D, LIU S L, JIE X L, LIU H E, FENG M L, WANG D C. Effect of maize straw decomposing on dynamic changes of soil enzyme activity and soil organic matter mass fraction in calcareous cinnamon soil., 2012, 21(4): 149-153. (in Chinese)

[54] 刘赛男, 高尚, 程效义, 鄂洋, 兰宇, 刘遵奇, 孟军. 玉米秸秆生物炭对秸秆腐熟进程、养分含量和CO2排放量的影响. 应用生态学报, 2019, 30(4): 237-243.

LIU S N, GAO S, CHENG X Y, E Y, LAN Y, LIU Z Q, MENG J. Effects of corn straw biochar on process, nutrient content, and CO2emissions of corn straw decomposition., 2019, 30(4): 237-243. (in Chinese)

[55] 刘世平, 陈后庆, 陈文林, 戴其根, 霍中洋, 许轲, 张洪程. 稻麦两熟制不同耕作方式与秸秆还田对小麦产量和品质的影响.麦类作物学报, 2007(5): 859-863.

LIU S P, CHEN H Q, CHEN W L, DAI Q G, HUO Z X, XU K, ZHANG H C. Comprehensive evaluation of tillage and straw returning on wheat yield and quality in a wheat-rice double cropping system., 2007(5): 859-863. (in Chinese)

[56] 柳媛媛. 有机物料投入对旱地土壤碳氮的后效作用及其模拟[D]. 杨凌: 西北农林科技大学, 2018.

LIU Y Y. Post-effects of organic materials input on soil carbon and nitrogen and its simulation in dryland[D]. Yangling: Northwest A&F University, 2018. (in Chinese)

[57] 马想. 我国典型农田土壤中有机物料的腐解特征及驱动因子[D]. 北京: 中国农业科学院, 2019.

MA X. Decomposition characteristics and driving factors of organic materials in typical cropland in China [D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)

[58] 邵满娇, 窦森, 谢祖彬. 等碳量玉米秸秆及其腐解、炭化材料还田对黑土腐殖质的影响. 农业环境科学学报, 2018, 37(10): 2202-2209.

SHAO M J, DOU S, XIE Z B. Effects of corn straw and its humified and carbonized materials applying to the black soil with an equal mass of carbon on soil humus., 2018, 37(10): 2202-2209. (in Chinese)

[59] 舒洲. 秸秆还田配合施肥对旱地小麦产量及土壤生物学特性影响研究[D]. 杨凌: 西北农林科技大学, 2016.

SHU Z. Impacts of straw returning with fertilizer on dryland wheat yield and soil biological properties[D]. Yangling: Northwest A&F University, 2016. (in Chinese)

[60] 宋蒙亚, 李忠佩, 刘明, 刘满强. 不同有机物料组合对土壤养分和生化性状的影响. 中国农业科学, 2013, 46(17): 3594-3603.

SONG M Y, LI Z P, LIU M, LIU M Q. Effects of mixtures of different organic materials on soil nutrient content and soil biochemical characteristics., 2013, 46(17): 3594-3603. (in Chinese)

[61] 汤咪咪. 水稻秸秆还田对土壤化学性质及径流中氮磷含量的影响[D]. 合肥: 安徽农业大学, 2018.

TANG M M. Effect of rice straw retention on soil chemical properties and content of nitrogen and phosphorus in runoff [D]. Hefei: Anhui Agricultural University, 2018. (in Chinese)

[62] 汪军, 王德建, 张刚, 王灿. 连续全量秸秆还田与氮肥用量对农田土壤养分的影响. 水土保持学报, 2010, 24(5): 40-44, 62.

WANG J, WANG D J, ZHANG G, WANG C. Effects of different nitrogen fertilizer rate with continuous full amount of straw incorporated on paddy soil nutrients., 2010, 24(5): 40-44, 62. (in Chinese)

[63] 王景, 陈曦, 魏俊岭. 水稻秸秆和玉米秸秆在好气和厌氧条件下的腐解规律. 农业资源与环境学报, 2017, 34(1): 59-65.

WANG J, CHEN X, WEI J L. Decomposition of rice straw and corn straw under aerobic and anaerobic conditions., 2017, 34(1): 59-65. (in Chinese)

[64] 王喜艳, 窦森, 张恒明, 冯树成, 黄毅. 玉米秸秆持水深埋对辽西瘠薄耕地土壤养分及玉米产量的影响. 西北农业学报, 2014, 23(5): 76-81.

WANG X Y, DOU S, ZHANG H M, FENG S C, HUANG Y. Effects of water logged maize stalk deep returning on soil nutrients and maize yields of barren farmland in west Liaoning province., 2014, 23(5): 76-81. (in Chinese)

[65] 王小彬, 蔡典雄, 张镜清, 高绪科. 旱地玉米秸秆还田对土壤肥力的影响. 中国农业科学, 2000, 33(4): 54-61.

WANG X B, CAI D X, ZHANG J Q, GAO X K. Effects of corn stover incorporated in dry farmland on soil fertility., 2000, 33(4): 54-61. (in Chinese)

[66] 王晓斌. 安徽省农作物秸秆养分资源及农业利用方式的调查[D]. 合肥: 安徽农业大学, 2013.

WANG X B. The research on straw nutrient resource and utilization strategies of Anhui province [D]. Hefei: Anhui Agricultural University, 2013. (in Chinese)

[67] 王晓玥, 蒋瑀霁, 隋跃宇, 孙波. 田间条件下小麦和玉米秸秆腐解过程中微生物群落的变化—BIOLOG分析. 土壤学报, 2012, 49(5): 1003-1011.

