APP下载

骨髓间充质干细胞异常在MDS发病机制中的研究

2020-05-11楼芸周永明朱文伟

医学信息 2020年6期
关键词:间充质干细胞免疫抑制

楼芸 周永明 朱文伟

摘要:骨髓增生异常综合征是一种具有高度异质性的源于骨髓造血干细胞的克隆性疾病,免疫失衡和骨髓微环境异常在其发病机制中具有重要地位。骨髓间充质干细胞是骨髓微环境中重要的细胞成分,具有支持和调节造血干细胞的增殖和分化以及免疫调节的作用。骨髓间充质干细胞异常在骨髓增生异常综合征发病中表现为造血支持缺陷和免疫抑制,本文现就此机制进行综述。关键词:骨髓增生异常综合征;间充质干细胞;骨髓微环境;造血支持缺陷;免疫抑制

中图分类号:R551                                  文献标识码:A                                  DOI:10.3969/j.issn.1006-1959.2020.06.008

文章编号:1006-1959(2020)06-0024-04

Abstract:Myelodysplastic syndrome is a highly heterogeneous clonal disease derived from bone marrow hematopoietic stem cells. Immunological imbalance and abnormal bone marrow microenvironment play an important role in its pathogenesis. Bone marrow mesenchymal stem cells are important cellular components in the bone marrow microenvironment, and have the role of supporting and regulating the proliferation and differentiation of hematopoietic stem cells and immune regulation. The abnormality of bone marrow mesenchymal stem cells in the pathogenesis of myelodysplastic syndrome manifests as defects in hematopoietic support and immunosuppression. This article reviews the mechanism.

Key words:Myelodysplastic syndrome;Mesenchymal stem cells;Bone marrow microenvironment;Hematopoietic support defects;Immunosuppression

骨髓增生異常综合征(myelodysplastic syndrome,MDS)是起源于造血干细胞的一组高度异质性克隆性疾病,以一系或多系血细胞病态造血及无效造血,高风险向急性白血病转化为特征。目前对其发病机制的研究涉及染色体基因突变、表观遗传学改变、免疫失衡、骨髓微环境异常等方面。骨髓微环境被称为造血干细胞(hematopoietic stem cells,HSCs)的“土壤”,以三维网状空间结构为HSCs提供生存的细胞和分子微环境,主要由间充质干细胞(mesenchymal stem cells,MSCs)、细胞外基质和各种细胞因子组成,各成分互相作用以维持和调节HSCs的正常造血[1,2]。研究显示[2],MDS的无效造血可能与骨髓微环境异常有关。间充质干细胞是骨髓微环境中的重要成分,其异常在MDS的发病和进展中有着重要的作用,本文就近几年骨髓微环境中的间充质干细胞异常在MDS发病机制中的研究进展进行综述。

1间充质干细胞

间充质干细胞来源于胚胎发育早期的中胚层,是一类具有自我更新和多向分化潜能的成体干细胞。1968年Friedenstein AJ等[3]从自然贴壁法中获得了骨髓基质细胞(bone marrow stromal cells,BMSCs),至90年代末,研究者从中成功分离出一种具有成骨、成软骨和成脂肪能力的细胞,命名为间充质干细胞。其后,诸如脂肪、脐带、胎盘、肌肉等其他组织中也被分离出间充质干细胞,不同来源的MSCs在蛋白质表达谱系及特性上有所差异,骨髓间充质干细胞(bone marrow mesenchymal stem cells,BM-MSCs),简称MSCs。研究显示,体内固有的MSCs经体外培养后,其生物学特性发生了根本的变化,又由于其来源于骨髓的支持结构,滋养HSCs的生长,因此又称为间充质基质细胞(mesenchymal stromal cells,MSCs)。