WANG X Y, JIANG Y J, SUO Y Y, SUN B. Changes of microbial communities during decomposition of wheat and maize straw: Analysis by BIOLOG., 2012, 49(5): 1003-1011. (in Chinese)

[68] 王砚, 李念念, 朱端卫, 周文兵, 陈焰鑫, 伍玉鹏. 水稻秸秆预处理对猪粪高温堆肥过程的影响. 农业环境科学学报, 2018, 37(9): 2021-2028.

WANG Y, LI N N, ZHU D W, ZHOU W B, CHEN Y X, WU Y P. Influence of straw pretreatment on the thermophilic composting process with pig manure., 2018, 37(9): 2021-2028. (in Chinese)

[69] 王毅, 宋文静, 吴元华, 高政绪, 刘祥, 刘跃东, 管恩森, 李文丽, 张本强, 王树声. 小麦秸秆还田对烤烟叶片发育及产质量的影响. 中国烟草科学, 2018, 39(2): 32-38.

WANG Y, SONG W J, WU Y H, GAO Z X, LIU X, LIU Y D, GUAN E S, LI W L, ZHANG B Q, WANG S S. Effects of returning wheat straw to soil on leaf development, yield and quality of tobacco., 2018, 39(2): 32-38. (in Chinese)

[70] 王忠江, 王泽宇, 司爱龙, 张正, 吴婧, 王丽丽. 秸秆与沼肥同步翻埋还田对秸秆腐解特性的影响. 农业机械学报, 2017, 48(6): 271-277.

WANG Z J, WANG Z Y, SI A L, ZHANG Z, WU J, WANG L L. Effect of synchronously burying and returning straw and biogas slurry to soil on straw decomposition., 2017, 48(6): 271-277. (in Chinese)

[71] 吴艳萍, 王国栋, 赵明德. 接种链霉菌对小麦秸秆腐解过程的影响. 西北农业学报, 2010, 19(1): 100-103.

WU Y P, WANG G D, ZHAO M D. Effects of streptomyces thermovulgaris inoculation on wheat straw composting process., 2010, 19(1): 100-103. (in Chinese)

[72] 武际. 水旱轮作条件下秸秆还田的培肥和增产效应[D]. 武汉: 华中农业大学, 2012.

WU J. Effects of straw return on soil fertility and crop yields in paddy-upland rotation system[D]. Wuhan: Huazhong Agricultural University, 2012. (in Chinese)

[73] 武志杰, 张海军, 许广山, 张玉华, 刘春萍. 玉米秸秆还田培肥土壤的效果. 应用生态学报, 2002(5): 539-542.

WU Z J, ZHANG H J, XU G S, ZHANG Y H, LIU C P.Effect of returning corn straw into soil on soil fertility., 2002(5): 539-542. (in Chinese)

[74] 夏志敏, 周建斌, 梅沛沛, 王平, 桂林国, 李隆. 玉米与蚕豆秸秆配施对秸秆分解及土壤养分含量的影响. 应用生态学报, 2012, 23(1): 103-108.

XIA Z M, ZHOU J B, MEI P P, WANG P, GUI L G, LI L.Effects of combined application of maize-and horsebean straws on the straws decomposition and soil nutrient contents., 2012, 23(1): 103-108. (in Chinese)

[75] 徐健程, 王晓维, 朱晓芳, 邓晓东, 杨文亭. 不同绿肥种植模式下玉米秸秆腐解特征研究. 植物营养与肥料学报, 2016, 22(1): 48-58.

XU J C, WANG X W, ZHU X F, DENG X D, YANG W T.Study on decomposition of maize straw under different green manure cropping patterns., 2016, 22(1): 48-58. (in Chinese)

[76] 徐秋桐, 孔樟良, 章明奎. 不同有机废弃物改良新复垦耕地的综合效果评价. 应用生态学报, 2016, 27(2): 567-576.

XU Q T, KONG Z L, ZHANG M K.Comprehensive evaluation of improving effects of different organic wastes on a newly reclaimed cultivated land., 2016, 27(2): 567-576. (in Chinese)

[77] 闫超. 水稻秸秆还田腐解规律及土壤养分特性的研究[D]. 哈尔滨: 东北农业大学, 2015.

YAN C.Studies on decomposition regularity of returning rice straw and soil nutrient properties[D]. Harbin: Northeast Agricultural University, 2015. (in Chinese)

[78] 杨思存, 霍琳, 王建成. 秸秆还田的生化他感效应研究初报. 西北农业学报, 2005(1): 52-56.

YANG S C, HUO L, WANG J C.Allelopathic effect of straw returning., 2005(1): 52-56. (in Chinese)

[79] 杨志敏, 陈玉成, 张赟, 彭莉, 陈庆华. 淹水条件下秸秆还田的面源污染物释放特征. 生态学报, 2012, 32(6): 1854-1860.

YANG Z M, CHEN Y C, ZHANG B, PENG L, CHEN Q H.Releasing characteristics of nonpoint source pollutants from straws under submerging condition., 2012, 32(6): 1854-1860. (in Chinese)

[80] 袁嫚嫚, 邬刚, 胡润, 孙义祥. 秸秆还田配施化肥对稻油轮作土壤有机碳组分及产量影响. 植物营养与肥料学报, 2017, 23(1): 27-35.

YUAN M M, WU G, HU R, SUN Y X.Effects of straw returning plus fertilization on soil organic carbon components and crop yields in rice-rapeseed rotation system., 2017, 23(1): 27-35. (in Chinese)

[81] 翟修彩. 不同化学添加剂对秸秆腐解产物的影响及其应用研究[D]. 南京:南京农业大学, 2012.

ZHAI X C.Studies of chemical additives on straw decomposition and the application in red soil[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese)

[82] 张彬, 何红波, 赵晓霞, 解宏图, 白震, 张旭东. 秸秆还田量对免耕黑土速效养分和玉米产量的影响. 玉米科学, 2010, 18(2): 81-84.

ZHANG B, HE H B, ZHAO X X, XIE H T, BAI Z, ZHANG X D.Effects of crop-residue incorporation on no-tillage soil available nutrients and corn yield.2010, 18(2): 81-84. (in Chinese)

[83] 张洪熙, 赵步洪, 杜永林, 谭长乐, 戴正元, 季红娟, 王宝和, 周长海. 小麦秸秆还田条件下轻简栽培水稻的生长特性. 中国水稻科学, 2008(6): 603-609.

ZHANG H X, ZHAO B H, DU Y L, TAN C L, DAI Z Y, JI H J, WANG B H, ZHOU C H.Growth characteristics of rice under simplified cultivation with wheat residue return., 2008(6): 603-609. (in Chinese)

[84] 张慧芳. 免耕与秸秆还田对水稻养分吸收及土壤磷素富集的影响[D]. 杭州:浙江大学, 2018.

ZHANG H F. Effects of no-tillage and straw returning on rice nutrient uptake and soil phosphorus accumulation[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)

[85] 张娟. 施用处理秸秆对土壤供氮特征及作物生长的影响[D]. 南京:南京农业大学, 2003.

ZHANG J. The effects of application of treated rice straw on soil nitrogen supply and crop growth[D]. Nanjing: Nanjing Agricultural University, 2003. (in Chinese)

[86] 张璐, 董达, 平帆, 徐兴坤, 易倩倩, 孙雪, 吴伟祥. 逐年全量秸秆炭化还田对水稻产量和土壤养分的影响. 农业环境科学学报, 2018, 37(10): 2319-2326.

ZHANG L, DONG D, PING F, XU X K, YI Q Q, SUN X, WU W X. The effects of successive whole-dose biochar application on rice yield and soil nutrient concentrations., 2018, 37(10): 2319-2326. (in Chinese)

[87] 张影, 刘星, 任秀娟, 李东方, 吴大付, 陈锡岭. 秸秆及其生物炭对土壤碳库管理指数及有机碳矿化的影响. 水土保持学报, 2019, 33(3): 153-159,165.

ZHANG Y, LIU X, REN X J, LI D F, WU D F, CHEN X L.Effects of straw and biochar on soil carbon pool management index and organic carbon mineralization., 2019, 33(3): 153-159,165. (in Chinese)

[88] 赵聪, 曹莹菲, 刘克, 薛泉宏, 吕家珑. 室内模拟条件下玉米秸秆的分解特征及物质组成变化. 干旱地区农业研究, 2014, 32(4): 183-186.

ZHAO C, CAO Y F, LIU K, XUE Q H, Lü J L.Characteristics of decomposition and variation of material composition of corn straw in laboratory simulation experiment., 2014, 32(4): 183-186. (in Chinese)

[89] 赵金凤, 陈静文, 张迪, Ghosh Saikat. 玉米秸秆和小麦秸秆生物炭的热稳定性及化学稳定性. 农业环境科学学报, 2019, 38(2): 458-465.

ZHAO J F, CHEN J W, ZHANG D, Ghosh S.Thermal stability and oxidation resistance of biochars derived from corn stalk and wheat stalk.2019, 38(2): 458-465. (in Chinese)

[90] 赵雅雯, 王金洲, 王士超, 武红亮, 黄绍敏, 卢昌艾. 潮土区小麦、玉米残体对土壤有机碳的贡献—基于改进的RothC模型. 中国农业科学, 2016, 49(21): 4160-4168.

ZHAO Y W, WANG J Z, WANG S C, WU H L, HUANG S M, LU C Y. Contributions of wheat and corn residues to soil organic carbon under fluvo-aquic soil area-based on the modified RothC model., 2016, 49(21): 4160-4168. (in Chinese)

[91] 周怀平, 杨治平, 李红梅, 关春林. 秸秆还田和秋施肥对旱地玉米生长发育及水肥效应的影响. 应用生态学报, 2004(7): 1231-1235.

ZHOU H P, YANG Z P, LI H M, GUAN C L.Effect of straw return to field and fertilization in autumn on dryland corn growth and on water and fertilizer efficiency., 2004(7): 1231-1235. (in Chinese)

[92] 朱文玲, 李秀双, 田霄鸿, 陈娟, 王松. 小麦与秋豆秸秆配施对土壤有机碳固持的影响. 农业环境科学学报, 2018, 37(9): 1952-1960.

ZHU W L, LI X S, TIAN X H, CHEN J, WANG S.Effects of the combined amendment of wheat and huai bean straws on soil organic carbon sequestration., 2018, 37(9): 1952-1960. (in Chinese)

[93] 朱雅琪. 稻秆腐解影响条件优化及其对土壤养分和蔬菜生长的影响[D]. 长安: 长安大学, 2019.

ZHU Y Q.Optimization of influencing conditions of rice straw decomposition and its effects on soil nutrients and vegetable growth[D].Chang’an: Chang’An University, 2019. (in Chinese)

[94] 朱远芃, 金梦灿, 马超, 广敏, 高敏, 郜红建. 外源氮肥和腐熟剂对小麦秸秆腐解的影响. 生态环境学报, 2019, 28(3): 612-619.