MSCs有很强的增殖分化潜能,可被诱导分化为中胚层的成骨样细胞、软骨样细胞,外胚层的神经元样细胞、胰岛素分泌细胞、心肌样细胞和外胚层的肝细胞样细胞[4,5],具有组织修复功能的可能性。免疫耐受性是MSCs的另一大特性。研究表明[6,7],MSCs可以抑制T细胞的增殖从而导致免疫耐受,并且MSCs的分化并未导致其抗原性的增加[8]。另有研究显示[9],MSCs可能通过抗原呈递以及促细胞因子的分泌抑制T细胞从而产生免疫豁免。此外,还有MSCs通过转分化[10]和细胞融合[11]、旁分泌作用[12]、细胞与细胞接触依赖[7]、胞外囊泡[13]和线粒体转移[14]以及表观遗传学调控[15]等机制产生大量生物活性物质,具有造血支持、提供营养、激活内源性干/祖细胞、组织损伤修复、免疫调节、促进血管新生、抗细胞凋亡、抗氧化、抗纤维化以及归巢等多方面的作用的研究报道。目前,MSCs已成为细胞治疗领域最具临床应用价值的干细胞。

2间充质干细胞异常与MDS

2.1造血支持缺陷MDS  造血支持缺陷MDS是以病态造血和无效造血为特征表现,异常克隆细胞在骨髓中分化、成熟障碍,出现病态造血,在骨髓原位或释放入血后不久被破坏,导致无效造血。已有研究证实来源于MDS的MSCs(MSCs derived from MDS,MDS-MSCs)在支持造血方面存在缺陷[16]。

2.1.1 MDS-MSCs生长、增殖能力降低  Geyh S等[17]的研究显示,MDS所有亚型的MSCs在结构、功能以及表观遗传学方面都存在改变,表现为生长和增殖能力显著降低,同时伴随细胞克隆能力受损的提早衰老。MDS-MSCs特定的甲基化模式减低了其成骨分化能力,MDS-MSCs中的长期培养起始细胞(long-termculture-initiatingcell,LTC-IC)支持CD34+造血干/祖细胞(haemopoietic stem progenitor cell,HSPC)的能力显著降低,而LTC-IC则与细胞周期活性降低密切相关,二者共同作用导致HSPC的基质支持受损,从而影响其造血功能。而Zhao ZG等[18]的研究排除了巨噬细胞的干扰,在单细胞水平对MDS患者骨髓的MSCs(MDS-MSCs)进行分离和体外扩增,结果显示具有正常功能的LTC-IC在扩增的克隆MDS-MSC中的生长显著低于正常对照组。此外,与正常MSCs相比,SCF、G-CSF和GM-CSF等造血因子在MDS-MSCs的表達降低,且有研究证实MSCs能够通过分泌上述细胞因子来支持长期培养的骨髓基质细胞(long-term bone marrow cultured stromal cells,LTBMC)中的造血作用[19]。

2.1.2 MDS-MSCs成骨分化能力减弱  费成明等[20]研究了MSCs异常导致造血缺陷的机制,发现低危组MDS患者骨髓MSCs成骨分化能力明显减弱,高危组则相对正常,进而推测MSCs成骨分化能力的减弱使得成骨细胞数量的减少,造成作为造血龛的重要组成部分的成骨细胞龛结构异常,最终导致造血支持能力减弱。Falconi G等[21]研究显示,经典的Wnt/β-连环蛋白信号通路可促进MSCs的增殖并抑制其成骨分化,并且在分化的成骨细胞中则需要β-连环蛋白的持续稳定表达来诱导骨保护素的表达并抑制破骨细胞分化。另有较多研究表明,MSCs通过CXCR4/CXCL12信号传导[22,23]以及各种分泌因子如SCF、TPO、IGF1等在HSC龛中维持造血功能[17,23-27]。

2.1.3 MDS-MSCs对治疗反应的影响  Poon Z等[28]对MDS-MSCs造成的造血异常在治疗反应中的研究发现,在接触MDS-MSCs后损害了健康的CD34+HSPCs的造血功能,表明MDS基质所产生的造血功能异常可以被诱导并且在HSPCs中自主持续相当长一段时间,导致接受正常造血干细胞移植治疗的失败。而低甲基化疗法可逆转MDS-MSCs成骨分化、增殖、基因表达等特性的异常,并且对经移植的正常造血干细胞的支持能力有明显提升。