ZHU Y P, JIN M C, MA C, GUANG M, GAO M, GAO H J.Impacts of exogenous nitrogen and effective microorganism on the decomposition of wheat straw residues., 2019, 28(3): 612-619. (in Chinese)

[95] 邹文秀, 韩晓增, 陆欣春, 郝翔翔, 尤孟阳, 张一鹤. 施入不同土层的秸秆腐殖化特征及对玉米产量的影响. 应用生态学报, 2017, 28(2): 563-570.

ZOU W X, HAN X Z, LU X C, HAO X X, YOU M Y, ZHANG Y H. Effects of straw incorporated to different locations in soil profile on straw humification coefficient and maize yield. C, 2017, 28(2): 563-570. (in Chinese)

[96] 曹莹菲, 张红, 赵聪, 刘克, 吕家珑. 秸秆腐解过程中结构的变化特征. 农业环境科学学报, 2016, 35(5): 976-984.

CAO Y F, ZHANG H, ZHAO C, LIU K, Lü J L.Changes of organic structures of crop residues during decomposition., 2016, 35(5): 976-984. (in Chinese)

[97] 戴志刚. 秸秆养分释放规律及秸秆还田对作物产量和土壤肥力的影响[D]. 武汉: 华中农业大学, 2009.

DAI Z G. Study on nutrient release characteristics of crop residue and effect of crop residue returning on crop yield and soil fertility[D]. Wuhan: Huazhong Agricultural University, 2009. (in Chinese)

[98] 侯小畔. 添加碳氮对作物秸秆腐解和土壤氮素转化的影响[D]. 郑州: 河南农业大学, 2017.

HOU X P. Effects of carbon and nitrogen fertilizer addition on crop residue decomposition and soil nitrogen transformation[D]. Zheng zhou: Henan Agricultural University, 2017. (in Chinese)

[99] 黄婷苗, 王朝辉, 侯仰毅, 顾炽明, 李晓, 郑险峰. 施氮对关中还田玉米秸秆腐解和养分释放特征的影响. 应用生态学报, 2017, 28(7): 2261-2268.

HAUNG T M, WANG Z H, HOU Y Y, GU Z M, LI X, ZHENG X F. Effects of nitrogen application on decomposition and nutrient release of returned maize straw in Guanzhong Plain, Northwest China., 2017, 28(7): 2261-2268. (in Chinese)

[100] 李昌明, 王晓玥, 孙波. 不同气候和土壤条件下秸秆腐解过程中养分的释放特征及其影响因素. 土壤学报, 2017, 54(5): 1206-1217.

LI C M, WANG X Y, SUN B. Characteristics of nutrient release and its affecting factors during plant residue decomposition under different climate and soil conditions., 2017, 54(5): 1206-1217. (in Chinese)

[101] 李中韬. 寒地旱作秸秆还田腐解规律及土壤CO2排放的研究[D]. 哈尔滨: 东北农业大学, 2015.

LI Z T. Study on decomposition characteristics of straw return to soil and CO2emission of dry farmland soil[D]. Harbin: Northeast Agricultural University, 2015. (in Chinese)

[102] 刘平东. 水稻、油菜还田秸秆氮素释放与吸附特征[D]. 武汉: 华中农业大学, 2018.

LIU P D. Characteristics of nitrogen release and absorption by rape and rice straw incorporation[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese)

[103] 牛怡. 两种耕作方式下黄土高原旱作农田还田玉米秸秆腐解特征与养分释放研究[D]. 兰州: 甘肃农业大学, 2014.

NIU Y. Study on return-field corn straw decomposition and nutrient release characteristics under two tillage methods of rainfed farmland in the Loess Plateau [D]. Lanzhou: Gansu Agricultural University, 2014. (in Chinese)

[104] 庞荔丹. 玉米秸秆还田腐解率及其对土壤养分影响[D]. 哈尔滨: 东北农业大学, 2017.

PANG L D. Decomposition rate of corn straw returning and its effects on soil nutrients[D]. Harbin: Northeast Agricultural University,2017. (in Chinese)

[105] 青格尔, 于晓芳, 高聚林, 王志刚, 闹干朝鲁, 王振, 胡树平, 高琳, 胡海红. 腐解菌剂对玉米秸秆降解效果的研究. 西北农林科技大学学报(自然科学版), 2016, 44(12): 107-116.

BORJIGIN Q, YU X F, GAO J L, WANG Z G, BORJIGIN N, WANG Z, HU S P, GAO L, HU H H. Study on degradation of corn stalk by decomposing microbial inoculants.), 2016, 44(12): 107-116. (in Chinese)

[106] 田平, 姜英, 孙悦, 马梓淇, 隋鹏祥, 梅楠, 齐华. 不同还田方式对玉米秸秆腐解及土壤养分含量的影响. 中国生态农业学报(中英文), 2019, 27(1): 100-108.

TIAN P, JIANG Y, SUN Y, MA Z Q, SUI P X, MEI N, QI H. Effect of straw return methods on maize straw decomposition and soil nutrients contents.2019, 27(1): 100-108. (in Chinese)

[107] 武际, 郭熙盛, 鲁剑巍, 万水霞, 王允青, 许征宇, 张晓玲. 不同水稻栽培模式下小麦秸秆腐解特征及对土壤生物学特性和养分状况的影响. 生态学报, 2013, 33(2): 565-575.

WU J, GUO X S, LU J W, WAN S X, WANG Y Q, XU Z Y, ZHANG X L. Decomposition characteristics of wheat straw and effects on soil biological properties and nutrient status under different rice cultivation., 2013, 33(2): 565-575. (in Chinese)

[108] 武际, 郭熙盛, 王允青, 许征宇, 鲁剑巍. 不同水稻栽培模式和秸秆还田方式下的油菜、小麦秸秆腐解特征. 中国农业科学, 2011, 44(16): 3351-3360.

WU J, GUO X S, WANG Y Q, XU Z Y, LU J W. Decomposition characteristics of rapeseed and wheat straws under different rice cultivations and straw mulching models., 2011, 44(16): 3351-3360. (in Chinese)

[109] 席娟. 分层覆盖下秸秆层演变规律及降解速率调控方法试验研究[D]. 杨凌: 西北农林科技大学, 2018.

XI J. The research on evolution mechanism of layered mulching straw and its decomposition rate regulation methods[D]. Yangling: Northwest A & F University, 2018. (in Chinese)

[110] 夏东. 不同有机物料还田的腐解特征及对黄壤养分的影响[D]. 贵州: 贵州大学, 2019.

XIA D. Decomposition characteristics of different organic materials returning to field and their effects on nutrients in yellow soil[D]. Guizhou: Guizhou University, 2019. (in Chinese)

[111] 闫超. 水稻秸秆还田腐解规律及对土壤养分和酶活性的影响[D]. 哈尔滨: 东北农业大学, 2012.

YAN C. Decomposition regularity of rice straw returning to soil and its effect on soil nutrients and enzyme activity [D]. Harbin: Northeast Agricultural University, 2012. (in Chinese)

[112] 岳丹, 蔡立群, 齐鹏, 张仁陟, 武均, 高小龙. 小麦和玉米秸秆不同还田量下腐解特征及其养分释放规律. 干旱区资源与环境, 2016, 30(3): 80-85.

YUE D, CAI L Q, QI P, ZHANG R Z, WU J, GAO X L. The decomposition characteristics and nutrient release laws of wheat and corn straws under different straw-returned amount., 2016, 30(3): 80-85. (in Chinese)

[113] 张珺穜, 王婧, 张莉, 逄焕成, 王飞. 理化预处理方式对玉米秸秆腐解与养分释放特征的影响. 农业工程学报, 2016(23): 226-232.

WANG J T, WANG J, ZHANG L, PANG H C, WANG F. Effect of physical and chemical pretreatment on decomposition and nutrient release characteristics of maize straw., 2016(23): 226-232. (in Chinese)

[114] 张亮. 关中麦玉轮作区施氮对秸秆还田小麦产量和秸秆养分释放的影响[D]. 杨凌: 西北农林科技大学, 2012.

ZHANG L. Effects of nitrogen fertilizer on yield of winter wheat and straw decomposition under maize straw returning in Guanzhong irrigation district[D]. Yangling: Northwest A & F University, 2012. (in Chinese)

[115] 郑丹. 不同条件下作物秸秆养分释放规律的研究[D]. 哈尔滨: 东北农业大学, 2012.

ZHENG D. The nutrient releasing regularity of crop stalks under different conditions[D]. Harbin: Northeast Agricultural University, 2012. (in Chinese)

[116] 陈建英, 罗超越, 邱慧珍, 邓德雷, 张春红, 郭亚军, 张建斌. 不同施氮量对半干旱区还田玉米秸秆腐解及养分释放特征的影响. 干旱地区农业研究, 2020(38):101-106.

CHEN J Y, LUO C Y, QIU H Z,DENG D L, ZHANG C H, GUO Y J, ZHANG J B. Effects of application of different nitrogen levels on decomposition characteristics and nutrient release of returning straw.,2020(38): 101-106. (in Chinese)

[117] 黄菲, 刘言, 李继福, 欧阳玲, 龙鹏, 李新涛. 水旱轮作条件下还田秸秆腐解和养分释放特征研究. 长江大学学报(自然科学版), 2017,14(18): 54-60, 50.

HUANG F, LIU Y, LI J F, OUYANG L, LONG P, LI X T. Characteristics of decomposing and nutrients releasing of crop straw under paddy-upland rotation.,2017, 14(18): 54-60, 50. (in Chinese)

[118] 李逢雨. 秸秆还田养分释放规律及稻草化感作用研究[D]. 成都: 四川农业大学, 2007.

LI F Y. Patterns of nutrient release from straws returns to the field and the allelopathic effect of rice straw[D]. Chengdu: Sichuan Agricultural University, 2017. (in Chinese)

[119] 刘萌. 全量还田麦秸秆腐解特征及对土壤理化性质和水稻产量形成的影响[D]. 扬州: 扬州大学, 2012.

LIU M. Nutrient release characteristics of wheat straw and effect of entire wheat straw returning on rice yield and soil fertility [D]. Yangzhou: Yangzhou University, 2012. (in Chinese)

[120] 王景, 陈曦, 张雅洁, 郜红建. 好气和厌氧条件下小麦秸秆的腐解特征研究. 中国农业大学学报, 2015, 20(3): 161-168.

WANG J, CHEN X, ZHANG Y J, GAO H J. Characteristic of wheat straw decomposition under aerobic and anaerobic condition in soil.,2015, 20(3): 161-168. (in Chinese)

[121] 王旭东, 陈鲜妮, 王彩霞, 田霄鸿, 吴发启. 农田不同肥力条件下玉米秸秆腐解效果. 农业工程学报, 2009, 25(10): 252-257.

WANG X D, CHEN X N, WANG C X, TIAN X H, WU F Q. Decomposition of corn stalk in cropland with different fertility., 2009, 25(10): 252-257. (in Chinese)

[122] 王允青, 郭熙盛. 不同还田方式作物秸秆腐解特征研究. 中国生态农业学报, 2008(3): 607-610.