2.1.4 MDS-MSCs与AML-MSCs的差异  急性髓系白血病(acute myeloid leukemia,AML)的MSC(AML-MSCs)同样以无效造血为主要特征,但与MDS-MSCs有所不同。Corradi G等[29]的研究显示,MDS-MSCs和AML-MSCs在表型、分化能力、白血病特异性遗传异常的缺乏、维持AML细胞活力的能力等方面并无显著差异,但相比MDS-MSCs和健康供者的MSC(healthy donor-derived MSCs,HD-MSCs),AML-MSCs难以从患者体内分离,可能与其体内存在少量前体有关,而MDS-MSCs则显示出更低的增殖潜力。关于PI3K/AKT信号通路的研究亦证明了上述观点,该通路中GSK3b、SOS1、RASA1和MTCP1基因在MDS-MSCs中显著下调,而在AML中并无明显异常[21],可能与微环境紊乱在MDS和AML的发病机制中的权重不同有关。白血病造血细胞的遗传和表观遗传学异常足以导致AML的发生,而骨髓增生异常的造血功能异常则更多地取决于异常的骨髓基质。

2.2免疫抑制  MDS是一种骨髓衰竭性疾病,其发病与免疫应答的失调密切相关[30,31]。

2.2.1 MDS-MSCs抑制T细胞增殖  Epperson DE等[32]的研究显示,T细胞介导的免疫过程是MDS的特征之一,MDS患者TCR Vβ和Jβ使用模式代表了导致全血细胞减少的MDS骨髓中对特定抗原的T细胞反应。在MDS-MSCs相关的免疫异常中,以其对T细胞增殖的抑制最为关键。Zhao ZG等[33]的研究表明,MDS-MSCs以可溶性因子为介质抑制有丝分裂原或混合淋巴细胞反应(mixed lymphocyte reaction,MLR)刺激T细胞增殖,然而这种抑制作用较健康成人及其他血液系统恶性疾病表现明显减弱,可能与转化生长因子β(transforming growth factor-β,TGF-β)的表达异常或T细胞凋亡减少有关。

2.2.2 MDS-MSCs  有研究以TGF-β1为介质抑制免疫应答,结果显示MSCs通过分泌TGF-β1和干细胞生长因子(hepatocyte growth factor,HGF)来抑制T细胞的增殖,且抑制作用与TGF-β1和HGF的表达呈正相关[34]。Wang Z等[35]发现MDS-MSCs以TGF-β1为介质抑制DCs的内吞作用、IL-12的分泌和T细胞的增殖,并且低风险MDS-MSCs对DCs功能的抑制作用弱于高风险MDS-MSCs,表明免疫应答的失调在MDS发病过程中具有显著作用,进而研究者认为MSCs通过抑制树突状细胞(dendritic cells,DCs)的分化和成熟的方式在免疫应答的初始环节调节免疫系统。

3總结

骨髓增生异常综合征的发病机制目前尚不明确,但研究显示其与造血微环境和免疫系统的异常密切相关。骨髓间充质干细胞是骨髓微环境中重要的细胞成分,在支持和调节造血干细胞的增殖和分化以及免疫调节中起到重要作用。MSCs的异常在MDS的发病机制中主要表现为造血支持的缺陷和免疫调节的抑制,涉及不同信号通路的多种基因的表达。对于MDS-MSCs的研究不仅可以阐明MDS的部分发病机制,对疾病的进展、治疗方法和疗效评估亦有重大的意义,有待于进一步的深入探索。

参考文献:

[1]Birbrair A,Frenette PS.Niche heterogeneity in the bone marrow[J].Annals of the New York Academy of Sciences,2016,1370(1):82-96.

[2]Bulycheva E,Rauner M,Medyouf H,et al.Myelodysplasia is in the niche: novel concepts and emerging therapies[J].Leukemia,2015,29(2):259-268.