WANG Y Q, GUO X S. Decomposition characteristics of crop-stalk under different incorporation methods., 2008(3): 607-610. (in Chinese)

[123] 夏东, 王小利, 冉晓追, 赵义国. 不同有机物料在黄壤旱地中的腐解特性及养分释放特征. 山地农业生物学报, 2019, 38(4):59-64.

XIA D, WANG X L, RAN X Z, ZHAO Y G. Nutrient release patterns and decomposition characteristics of different organic materials in yellow soil upland., 2019, 38(4): 59-64. (in Chinese)

[124] 徐健程, 王晓维, 朱晓芳, 邓晓东, 杨文亭. 不同绿肥种植模式下玉米秸秆腐解特征研究. 植物营养与肥料学报, 2016, 22(1): 48-58.

XU J C, WANG X W, ZHU X F, DENG X D,YANG W T. Study on decomposition of maize straw under different green manure cropping patterns., 2016, 22(1): 48-58. (in Chinese)

[125] 于寒, 谷岩, 梁烜赫, 吴春胜. 玉米秸秆腐解规律及土壤微生物功能多样性研究. 水土保持学报, 2015, 29(2): 305-309.

YU H, GU Y, LIANG X H, WU C S. Study on the decomposition characteristics of maize straw and soil microbial functional diversity., 2015, 29(2): 305-309. (in Chinese)

[126] 于宗波, 杨恒山, 萨如拉, 李媛媛, 罗方, 郭晓旭. 不同质地土壤玉米秸秆还田配施腐熟剂效应的研究. 水土保持学报, 2019, 33(4): 234-240.

YU Z B, YANG H S, SA R L,LI Y Y, LUO F, GUO X X. Effect of maize straw returning combined with maturation agent in different texture soils., 2019, 33(4): 234-240. (in Chinese)

[127] 张姗, 石祖梁, 杨四军, 顾克军, 戴廷波, 王飞, 李想, 孙仁华. 施氮和秸秆还田对晚播小麦养分平衡和产量的影响. 应用生态学报, 2015, 26(9): 2714-2720.

ZHANG S, SHI Z L, YANG S J, GU K J, DAI T B, WANG F, LI X, SUN R H. Effects of nitrogen application rates and straw returning on nutrient balance and grain yield of late sowing wheat in rice-wheat rotation., 2015, 26(9): 2714-2720. (in Chinese)

[128] 周东兴, 王广栋, 邬欣慧, 李晶, 金聪敏, 王恩泽. 不同还田量对秸秆养分释放规律及微生物功能多样性的影响. 土壤通报, 2018, 49(4): 848-855.

ZHOU D X, WANG G D, WU X H, LI J, JIN C M, WANG E Z. Microbial community diversity and nutrient release of straws under different straw returning amounts., 2018, 49(4): 848-855. (in Chinese)

[129] 孙东宝. 北方旱作区作物产量和水肥利用特征与提升途径[D]. 北京: 中国农业大学, 2017.

SUN D B. Yield, water and nutrient use efficiency of dryland crops in northern China[D]. Beijing: China Agricultural University, 2017.(in Chinese)

[130] 曹寒冰, 王朝辉, 师渊超, 杜明叶, 雷小青, 张文忠, 张璐, 蒲岳建. 渭北旱地冬小麦监控施氮技术的优化. 中国农业科学, 2014, 47(19): 3826-3838.

CAO H B, WANG Z H, SHI Y C, DU M Y, LEI X Q, ZHANG W Z, ZHANG L, PU Y J. Optimization of nitrogen fertilizer recommendation technology based on soil test for winter wheat on Weibei Dryland., 2014, 47(19): 3826-3838. (in Chinese)

[131] 黄倩楠, 王朝辉, 黄婷苗, 侯赛宾, 张翔, 马清霞, 张欣欣. 中国主要麦区农户小麦氮磷钾养分需求与产量的关系. 中国农业科学, 2018, 51(14): 2722-2734.

HUANG Q N, WANG Z H, HUANG T M, HOU S B, ZHANG X, MA Q X, ZHANG X X.2018, 51(14): 2722-2734. (in Chinese)

[132] 张福锁,陈新平,陈清.中国主要作物施肥指南[D]. 北京: 中国农业大学出版社, 2009: 13-15, 29-32.

ZHANG F S, CHEN X P, CHEN Q. Fertilization guidelines of main crops in China[D]. Beijing:China Agricultural University Press, 2009: 13-15, 29-32. (in Chinese)

[133] 吴良泉. 基于“大配方、小调整”的中国三大粮食作物区域配肥技术研究[D]. 北京: 中国农业大学, 2014.

WU L Q. Fertilizer recommendations for three major cereal crops based on regional fertilizer formula and site specific adjustment in China[D]. Beijing: China Agricultural University, 2014.(in Chinese)

[134] 丛宏斌, 姚宗路, 赵立欣, 孟海波, 王久臣, 霍丽丽, 袁艳文, 贾吉秀, 谢腾, 吴雨浓. 中国农作物秸秆资源分布及其产业体系与利用路径. 农业工程学报, 2019, 35(22): 132-140.

CONG H B, YAO Z L, ZHAO L X, MENG H B, WANG J C, HUO L L, YUAN Y W, JIA J X, XIE T, WU Y N. Distribution of crop straw resources and its industrial system and utilization path in China., 2019, 35(22): 132-140. (in Chinese)

[135] 王琳琳, 王平, 王振林, 孙爱清, 杨敏, 王春微, 尹燕枰. 基因型×环境互作下小麦氮代谢相关性状的遗传和相关性分析. 植物营养与肥料学报, 2015, 21(3): 549-560.