[3]Friedenstein AJ,Gorskaja JF,Kulagina NN.Fibroblast precursors in normal and irradiated mouse hematopoietic organs[J].Experimental Hematology,1976,4(5):267-274.

[4]Kobolak J,Dinnyes A,Memic A,et al.Mesenchymal stem cells:Identification,phenotypic characterization,biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche[J].Methods,2016(99):62-68.

[5]Bianco P."Mesenchymal"stem cells[J].Annu Rev Cell Dev Biol,2014(30):677-704.

[6]Davies LC,Heldring N,Kadri N,et al.Mesenchymal Stromal Cell Secretion of Programmed Death-1 Ligands Regulates T Cell Mediated Immunosuppression[J].Stem Cells,2017,35(3):766-776.

[7]Di Trapani M,Bassi G,Midolo M,et al.Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T,B and NK cell functions[J].Sci Rep,2016,6(24):120.

[8]Lee HJ,Kang KS,Kang SY,et al.Immunologic properties of differentiated and undifferentiated mesenchymal stem cells derived from umbilical cord blood[J].Journal of Veterinary Science,2016,17(3):289-297.

[9]Zhao N,Li H,Yan Y,et al.Mesenchymal stem cells overexpressing IL-35 effectively inhibit CD4(+)T cell function[J].Cell Immunol,2017(312):61-66.

[10]Pesaresi M,Sebastian-Perez R,Cosma MP.Dedifferentiation,transdifferentiation and cell fusion:in vivo reprogramming strategies for regenerative medicine[J].FEBS J,2019,286(6):1074-1093.

[11]Aguilera-Castrejon A,Pasantes-Morales H,Montesinos JJ,et al.Improved Proliferative Capacity of NP-Like Cells Derived from Human Mesenchymal Stromal Cells and Neuronal Transdifferentiation by Small Molecules[J].Neurochem Res,2017,42(2):415-427.

[12]Santos ND,Mosqueira D,Sousa LM,et al.Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling after myocardial infarction by proangiogenic, antiapoptotic,and endogenous cell-activation mechanisms[J].Stem Cell Res Ther,2014,5(1):5.

[13]Zheng G,Huang R,Qiu G,et al.Mesenchymal stromal cell-derived extracellular vesicles: regenerative and immunomodulatory effects and potential applications in sepsis[J].Cell Tissue Res,2018,374(1):1-15.

[14]Paliwal S,Chaudhuri R,Agrawal A,et al.Regenerative abilities of mesenchymal stem cells through mitochondrial transfer[J].J Biomed Sci,2018,25(1):31.

[15]Mortada I,Mortada R.Epigenetic changes in mesenchymal stem cells differentiation[J].Eur J Med Genet,2018,61(2):114-118.

[16]Dazzi F,Ramasamy R,Glennie S,et al.The role of mesenchymal stem cells in haemopoiesis[J].Blood Rev,2006,20(3):161-171.

[17]Geyh S,Oz S,Cadeddu RP,et al.Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells[J].Leukemia,2013,27(9):1841.

[18]Zhao ZG,Xu W,Yu HP,et al.Functional characteristics of mesenchymal stem cells derived from bone marrow of patients with myelodysplastic syndromes[J].Cancer Letters,2012,317(2):136-143.

[19]Viswanathan C,Kulkarni R,Bopardikar A,et al.Significance of CD34 Negative Hematopoietic Stem Cells and CD34 Positive Mesenchymal Stem Cells-A Valuable Dimension to the Current Understanding[J].Curr Stem Cell Res Ther,2017,12(6):476-483.

[20]費成明,顾树程,赵佑山,等.骨髓增生异常综合征患者骨髓间充质干细胞成骨分化功能的研究[J].中国实验血液学杂志,2015,23(3):750-755.

[21]Falconi G,Fabiani E,Fianchi L,et al.Impairment of PI3K/AKT and WNT/β-catenin pathways in bone marrow mesenchymal stem cells isolated from patients with myelodysplastic syndromes[J].Experimental Hematology,2016,44(1):75-83,e4.