WANG L L, WANG P, WANG Z L, SUN A Q, YANG M, WANG C W, YIN Y P. Inheritance and correl-ation analysis of genotype × environment interaction for nitrogen metabolism-related traits of wheat., 2015, 21(3): 549-560. (in Chinese)

[136] HUANG L H, LIU X, WANG Z C, LIANG Z W, WANG M M, LIU M, SUAREZ D L. Interactive effects of pH, EC and nitrogen on yields and nutrient absorption of rice (L.)., 2017, 194: 48-57.

[137] 史建国, 朱昆仑, 曹慧英, 董树亭, 刘鹏, 赵斌, 张吉旺. 花粒期光照对夏玉米干物质积累和养分吸收的影响. 应用生态学报, 2015, 26(1): 46-52.

SHI J G, ZHU K L, CAO H Y, DONG S T, LIU P, ZHAO B, ZHANG J W. Effect of light from flowering to maturity stage on dry matter accumulation and nutrient absorption of summer maize, 2015, 26(1): 46-52. (in Chinese)

[138] IRFAN M, AZIZ T, MAQSOOD M A, BILAL H M, SIDDIQUE K H M, XU M G. Phosphorus (P) use efficiency in rice is linked to tissue-specific biomass and P allocation pattern., 2020: 4278.

[139] 黄宁, 王朝辉, 王丽, 马清霞, 张悦悦, 张欣欣, 王瑞. 我国主要麦区主栽高产品种产量差异及其与产量构成和氮磷钾吸收利用的关系. 中国农业科学, 2020, 53(1): 81-93.

HUANG N, WANG C H, WANG L, MA Q X, ZHANG Y Y, ZHANG X X, WANG R. Yield variation of winter wheat and its relationship to yield components, NPK uptake and utilization of leading and high yielding wheat cultivars in main wheat production regions of China., 2020, 53(1): 81-93. (in Chinese)

[140] 单双吕. 不同生态条件下水稻产量形成及氮素吸收规律研究[D]. 长沙: 湖南农业大学, 2016.

SHAN S L. Yield formation and nutrient uptake characteristics of rice under different [D]. Changsha: Hunan Agricultural University, 2016. (in Chinese)

[141] 王泽林, 白炬, 李阳, 岳善超, 李世清. 氮肥施用和地膜覆盖对旱作春玉米氮素吸收及分配的影响. 植物营养与肥料学报, 2019, 25(1): 74-84.

WANG Z L, BAI J, LI Y, YUE S C, LI S Q. Effects of nitrogen application and plastic film mulching on nitrogen uptake and allocation in dry-land spring maize., 2019, 25(1): 74-84. (in Chinese)

[142] 李廷亮, 谢英荷, 高志强, 洪坚平, 孟丽霞, 马红梅, 孟会生, 贾俊香. 黄土高原旱地小麦覆膜增产与氮肥增效分析. 中国农业科学, 2018, 51(14): 2735-2746.

LI T L, XIE Y H, GAO Z Q, HONG J P, MENG L X, MA H M, MENG H S, JIA J X. Analysis on yield increasing and nitrogen efficiency enhancing of winter wheat under film mulching cultivation in the Loess Plateau2018, 51(14): 2735-2746. (in Chinese)

[143] GUAN X K, WEI L, TURNER N C, MA S C, YANG M D, WANG T C. Improved straw management practices promote in situ straw decomposition and nutrient release, and increase crop production., 2020, 250: 119514.

[144] 毕于运, 高春雨, 王红彦, 王萍, 王亚静.我国农作物秸秆离田多元化利用现状与策略. 中国农业资源与区划, 2019, 40(9): 1-11.

BI Y Y, GAO C Y, WANG H Y, WANG P, WANG Y J. Research on the present situation and corresponding strategies of off-field straw collection and comprehensive utilization in China., 2019, 40(9): 1-11. (in Chinese)

[145] YIN H J, ZHAO W Q, LI T, CHENG X Y, LIU Q. Balancing straw returning and chemical fertilizers in China: Role of straw nutrient resources, 2018, 81: 2695-2702.

[146] YAN S S, SONG J M, FAN J S, YAN C, DONG S K, MA C M, GONG Z P. Changes in soil organic carbon fractions and microbial community under rice straw return in Northeast China., 2020, 22: e00962.

[147] 赵士诚, 曹彩云, 李科江, 仇少君, 周卫, 何萍. 长期秸秆还田对华北潮土肥力、氮库组分及作物产量的影响. 植物营养与肥料学报, 2014, 20(6): 1441-1449.

ZHAO S C, CAO C Y, LI K J, QIU S J, ZHOU W, HE P. Effects of long-term straw return on soil fertility, nitrogen pool fractions and crop yields on a fluvo-aquic soil in North China., 2014, 20(6): 1441-1449. (in Chinese)

[148] 王如芳, 张吉旺, 董树亭, 刘鹏. 我国玉米主产区秸秆资源利用现状及其效果. 应用生态学报, 2011, 22(6): 1504-1510.

WANG R F, ZHANG J W, DONG S T, LIU P. Present situation of maize straw resource utilization and its effect in main maize production regions of China., 2011, 22(6): 1504-1510. (in Chinese)

[149] 周延辉, 朱新开, 郭文善, 封超年. 中国地区小麦产量及产量要素对秸秆还田响应的整合分析. 核农学报, 2019, 33(1): 129-137.

ZHOU Y H, ZHU X K, GUO W S, FENG C N. Meta-analysis of the response of wheat yield and yield components to straw returning in China., 2019, 33(1): 129-137. (in Chinese)

Nutrient Resource Quantity from Main Grain Crop Straw Incorporation and Its Enlightenment on Chemical Fertilizer Reduction in Wheat Production in China

LI TingLiang1,2, WANG YuFeng1, WANG JiaHao1, LI Li1, XIE JunYu1, LI LiNa1, HUANG XiaoLei1, XIE YingHe1

(1College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, Shanxi;2National Demonstration Center for Agricultural Resources and Environment Experimental Teaching, Shanxi Agricultural University, Taigu 030801, Shanxi)

【】The objective of this study was to determine the quantity and distribution of crop straws from rice, wheat and maize production, and the contained nutrient resources in the main grain crops planting regions of China, so as to provide a scientific basis for straw fertilizer utilization and reasonable reduction of chemical fertilizer in agricultural production in China.【】Based on data/information fromand published literature, the amount of crop straws and the contained nutrient resources were estimated in rice, wheat and maize planting areas. The distribution of crop straws and the contained nutrient resources, the nutrient release of straw incorporation in next-stubble crops production, and chemical fertilizer proper reduction rate of wheat production were further analyzed in different agricultural regions of China.【】The results showed that the ratio of straw to grain of rice, wheat and maize in China was 1.01, 1.14 and 1.25 by estimation of literature data, respectively. The annual yield of straw of the three major grain crops in China was 653.866 million tons during 2014-2018, among which rice, wheat and maize accounted for 32.3%, 22.7% and 45.0%, respectively. The crop straws were mainly produced in North China, Middle and Lower Reaches of the Yangtze River and Northeast China, accounting for 73.3% of the total national crop straw yields. The rice straw (50.7%) was mainly distributed in Middle and Lower Reaches of Yangtze River, the wheat straw (59.0%) was mainly distributed in Northeast China, and the maize straw were mainly distributed in Northeast China (33.7%) and North China (30.4%). A large number of literature data statistics showed that the nitrogen (N) average content of rice, wheat and maize straw was 0.78%, 0.64% and 0.85%, the phosphorus (P2O5) average content was 0.42%, 0.27% and 0.53%, the potassium (K2O) average content was 2.31%, 1.53% and 1.59%, respectively, and the total nutrient content of straw (N+P2O5+K2O) was expressed as rice>maize>wheat. The nutrient resources of three major grain crops straw were 5.098 million tons of N, 2.847 million tons of P2O5, and 11.83 million tons of K2O. The distribution of total nutrient components in different agricultural areas was as follows: Middle and Lower Reaches of Yangtze River (26.0%)>North China (25.4%)>Northeast China (21.3%)>Northwest China (11.1%)>Southwest China (10.5%)>Southeast China (5.6%). The release rates of nitrogen from rice, wheat and maize straw returning to the field were 54.9%, 51.4% and 61.9%, that of phosphorus were 60.9%, 65.3% and 73.0%, and that of potassium were 90.1%, 93.3% and 92.3%, respectively, which showed as potassium>phosphorus>nitrogen. The annual amount of nutrient returned to field from three major grain crops straw (the amount of substitution of chemical fertilizer) contained 2.940 million tons of N, 1.941 million tons of P2O5and 10.839 million tons of K2O, with a total amount of 15.72 million tons. Among them, the nutrient (N+P2O5+K2O) release from maize straw return in the next crop growing period was the highest, accounting for 44.6% of the total amount of annual nutrient return. Straw incorporation had high potential of chemical fertilizer substitution for wheat production in China. In wheat monoculture area, the total wheat straw returning to the field could substitute chemical fertilizers input rate of 4.6 kg N·hm-2, 7.8 kg P2O5·hm-2and 65.3 kg K2O·hm-2theoretically. In the wheat-maize rotation area, the total amount of maize straw returned to the field could substitute chemical fertilizers input rate of 39.4 kg N·hm-2, 28.9 kg P2O5·hm-2and 109.9 kg K2O·hm-2in the wheat production season theoretically. In the rice-wheat rotation area, the total amount of rice straw returned to the field could substitute chemical fertilizers input rate of 29.9 kg N·hm-2, 17.8 kg P2O5·hm-2and 145.1 kg K2O·hm-2in the wheat production season theoretically.【】The annual yield of rice, wheat and maize straw in China was 211.415 million tons, 148.431 million tons and 294.020 million tons, respectively, with a total of 653.866 million tons. The straws of three major grain crops could provide 2.940 million tons of N, 1.941 million tons of P2O5and 10.839 million tons of K2O annually under straw returning. More than 70% of straw and nutrients resources were distributed in North China, Middle and Lower Reaches of the Yangtze River and Northeast China. In the wheat production area, the total amount of straw returned from the previous crop could substitute chemical fertilizers input rate of 4.6 to 39.4 kg N·hm-2, 7.8 to 28.9 kg P2O5·hm-2and 65.3 to145.1 kg K2O·hm-2in theory.

straw yield; the amount of nutrient resources; chemical fertilizer reduction; wheat production

10.3864/j.issn.0578-1752.2020.23.010

2020-05-20;

2020-07-21

国家重点研发计划项目(2018YFD0200401)、山西省重点研发计划项目(201803D221005-2)、山西省重点研发计划重点项目(201703D211001)

李廷亮,E-mail:litingliang021@126.com。通信作者谢英荷,E-mail:xieyinghe@163.com

(责任编辑 李云霞)

猜你喜欢

学报养分作物
《北京航空航天大学学报》征稿简则
中国农业科学院微信版“养分专家”上线
《北京航空航天大学学报》征稿简则
《北京航空航天大学学报》征稿简则
专题性作物博物馆的兴起与发展
苹果最佳养分管理技术
上海大学学报(自然科学版)征稿简则
作物遭受霜冻该如何补救
四种作物 北方种植有前景
养分