[22]Sackstein R.The biology of CD44 and HCELL in hematopoiesis:the"step 2-bypass pathway"and other emerging perspectives[J].Current Opinion in Hematology,2011,18(4):239.

[23]Greenbaum A,Hsu YMS,Day RB,et al.CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance[J].Nature,2013,495(7440):227.

[24]Sugino N,Miura Y,Yao H,et al.Early osteoinductive human bone marrow mesenchymal stromal/stem cells support an enhanced hematopoietic cell expansion with altered chemotaxis-and adhesion-related gene expression profiles[J].Biochem Biophys Res Commun,2016,469(4):823-829.

[25]Fajardo-Orduna GR,Mayani H,Montesinos JJ.Hematopoietic Support Capacity of Mesenchymal Stem Cells:Biology and Clinical Potential[J].Arch Med Res,2015,46(8):589-596.

[26]Ajami M,Soleimani M,Abroun S,et al.Comparison of cord blood CD34+stem cell expansion in coculture with mesenchymal stem cells overexpressing SDF-1 and soluble/membrane isoforms of SCF[J].J Cell Biochem,2019,120(9):15297-15309.

[27]Caselli A,Olson TS,Otsuru S,et al.IGF-1-mediated osteoblastic niche expansion enhances long‐term hematopoietic stem cell engraftment after murine bone marrow transplantation[J].Stem Cells,2013,31(10):2193-2204.

[28]Poon Z,Dighe N,Venkatesan SS,et al.Bone marrow MSCs in MDS: contribution towards dysfunctional hematopoiesis and potential targets for disease response to hypomethylating therapy[J].Leukemia,2019,33(6):1487-1500.

[29]Corradi G,Baldazzi C,Ocadlíková D,et al.Mesenchymal stromal cells from myelodysplastic and acute myeloid leukemia patients display in vitro reduced proliferative potential and similar capacity to support leukemia cell survival[J].Stem cell research&therapy,2018,9(1):271.

[30]Wang C,Yang Y,Gao S,et al.Immune dysregulation in myelodysplastic syndrome:Clinical features,pathogenesis and therapeutic strategies[J].Critical Reviews in Oncology/Hematology,2018(122):123-132.

[31]Ganán-Gómez I,Wei Y,Starczynowski DT,et al.Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes[J].Leukemia,2015,29(7):1458-1469.

[32]Epperson DE,Nakamura R,Saunthararajah Y,et al.Oligoclonal T cell expansion in myelodysplastic syndrome:evidence for an autoimmune process[J].Leukemia Research,2001,25(12):1075-1083.

[33]Zhao ZG,Li WM,Chen ZC,et al.Immunosuppressive properties of mesenchymal stem cells derived from bone marrow of patient with hematological malignant diseases[J]. Leukemia&Lymphoma,2008,49(11):2187-2195.

[34]Di Nicola M,Carlo-Stella C,Magni M,et al.Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli[J].Blood, 2002,99(10):3838-3843.

[35]Wang Z,Tang X,Xu W,et al.The different immunoregulatory functions on dendritic cells between mesenchymal stem cells derived from bone marrow of patients with low-risk or high-risk myelodysplastic syndromes[J].PloS One,2013,8(3):e57470.

收稿日期:2020-01-01;修回日期:2020-01-22

編辑/肖婷婷

猜你喜欢

间充质干细胞免疫抑制
不同灸法对免疫抑制兔脾脏、胸腺影响的组织学研究
猪免疫抑制性疾病的病因、发病特点及防控措施
防控猪群免疫抑制的技术措施
金线莲多糖对免疫抑制小鼠脾淋巴细胞体外增殖、分泌NO及细胞因子的影响
间充质干细胞治疗放射性肠损伤研究进展
间充质干细胞与未成熟树突细胞联合胰岛细胞移植治疗小鼠糖尿病
脐带间充质干细胞移植治疗难治性系统性红斑狼疮患者的疗效分析
丹参总酚酸对大鼠缺血性脑卒中后免疫抑制现象的改善作用
免疫抑制法测定血清CK-MB致结果偏高的原因分析